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In traditional studies of changes in cell membrane potential or trans-membrane currents
a large part of the recorded data presents “a pure noise.” This noise results mainly
from the random openings of membrane ionic channels. Different types of stationary
or non-stationary noise analysis have been used in electrophysiological experiments for
identification of channels kinetic states. But these methods have a limited power and often
cannot answer to the main question of the experimental study: do external factors induce
a significant change of channels kinetics? A new method suggested in the current study
is based on the scaling properties of the beta-distribution function that allows reducing
the series containing 200,000 and more data points to analysis of only 10–20 stable
parameters. The following clusterization using the generalized Pearson correlation function
allows taking into account the influence of an external factor and combine/separate
different parameters of interest into a statistical cluster considering the influential
parameter. This method which we call BRC (Beta distribution-Reduction-Clusterization)
opens new possibilities in creation of a largely reduced database while extracting specific
fingerprints of the long-term series. The BRC method was validated using patch clamp
current recordings containing 250,000 data points obtained from the living cells and from
open tip electrode. The numerical distinction between these two series in terms of the
reduced parameters was obtained.

Keywords: noise analysis, detrended fluctuation analysis, fluctuation spectroscopy based on beta-distribution,

sequence of the ranged amplitudes, membrane currents of neurons

INTRODUCTION
During electrophysiological studies it is common to record rather
long tracks of signals. These signals are registered as temporal
variations of cell membrane potential or trans-membrane cur-
rents induced by the opening of some ligand- or voltage-gated
or even chaotic ionic channels. Usually the principal aim of such
a study is the registration of some macroscopic signals—evoked
or spontaneous—and the change of parameters of these signals
characterizes the total effect of some actions that are located in
the experimental object. But a large part of the record forms
a so-called “empty track” containing a “pure noise” only. It is
well known that this noise reflects mainly the result of ran-
dom openings of transmembrane ionic channels. Different types
of stationary or non-stationary noise analysis have been used
for identification of these channels’ states (Neher and Sakmann,
1976; Sigworth, 1980, 1985, 1986; Läuger, 1985; Traynelisa and
Jaramilloa, 1998; Alvarez et al., 2002; Venkataramanan and
Sigworth, 2002).

Unfortunately, these methods have not come into widespread
use among physiologists since they often cannot answer the main
question of the study: If this drug or this change of environment

state induces the reliable change of channels condition
or not?

Thus, there is an urgent task to develop a special language that
can be compact and reliable in order to describe accurately very
long current streams (long-time series) with hidden signals and
noise in terms of a finite and statistically understandable set of
reduced parameters. In this paper we want to show how to develop
this special language based on an example of the analysis of sig-
nals recorded in rat’s spinal cord slices. Besides this problem we
want to show how to detect the presence of the biological object
inside the experimental set. For this purpose we also recorded
data representing the dependence of the current vs. time when
the biological object is absent. Examples of currents recorded in a
living cell and with empty electrodes are shown in Figure 1. It is
well noticeable that these two signals are apparently very similar.
Even though generally distinguishable by an experienced observer
the reliability of these differences cannot be numerically evaluated
without some special analytic methods.

To the authors’ best knowledge one method is basically suit-
able for quantitative analysis of the different long-time series. This
method was introduced by Peng et al. (1994) and nowadays it

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 120 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00120/abstract
http://community.frontiersin.org/people/u/183383
http://community.frontiersin.org/people/u/28813
http://community.frontiersin.org/people/u/11836
mailto:askorink@yandex.ru
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Nigmatullin et al. Reduction of data points

FIGURE 1 | The examples of currents recorded for empty electrode

(top) and in a living cell (bottom). Note the high similarity of the tracks.

is known as detrended fluctuation analysis (DFA). It was well
described in literature by their creators (Ossadnik et al., 1994;
Peng et al., 1995) and found its application in analysis of biomed-
ical (Penzel et al., 2003; Jospin et al., 2007; Burr et al., 2008) and
other (Hausdorff et al., 1995, 1996) data. But it is necessary to
note that the DFA algorithm works well only for certain types
of non-stationary time series (especially having slowly varying
trends), it is not designed to handle all possible non-stationarities
in real-world data. This algorithm was not free also from uncon-
trollable errors that are associated with approximate fitting of
detrended fluctuations by the segments of straight lines or by the
parabolic or high order polynomials (Kantelhardt et al., 2001).
The final straight line with power-law exponent αDFA is obtained
as a slope in a double-log scale as a result of the fitting procedure
and contains the fitting error that depends also on the type of seg-
mentation of the initial series considered. These uncontrollable
errors (usually they are not properly analyzed in the literature)
can lead to different results in calculation of the desired value of
the αDFA and other associated fitting parameters in analysis of the
same long-time series.

A technique, called scale-dependent Lyapunov exponent
(SDLE, see Gao et al., 2006, 2012b, 2013; Hu et al., 2010), provides
a more comprehensive characterization of complex time series.
Some of DFA’s limitations have been overcome recently as well
by using a new method called adaptive fractal analysis (AFA, see
Gao et al., 2010, 2011, 2012a; Riley et al., 2012; Kuznetsov et al.,
2013). AFA has been shown to be able to determine global trends,
remove noise, perform fractal analysis and multiscale decompo-
sition and present data as a curve. However, new tools could be
developed specifically designed to show and estimate even mild
differences between two long time series.

Thus, it would be desirable to have a new method with “high
resolution” (10–20 significant parameters) to distinguish more
accurately the experimental data and effect of treatments. In
this paper we demonstrate such method based on some invari-
ant properties of the beta-distribution function; furthermore this
method admits a procedure that controls the error in each stage
of its application. From our point of view the effectiveness of

new approach is based on the monotone behavior of the primary
fitting parameters that admit the secondary fit. This peculiarity
allows compressing initial fitting parameters with the help of the
secondary fit and present initial data set in more compact form.

The four fitting parameters (A, B, α, β) of beta-distribution
can be interpreted and used for quantitative reading of fluctua-
tions arising on different scales of the long-time series consid-
ered. In previous papers (Nigmatullin, 2010; Nigmatullin et al.,
2012) based on the principle of the strong correlation of ran-
dom sequences it was shown that the cumulative (integral) curve
obtained from the sequence of the ranged amplitudes (SRA) can
be described with high accuracy by means of the beta-distribution
function. In other words, any detrended random sequence being
transformed to the SRA (when all amplitudes of the initial
sequence are sorted out and located in the descending order y1 >

y2 > . . . > yN ) after elimination of its mean value and subse-
quent integration, forms a bell-like curve J(x) that can be fit (with
controllable relative error) by the function:

J(x) ∼= Jb(x) = A (x − x0)
α (xN − x)β + B. (1)

Here the limiting values x0 < xN define the ends of the loca-
tion interval of the random sequence considered. In many cases
the parameters x0, xN are known. Other quantitative parameters
(A, B, α, β) should be found from the fitting procedure of the
function J(x) to the curve Jb(x). The power-law exponents (α, β)
reflect the fractal properties of the random sequence considered
and the presence of the memory that is expressed in the behav-
ior of the corresponding SRAs. The criterion for the verification
of the presence of memory in two random sequences which are
compared is as follows. If one SRA being plotted with respect to
another one forms a curve close to a straight line then these two
random curves are defined as a having a relative memory and can
be considered as being strongly correlated. This important prop-
erty allows transforming any segment of a random sequence to
a beta-distribution function and “read” this segment in terms
of four unknown fitting parameters (A, B, α, β). Such transfor-
mation from 30 to 50 or even more initial points belonging to
a random sequence can be read in terms of these four parame-
ters only. This allows us to suggest a new type of spectroscopy
based on some scaling properties of the beta-distribution. This
transformation is called Fluctuation Spectroscopy based on Beta-
Distribution (FSBD). In general we suggest a method which we
call BRC (Beta distribution-Reduction-Clusterization). The basic
problem that is solved in this paper by using the BRC method can
be formulated as follows: Is it possible to suggest a reliable method
with controllable error that has a wide range of applicability and
which has a flexible small set (10–20) of statistically understand-
able parameters for quantitative characterization of the differences
between long-time series?

MATERIALS AND METHODS
PREPARATION OF SPINAL CORD SLICES
Ten- to Twenty-days-old Wistar rats were deeply anesthetized
with diethyl ether and killed by decapitation. After laminectomy,
the spinal cord was excised, and immediately immersed in cold
(0 ÷ 4◦C) artificial cerebrospinal fluid containing (in mM): 126
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NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 2 MgCl2,
and 10 glucose (bubbled with 95% O2 and 5% CO2; pH 7.3;
310 mOsm measured). Several transverse slices (250-μm thick)
were prepared from the lumbosacral enlargement (L4-6) with a
vibratome (VT1000S, Leica, Nussloch, Germany).

WHOLE-CELL RECORDINGS
Slices were transferred to a recording chamber (300 ÷ 400 μl
volume) and continuously superfused with oxygenated artificial
cerebrospinal fluid at 3 ml/min and 22 ÷ 24◦C. Interneurons
were visualized with an upright interference contrast micro-
scope and a × 40 water immersion objective (Axioscope FS, Carl
Zeiss, Oberkochen, Germany). Patch-pipettes (tip resistance, 5 ÷
7 M�) were prepared by a puller (Flaming-Brown P97; Sutter,
Novato, CA, USA) from borosilicate capillaries and were filled
with intracellular solution consisting of (in mM: potassium glu-
conate 140, NaCl 10, MgCl2 3, HEPES 10, EGTA 11; pH 7.3
adjusted with KOH; 300 mOsm measured).

Interneurons were voltage-clamped at −65 mV in the whole-
cell configuration after obtaining GV seals (usually not less
than 2 GV) by means of a patch-clamp amplifier (Axopatch
200B; Molecular Devices, Sunnyvale, CA, USA). Compensation
of capacitance (Cm) and series resistance (Rs) was achieved with
the inbuilt circuitry of the amplifier. Series resistance was com-
pensated by 40 ÷ 70% and did not change appreciably from the
beginning to the end of the experiments, indicating stable record-
ing conditions. The tracks used for comparison were recorded by
the immersion of filled patch-pipettes in artificial cerebrospinal
fluid; the patch-pipettes were voltage-clamped at −65 mV too.

Then all data were sampled at 10 kHz and stored on-line with
a PC using the pClamp 10.0/Clampex 10.0 software package
(Molecular Devices).

SCALING PROPERTIES OF THE BETA-DISTRIBUTION AND
DESCRIPTION OF THE TREATMENT PROCEDURE
In this section we want to demonstrate the scaling properties of
Expression (1). We subject x, x0 and xN in Expression (1) to the
following scaling transformations, keeping the power-law expo-
nents α and β invariable: x = ξ · x′ + b. x0 = ξ · x′

0 + b, xN =
ξ · x′

N + b, which gives the following beta transformation:

Jb(x) → Jb(x′) = A′ (x′ − x′
0

)α · (
x′

N − x′)β
, (2)

where A′ = A · ξ(α + β). This is the accurate mathematical result
that follows from the scaling transformation of the initial
coordinates.

In order to have a simple criterion for comparison of the two
beta-distributions let us calculate the values of two extreme points
x̄, x̄′ belonging to the functions Jb(x) and Jb(x′) respectively.

x̄ = w1x0 + w2xN , x̄′ = w1x′
0 + w2x′

N ,

w1 = β

α + β
= xN − x̄

�
, w2 = 1 − w1,� = xN − x0, �

′ = 1

ξ
�,

H̄ = Jb (x̄) = Awβ
1wα

2�α+ β + B,

H̄′ = Jb
(
x̄′) = A′wβ

1wα
2

(
�′)α+ β + B,

H̄′ = Jb(x̄′) = Awβ
1wα

2ξα+ β

(
1

ξ

)α+ β

+ B ≡ H. (3)

From Expressions (3) it follows that for the scaling transforma-
tion (2) the heights H̄, H̄′ of the extreme points of the two bell-
like distributions at the fixed values of the power-law exponents α

and β and parameter B should coincide with each other.
Besides this criterion it is necessary to take into account the

scaling relationship between the heights H̄, H̄′. If two power-law
exponents α and β are subjected to the scaling transformation at
the fixed value of the length � = xN − x0:

α′ = θα, β′ = θβ, (4)

then simple manipulations lead to the second scaling relationship:

H̄′

A′ =
(

H̄

A

)θ

. (5)

Here the amplitudes A and A′ are defined by relationships (1) and
(2), respectively. The consideration of the scaling properties of the
beta-distribution allows one to suggest the following two steps.

Step 1. This step includes the formation of the sequence of the
range amplitudes (SRA) when all amplitudes located on the fixed
length � = xN – x0 are ordered in descending order y1(x0) >

y2 >. . . > y(xN ).
Step 2. Numerical integration of the SRA with respect to its

mean value and subsequent fit to the function (1).
Figure 2 illustrates this transformation which is realized after

application of these two steps.
Each sub-segment having equal length � is transformed to

its SRA (Figure 2A) in Step 1, and the integration of the SRAs
with respect to its subtracted mean value gives finally the desired
bell-like curve that can be fit to Expression (1) in Step 2.
Mathematically these two steps correspondingly are expressed as:

SRA(y(xj)) = sort(y(xj)) → �SRA(y(xj))

= SRA(y(xj)) − 1

�

�∑
j = 1

SRA(y(xj))

≡ SRA(y(xj)) − 〈. . .〉 . (6a)

Here the integer index j (j = 1, 2, . . . , N) numerates the num-
ber of data points in the fixed segment � = xN – x0 containing
initially 30–50 data points.

J(xj) = J(xj) + 1

2

(
xj − xj−1

) · (
�SRA(y(xj))

+ �SRA(y(xj))
)
, J0 = 0. (6b)

Figure 2 demonstrate the realization of these two steps [with the
usage of Expression (6)] on a short segment belonging to the
membrane current initial time segment (containing 250,000 data
points). We should notice that the mean value <. . .> of the
chosen segment should be subtracted and the integration proce-
dure [the last row in (6)] should be realized with the help of the
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FIGURE 2 | Example of one segment (marked as Segment_1) containing 30

points. (A) The sequence of the ranged amplitudes (SRA) given in descending
order and marked by gray stars. On vertical axes the values of the current are
given in picoampers. (B) The bell-like curve (marked by crossed stars) obtained

by integration from SRA_1 (shown on the previous A by gray stars) and its fit
marked by the bold solid line. The fitting parameters of this curve are given
inside of this figure. As it follows from this figure 30 data points are sufficient for
providing the acceptable fit with the value of the relative error close to 3.5%.

trapezoid method. As a result of calculation of Expression (6) we
obtain the desired bell-like curve J(xj).

Figure 2B shows the quality of the fitting of the bell-like curve
obtained to the beta-distribution. In order to have the value of the
relative error:

RelErr =
(

stdev(J(x) − Jb(x))

mean(J(x))

)
· 100%,

where stdev(f (x)) =
⎡
⎣ 1

N�

N�∑
j = 1

(
f
(
xj

) − mean
(
f (x)

))2

⎤
⎦

1/2

,

mean
(
f (x)

) = 1

N�

N�∑
j = 1

f (xj), (7)

to be limited to a few percentages (2–5)% we should choose the
length of the minimal segment �min of the initial series contain-
ing initially 30–50 data points. In Expression (7) the value N�

defines the number of data points that enters in the segment of the
length �. Thus, the first reduction criterion should be written as:

�min · ξk = Ntotal (8)

Here the scaling parameter ξ has the same meaning as in
Expression (2).

This requirement allows one to consider the long-time series
containing the total number of data points (j = 1, 2, . . . , Ntotal) in
terms of the reduced parameters of the beta-distribution (A, B, α,
β) depending on parameter k. Further it is convenient to rewrite
condition (8) in the following form changing the numeration of
the current parameter k:

�k = Ntotal

ξK + 1 − k
, k = 1, 2, . . . , K + 1, (9)

where [in comparison with (8)] the value �1 should coincide
with the minimal value 30 < �min < 50 giving the condition for

finding the limiting value of K (the total number of segments is
equaled to K + 1). In the opposite case, the value �K + 1 should
give the maximal length coinciding with the value Ntotal. As a
result of this reduction procedure one can transform Ntotal data
points to 4.(K + 1) parameters. But this step is not sufficient.
If the functions Ak, Bk, (α + β)k have monotonic behavior one
can realize further reduction to the primary set of the fitting
parameters describing these functions.

Now it is necessary to explain why the sum of the param-
eters (α + β) is selected instead of considering each-power law
exponent separately. This selection is based on the comparison
of these exponents with the single power-law exponent αDFA

figuring as the basic parameter in the DFA. It is easy to see
that relationship α + β = 1 with α ≈ β ≈ 0.5 (for this case beta-
distribution looks like a semicircle) corresponds to a distribution
with the absence of power-law correlations in the time series.
From another side it gives for αDFA = 0.5. Comparison with these
two power-law exponents leads us to the following approximate
expression:

αDFA
∼= 1

2
(α + β) . (10)

One can notice also that Expression (10) does not contradict
other well-known power-law exponents (Hausdorff et al., 1995;
Burr et al., 2008) βf = 2αDFA − 1 that is used for description of

the power-law spectrum S(f ) ∼ f
−p
f and decay of autocorrelation

function C(t) = 〈xixi + 1〉 ∼ t−1 with γ = 2 − 2αDFA. From the
requirements (βf , γ > 0) it follows that:

1 ≤ (α + β) = 2αDFA ≤ 2. (11)

We want to stress here that this requirement is approximate
and can serve as an indication for division of long-time series
with fractal structure (because it does not contradict with well-
known inequalities) known before from series with self-similar
structure.
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The left-hand inequality follows from the requirement βf > 0
and does not contradict with numerical results obtained in other
papers (Penzel et al., 2003; Jospin et al., 2007; Burr et al., 2008).
We should also note that the equality (α + β) = 2 corresponds
to a uniform amplitude distribution. The uniform distribution
leads to the degeneration of the corresponding SRA to a straight
line (Nigmatullin, 2010). The beta-distribution in this case is
described by a parabolic curve. If one of the power-law expo-
nent (say α → 0) then the position of extreme point x̄ → x0.
Because of normalization w1 + w2 = 1 β → 1. This statement is
valid also in the opposite case when α → 1, β → 0. So, the last
relationship (11) can be considered as a specific fractal test in
our further calculations. Here we should also note that in prac-
tical applications the existence of the interval 0 < α + β < 1 and
inequality α + β > 2 also are possible. For the first case, for small
values of α and β the beta-distribution degenerates to a rectangle-
like curve. In the second case the values of the derivatives on the
ends (x0, xN ) of the beta-distribution have zero values. These two
cases correspond to degeneration of the fractal properties of the
time-series analyzed. The verification of relationship (11) on the
Weierstrass-Mandelbrot function that represents itself the self-
affine function (see its definition in Feder, 1988) confirms the
relationship (11). So, for practical purposes it is useful to work
with the combination of (α + β).

The statistical and geometrical meaning of other parameters
entering to (1) can be explained as follows. The value of the
amplitude A together with the height H of the beta-distribution
is associated with intensity of the fluctuations analyzed. As one
can see from Figure 3A the angle of the SRA slope counted off
from zero point (after elimination of its mean value) is pro-
portional to the height of the corresponding fluctuation that is
expressed in the form of a beta-distribution in Figure 3B. If this
angle approaches the vertical axis, the height of the distribution
becomes large. In the opposite case when this angle tends to zero
the height of the distribution is small. See Figure 3B where the
first 14 beta-distributions are shown. The measure of asymme-
try can be connected with parameters B and the values of weight

factors w1,2 that are defined by Expression (3). The value w1 =
0.5 corresponds to the complete symmetry of the distribution in
the horizontal direction. Any shift of this parameter to the left-
(w1 < 0.5) or to the right-hand side (w1 > 0.5) reflects the hor-
izontal asymmetry of the distribution. A small asymmetry of this
distribution in vertical direction is controlled by the parameter B.

Step 3. After selection of the scaling parameter ξ and the lim-
iting value K from Expression (9) one can obtain a family of
bell-like curves that can be fitted to Expression (1). The calcu-
lated fitting parameters Ak, αk, βk, Bk, k = 1, 2, . . . , K + 1 from
Expression (1) are obtained. The set of these bell-like curves and
the corresponding fitting parameters forms the total fluctuation
spectrum based on the beta-distribution (FSBD). Each part of this
FSBD contains the corresponding beta-distribution:

Jbk(xj) = Ak
(
xj − x0,k

)αk
(
xN,k − xj

)βk + Bk. (12)

Step 4. In order to subject them to the scale-invariant prop-
erties described above it is necessary to average this family of
distributions and consider only one weighted distribution:

〈
Jbk(xj)

〉 = 1

NBdk

NBdk∑
j = 1

Jbk(xj), j = 1, 2, . . . , NBdk ,

NBdk = Ntotal

�k
, (13)

located in the given interval �k. Here the parameter NBdk coin-
cides with number of beta-distributions calculated for the given
k. Figure 4 shows the averaged beta-distribution obtained for the
cell number 3. If Ntotal = 250,000 then from condition (9) at
the given �1 = 32 and ξ = 2 we obtain that K = 13. So, the
total number of beta-distributions NBd1 = Ntotal/�1 = 8333.
The first 14 distributions belonging to this family is shown in
Figure 3B.

Step 5. Further calculations are reduced to the analysis of the
functional dependencies Ak, αk, βk, Bk, k = 1, 2, . . . , K + 1 with

FIGURE 3 | Example of first 14 segments, each segment contains 30

points. (A) The first 14 SRAs calculated for the large-time membrane
current sequence containing in total 250,000 data points. After elimination
of their mean values (two limiting of them are shown by vertical gray
lines) and subsequent integration one can obtain a family of the bell-like

curves. They are shown below. (B) The first 14 beta-distributions obtained
by numerical integration from the SRAs given of the previous panel. For
the total sequence having 250,000 data points we have in general 8333
distributions of such kind. Two limiting heights are marked by solid gray
lines.
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FIGURE 4 | The averaged beta-distribution (averaged with the usage of

Expression (13) for the given NBd1 = Ntotal /�1 = 8333). The fitting
parameters are shown inside of this figure.

respect to the variable k. We define them as the primary fitting
parameters characterizing the averaged distribution (13). Further
analysis shows that the amplitude Ak has monotonic behavior and
can be described by a simple exponential behavior:

〈Ak〉 = A1 · exp (λa · k) + A0. (14)

Preliminary calculations show that this monotonic behavior is
conserved for the long-time series without any trend. The pres-
ence of trend distorts this behavior.

This dependence follows after substitution of Expression (9) in
relationship (2) for the amplitudes. The perfect fit of this mono-
tone curve is shown in Figure 5A. Other dependencies are not
so simple but nevertheless they can be identified from simple
power-law and exponential hypothesis with the help of the eigen-
coordinates (ECs) method (Baleanu et al., 2011; Ciurea et al.,
2011). The dependences <(α + β)k >≡ Sk(αβ) and <Bk> have
also monotonic character and can be fitted by means of two
simple functions:

Sk (αβ) · kν = Apl · k + Bpl,

〈Bk〉 = B1 · exp (λB · k) + B0 (15)

These functions are shown, respectively, in Figures 5B,C. So,
finally we obtain 10 fitting parameters that can be combined with
9 parameters figuring in Expressions (14) and (15) [λa, A1, A0],
[ν, Apl, Bpl], [λB, B1, B0] and the limiting value of parameter
w1,K+1. The behavior of this weight factor is shown in Figure 5D.

These ten parameters can be used as the primary set of the
fitting parameters for creation of a specific “fingerprint” of the
long-time series considered. The idea of clusterization of these
parameters is discussed in Results Section. Further analysis shows
that the distribution of the heights and mean values of the
SRAs obtained for the family of distributions at �1 also forms
two other different beta-distributions. These distributions are
important also for clusterization purposes because initially the

information about the secondary distribution of the heights of
the initially formed beta-distributions family and mean values
of the corresponding SRA were not taken into account. The dis-
tributions of the heights and mean values together with their
beta-distributions are shown in Figures 6, 7, correspondingly.
After fitting of these two distributions one can obtain in addition
5 significant parameters characterizing each beta-distribution
separately.

[
AH, (α + β)H , w1,H, max (BdH), mean(SRAH)

]
,[

Amn, (α + β)mn , w1,mn, max (Bdmn), mean(SRAmn)
]
. (16)

These ten additional parameters we define as the secondary fit-
ting parameters. The statistical meaning of these parameters are
the following. The parameters AH, mn characterize the amplitudes
of beta-distributions referring, correspondingly, to the heights
(H) and mean values (mn). The sum (α + β)H, mn contains the
information about their power-law exponents, w1, H, mn gives the
information about their asymmetry, max(BdH , Bdmn) signifies
their heights, and the fifth parameter SRAH, mn contains informa-
tion about the mean values of these two additional distributions.

From our point of view, these 20 (10 primary and 10 sec-
ondary) significant parameters [figuring in Expressions (14)–
(16)] combined together can completely characterize the behav-
ior of fluctuations associated with the long-time series analyzed
and containing Ntotal = 2.5.105 ÷ 106 and even more data points.

CLUSTERIZATION OF FINAL PARAMETERS BASED ON THE
GENERALIZED PEARSON CORRELATION FUNCTION
For clusterization purposes one can suggest more accurate selec-
tion of similar sequences based on internal correlations. For this
aim we introduce the generalized Pearson correlation function
(GPCF) (Nigmatullin, 2010; Nigmatullin et al., 2012).

GPCFp = GMVp(s1, s2)√
GMVp(s1, s1) · GMVp(s2, s2)

, (17)

where expression:

GMVp(s1, s2, . . . , sK ) =
⎛
⎝ 1

N

N∑
j = 1

∣∣nrmj(s1) · nrmj(s2) · . . . · nrmj(sK )
∣∣momp

⎞
⎠

1/momp

, (18)

determines the generalized mean value (GMV)-function of the
K-th order. Here the generalized mean value (GMV) function
determines the mean value for all range of the moments (see
Expression (19) below). The set of parameters (s1,s2,. . .,sK ) deter-
mines the type of the random sequence compared. The GPCFp

determined by Expression (17) coincides with the conventional
definition of the Pearson correlation coefficient at momp = 1. The
set of moments are determined by the following expression:

momp = exp (Lnp), Lnp = mn + ( p
P

) · (mx − mn),

p = 0, 1, . . . , P. (19)
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FIGURE 5 | The fitting curves of four parameters. (A) The fit of the
amplitude obtained for the averaged beta-distributions for different values of
k. See Expression (14) for details. The fitting parameters of the exponential
function are given above of this figure. (B) The fit of the function Sk (αβ) =
(α + β)k defined by Expression (15). Being separated by the power-law
exponent with ν = 0.955 it represents the perfect straight line. The slope and
intercept of this line are given above of this figure. (C) The fit of the

monotonic decreasing function <Bk> defined by Expression (15). The three
fitting parameters of this function can be added to the previous ones for
characterization of the given long-time series. (D) The behavior of the weight
factors with respect to the parameter k. As the significant factor
characterizing the behavior of the long-time sequence we use the maximal
value max(w1) = 0.5027. So, from analysis of the Figure 4 and in this figure
we can extract 10 primary fitting parameters.

The value momp in (19) corresponds to the current moment from
the interval [0, P]. The value P determines the final value of the
linear function Lnp located in the interval [mn, mx]. The values
mn and mx define correspondingly the limits of the moments
in the uniform logarithmic scale. In many practical cases these
values are chosen as mn = −15, mx = 15 and P is chosen as
an integer value located in the interval [50 ÷ 100]. This empir-
ical choice is related to the fact that the transition region of
the random sequences considered and expressed in the form of
the GMV-functions is concentrated usually in the interval Lnp ∈
[−5, 5]. The extended interval [−15, 15] is taken usually for cal-
culation of the limiting values of this function in the space of the
fractional moments. The initial sequences are chosen in that way:
the minimum of the GMV-function coincides with zero value
while the upper value of this function coincides with the maxi-
mal value of the random sequence considered. In formula (18) the
random sequence is normalized to the unit value in accordance
with Expressions (A) and (B):

(A) nrmj(y) =
y(+)

j

max (y(+)
j )

−
y(−)

j

min (y(−)
j )

,

y(±)
j = 1

2

(
yj ± ∣∣yj

∣∣) , (20a)

(B) nrmj(y) = �yj

max (�yj)
, �yj = yj − min (yj). (20b)

j = 1, 2, . . . , N, 0 < nrm(y) < 1.

Here, as it was done above, the set yj defines an initial ran-
dom sequence that can contain a trend or can be compared
with another trendless sequence. The symbol | . . . | and index
j (j = 1.2,. . .,N) determine the absolute value and number of
the measured points, correspondingly. The second case (B) in
[20(b)] corresponds to the case when the initial sequence is pos-
itive. If the limits mn and mx in (20) have opposite signs and
accept sufficiently large values, then the GPCF function has two
plateaus (equaled unit at small numbers of mn (i.e., GPCFmn =
1) and another limiting value GPCFmx depends on the degree of
internal correlation between two random sequences compared.
This right-hand limit (defined as Lm) is located between two
values:

M ≡ min (GPCFp) ≤ Lm ≡ GPCFmx ≤ 1. (21)

The appearance of two plateaus implies that all information about
possible correlations is complete and further increasing of the
limiting numbers (mx, mn) figuring in (19) is useless. Numerous
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FIGURE 6 | The distribution of the heights of 8333 beta-distributions

(when each distribution occupies only 30 data points). (A)

Subtracting the mean value of this distribution [mean(H) = 78.4623]
one can obtain the bell-like curve again. This curve can be fitted it to
the secondary beta-distribution corresponding to the distribution of

fluctuations of the heights. (B) The fit to beta-distribution function
corresponding to fluctuations of the heights. The five fitting parameters
of this distribution (shown inside of this figure) can be used as the
statistically significant parameters for characterizing of the long-time
series considered.

FIGURE 7 | The distribution of the mean values of 8333

beta-distributions (when each distribution occupies only 30 data

points.) that were calculated in the initial analysis. (A) Subtracting the
mean value of this distribution (mean(mn) = 3.036.10−3) one can obtain
again the bell-like curve. This curve can be fitted it to the secondary
beta-distribution corresponding to the distribution of mean values. (B) The
fit to beta-distribution function corresponding to the fluctuations of the

mean values. This information was lost at the preliminary analysis. The five
fitting parameters of this distribution (shown inside of this figure) can be
used as the statistically significant parameters for characterizing of the
long-time series considered. So, in the results of this complete analysis
one can obtain 20 statistically significant parameters that can be used for
the detailed classification of the long-time series containing 2.5.105 ÷ 106

data points.

tests showed that the high degree of correlations between two
random sequences is achieved when Lm = 1, while the lowest
correlations are observed when Lm = M. This empirical obser-
vation, having a general character for all random sequences,
allows us to introduce new correlation parameter CC (complete
correlation)—factor, which is determined as:

CC = M ·
(

Lm − M

1 − M

)
. (22)

We would like to stress here that this factor is determined on the
total set of the fractional moments located between exp(mn) and
exp(mx). As it was mentioned above, in practical calculations for
many cases it is sufficient to put mn = −15 and mx = +15. The
CC-factor accepts the unit values when the degree of correlation is

high while the case Lm = M corresponds to the lowest (remnant)
degree of correlations that can be observed between the compared
random sequences. In addition, we want to stress also the fol-
lowing fact. This CC-factor does not depend on the amplitudes
of the random sequences. The pair random sequences compared
should be normalized to the interval: 0 ≤ ∣∣yj

∣∣ ≤ 1. It reflects
the internal structure of correlations of the compared random
sequences based presumably on the similarity of their probability
distribution functions that are not known in many cases. Recent
example related to application of the statistics of the fractional
moments was considered in paper (Nigmatullin et al., 2012). So,
the CC-factor (22) can be used for clusterization of the significant
parameters based on the following idea. For a set of significant
parameters referring to one qualitative factor one can calculate
the limits of CC-factor:
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cfmin ≤ CC ≤ 1. (23)

Here the low correlation limit cfmin is determined by the sampling
volume and conditions of experiment that should be almost the
same for two qualitative factors compared (control/influence of
another qualitative factor).

RESULTS
PROCESSING OF THE LONG-TIME MEMBRANE CURRENT SERIES
In previous Section we described in details (S1–S5) basic steps of
treatment of an arbitrary long-time series. Here we want to make
some general remarks related to this procedure. If the long-time
series considered contains the clearly expressed but random trend
then its random behavior can disturb the monotonic behavior of
the primary 9 parameters figuring in the fitting functions (15)
and (16). In this cases one can recommend to apply the POLS
(procedure of the optimal linear smoothing) described in papers
(Baleanu et al., 2011; Ciurea et al., 2011; Nigmatullin et al., 2012)
or simple numeric differentiation. These two procedures help to
suppress the hidden random trend and obtain the monotonic
behavior for the 9 parameters figuring in (15) and (16). In the
shown figures we used the scaling factor ξ = 2. For the ratio-
nal values of ξ from the interval (1, 2) Expression (9) can be
modified as:

�k = Ntot

exp [(K + 1 − k) ln (2) · μ]
, μ = ln (ξ)

ln (2)
. (24)

So, numerical calculations realized at ξ = 1.5 show that results are
not changed essentially, only the integer variable k in Expressions
(15) and (16) is replaced as k → μk. We think that this method
has a wide range of its applicability and these two modifications
can be taken into account in order to express the long-range time
series in terms of 20 significant parameters. In similar manner
as it was treated the membrane currents for the randomly taken
interneuron-3 one can treat other long-time series related to other
(1, 2, 4, 5, 6, 7) interneurons. Besides, in order to differentiate
these random sequences recorded without presence of a biolog-
ical object we treated in the same manner 6 random sequences
corresponding to empty electrode.

The next problem is associated with the finding of criterion
of clusterization that helps to combine these “control” membrane
currents to one strongly-correlated cluster based on the values of
the significant parameters. For each cell these parameters are col-
lected in Table 1. For 6 files corresponding to pure solute (without
presence of the cell) the results are collected in Table 2. How to
differentiate these 20 quantitative parameters (in this case a quali-
tative factor is associated with the presence/absence of a biological
cell) from each other? The simplest classification can be related to
calculation of the mean value and standard deviation of the calcu-
lated significant parameter in each row. But more effective scheme
of clusterization based on the statistics of the fractional moments
and the usage of the complete correlation factor is considered in
the next section.

For the clusterization of final parameters we have used new
correlation parameter CC described in “Materials and Methods”
section Expression (22). The calculation of the CC-factor (in

our case it is based on a set of membrane currents associated
with 3 “control” measurements for each chosen cell from the
total set of currents representing other 7 biologic cells) which
is considered as the complex correlation matrix (see Table 3)
having minimal dimension (7 × 7) leads to the minimal value
cfmin = 0.9238. The result is not changed essentially if one calcu-
lates numerically the corresponding integrals with respect to their
normalized significant parameters and then considers their CC-
factors. The tendency of the strong correlations between columns
of Table 1 is conserved, only the boundary of the correlation
interval is slightly increased achieving the value Jcfmin = 0.9736.
So, using the method of clusterization based on the statistics of the
fractional moments and Expression (22) one can say that all “con-
trol” currents measured for the sampling 7 × 7 = 49 form the
strongly-correlated cluster with limits [0.9238, 1] for the initial set
of significant parameters (20 parameters for each sampling) and
[0.9736, 1] (for the corresponding integrals that are obtained by
direct trapezoid method from the normalized significant param-
eters). In accordance with this method of clusterization one can
make the following conclusion: if any another series having 20 sig-
nificant parameters will give the CC-factor located in the interval
[0.9238, 1] then it can be considered as the “friend” file belong-
ing to this cluster, in the opposite case it can be considered as a
“strange” file. For more reliable identification the saying above
can be referred to the integrated columns formed from 20 nor-
malized significant parameters. In the same manner we treated
the files corresponding to the electrode currents recorded in nor-
mal saline solution without presence of biological object. The 20
desired parameters for 6 files are collected in Table 2. Their cor-
relation matrix presented by Table 4 form another cluster. But
attempt to combine the currents corresponding to the living o
cells with currents corresponding to empty electrodes located
in saline solution is unsuccessful. If we compare the correlation
matrix of Table 5 with the previous ones (Tables 3, 4) then one
can notice that the last matrix is uncorrelated (all elements are
close to zero). It means that the presence of the biologic cell com-
pletely changes the statistical structure of the current and from
qualitative point of view the long-time random sequences of cur-
rents recorded for both cases (presence/absence of biological cell)
are different.

So, new clusterization method helps to express quantitatively
the internal factor as the presence/absence of the living cell (com-
pare this statement with series shown on Figure 1 where the
corresponding currents look similar to each other). Definitely,
more accurate measurements are needed in order to differentiate
from many mixed factors that form a time-series for biologi-
cal and non-biological objects a specific predominant factor that
plays an essential role in this differentiation. But this problem
merits a separate research.

DISCUSSION
It is well known that cellular membrane is the element which
largely provides cell functioning. Cell membrane has so many
functions that it is difficult even to list—anyone can find them
all in each textbook on cell biology. In general the membrane
provides all interaction of the cell with the external environment
including the perception of the effect of active substances. Withal
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Table 1 | The collection of 20 significant parameters calculated for 7 cells based on calculation of registered membrane currents.

Parameter Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6 Cell-7

max(w1) 0.4997 0.5006 0.5027 0.5027 0.5019 0.5006 0.5003

λa −0.3605 −0.3613 −0.3517 −0.3571 −0.3586 −0.3581 −0.3604

A1 0.5719 0.5943 1.2790 0.5683 0.6528 0.8815 0.8768

A0 −0.00149 −0.00149 −0.00328 −0.00147 −0.00167 −0.00224 −0.00219

ν 0.995 0.995 0.995 0.995 0.995 0.995 0.995

Apl 1.558 1.558 1.544 1.552 1.554 1.553 1.556

Bpl 0.1308 0.1295 0.1374 0.1277 0.1306 0.1315 0.129

λB 0.6666 0.6650 0.6646 0.6654 0.6641 0.6640 0.6656

B1 −0.2111 −0.2418 −0.4333 −0.2266 −0.2438 −0.3318 −0.3959

B0 7.807 8.801 15.60 8.247 8.717 11.89 14.56

AH 0.0292 0.0314 0.0708 0.0265 0.0379 0.0653 0.0440

(α + β)H 1.604 1.598 1.596 1.613 1.589 1.560 1.606

max(w1H ) 0.5208 0.5136 0.5158 0.5233 0.5160 0.5257 0.5174

max(BdH ) 18580 18980 42070 18110 21110 29110 28300

mn(SRAH ) 35.68 37.01 78.46 34.87 40.42 54.57 54.30

Amn 0.00212 0.00107 0.00303 0.00123 0.00139 0.00242 0.00134

(α + β)mn 1.517 1.57 1.538 1.576 1.552 1.53 1.592

max(w1mn) 0.5003 0.4997 0.4954 0.5011 0.5013 0.4991 0.5

max(Bdmn) 650.4 506.9 1107.0 614.5 570.7 837.3 766.1

mn(SRAmn) 4.986·10−4 2.277·10−4 0.00304 2.205·10−4 −0.00157 6.655·10−4 0.00258

Each column describing the chosen cell is obtained in the result of the averaging of three membrane currents with the length 250,000 data points. The first 10

primary parameters are marked by a double line. The minimal and maximal values of each significant parameter in each row are bolded.

Table 2 | The collection of 20 significant parameters calculated for 6 files corresponding to currents recorded with the empty electrode placed

inside an artificial cerebrospinal fluid (the biological material is absent).

Parameter File-1 File-2 File-3 File-4 File-5 File-6

max(w1) 0.5007 0.5029 0.4994 0.501 0.4993 0.5032

λa −0.3567 −0.3703 −0.3576 −0.3623 −0.3674 −0.3606

A1 5.455·10−9 5.488·10−9 5.457·10−9 5.502·10−9 5.417·10−9 5.441·10−9

A0 −2.555·10−11 −1.282·10−11 −1.47·10−11 −1.413·10−11 −1.358·10−11 −1.423·10−11

ν 0.995 0.995 0.995 0.995 0.995 0.995

Apl 1.562 1.569 1.557 1.562 1.569 1.560

Bpl 0.1242 0.1278 0.1315 0.1290 0.1294 0.1320

λB 0.6395 0.6506 0.6859 0.6398 0.6506 0.6944

B1 −3.349·10−9 −2.479·10−9 −1.986·10−9 −3.336·10−9 −2.479·10−9 −1.649·10−9

B0 1.023·10−7 7.672·10−8 9.194·10−8 9.272·10−8 7.675·10−8 8.584·10−8

AH 3.202·10−10 2.211·10−10 6.638·10−12 3.232·10−10 2.231·10−10 3.238·10−10

(α + β)H 1.591 1.637 1.585 1.721 1.631 1.592

max(w1H ) 0.5104 0.5136 0.4986 0.5704 0.5436 0.5131

max(BdH ) 1.820·10−4 1.847·10−4 3.583·10−6 2.920·10−4 1.907·10−4 1.853·10−4

mn(SRAH ) 3.471·10−7 3.469·10−7 2.775·10−13 3.171·10−7 3.369·10−7 3.448·10−7

Amn 6.094·10−12 8.315·10−12 6.638·10−12 6.014·10−12 8.227·10−12 6.731·10−12

(α + β)mn 1.600 1.563 1.585 1.556 1.569 1.524

max(w1mn) 0.5009 0.4964 0.4986 0.5109 0.5064 0.5169

max(Bdmn) 3.733·10−6 3.709·10−6 3.583·10−6 3.233·10−6 3.711·10−6 3.385·10−6

mn(SRAmn) 1.064·10−11 7.818·10−12 2.775·10−13 1.004·10−11 7.821·10−12 2.557·10−13

The first 10 primary parameters are marked by a double line. The minimal and maximal values of each significant parameter in each row are bolded.
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Table 3 | The correlation matrix of the calculated CC-factors [Expression (22)] for 20 parameters characterizing 7 neurons collected in the

Table 1.

Cells Cell-1 Cell-2 Cell-3 Cell-4 Cell-5 Cell-6 Cell-7

Cell-1 1 0.99876 0.92838 0.99957 0.99841 0.9767 0.94824

Cell-2 0.99876 1 0.93615 0.99954 0.99981 0.98465 0.95698

Cell-3 0.92838 0.93615 1 0.93354 0.93708 0.97193 0.99714

Cell-4 0.99957 0.99954 0.93354 1 0.99933 0.98166 0.95451

Cell-5 0.99841 0.99981 0.93708 0.99933 1 0.98558 0.95776

Cell-6 0.9767 0.98465 0.97193 0.98166 0.98558 1 0.9804

Cell-7 0.94824 0.95698 0.99714 0.95451 0.95776 0.9804 1

The maximal and minimal values of correlations in each row are bolded.

Table 4 | The correlation matrix of the calculated CC-factors for 20 parameters characterizing 6 empty electrode records collected in the Table 2.

Files F-1 F-2 F-3 F-4 F-5 F-6

F-1 1 0.99581 0.97238 0.99076 0.99642 0.99624

F-2 0.99581 1 0.97241 0.99767 0.99995 0.99951

F-3 0.97238 0.97241 1 0.97008 0.97244 0.97237

F-4 0.99076 0.99767 0.97008 1 0.99706 0.99588

F-5 0.99642 0.99995 0.97244 0.99706 1 0.9996

F-6 0.99624 0.9995 0.97237 0.99588 0.9996 1

The maximal and minimal values of correlations in each row are bolded.

Table 5 | The correlation matrix of the CC-factors calculated for 7 cells and 6 empty electrodes.

Cells\Files F-1 F-2 F-3 F-4 F-5 F-6

Cell-1 0.01809 0.01807 0.01387 0.01883 0.01805 0.01781
Cell-2 0.01772 0.01769 0.01357 0.01844 0.01767 0.01743
Cell-3 0.00889 0.00887 0.00666 0.00929 0.00886 0.00873
Cell-4 0.01807 0.01805 0.01386 0.0188 0.01802 0.01778
Cell-5 0.01679 0.01676 0.01282 0.01748 0.01674 0.01652
Cell-6 0.01343 0.01341 0.01018 0.014 0.01339 0.0132
Cell-7 0.01212 0.0121 0.00918 0.01264 0.01208 0.01191

the membrane comprises a lot of elements which produce so-
called “membrane noise”—rather small variations of membrane
potential or trans-membrane current; mainly they are different
types of ion channels, transporters and pumps. There are many
active substances affecting the operation of these elements so the
action of these substances actually can be detected by analyz-
ing the membrane noise. But even if some substance does not
affect channels, transporters or pumps directly its action often
can be detected by noise analysis too. For example if the sub-
stance affects G protein-coupled receptors or state of membrane
lipids—in many cases it leads to the changes in the functioning
of ion channels (Tillman and Cascio, 2003; Inanobe and Kurachi,
2014) and, accordingly, to the noise changes. So the analysis of
the long-time series of noise can help to detect the action of many
substances when we cannot detect this action differently.

For analysis of the long-time series we applied new BRC
method based on the beta-distribution function. Four parameters
of the beta-distribution function can be used for description of
the local fluctuations and the averaged beta-distributions can be

applied for quantitative reading of series containing large number
of data points. The fluctuation spectroscopy based on beta distri-
bution allows realizing the essential reduction (2.5–10).105 data
points to 20 quantitative parameters only [see Expressions (14)–
(16)] that contain the basic information calculated from three
basic beta-distributions: (1) distribution over different segments
(scales), (2) the secondary beta-distributions over their heights
and (3) distributions over mean values. This reduction becomes
possible thanks to the invariant properties that are expressed by
formulae (3) and (5). We suppose that this approach can be
applied successfully for the unified additional analysis of fluc-
tuations of different long-time series that present the results
of monitoring of biological, medical and other data reflecting
the results of response of the complex system considered with
respect to some external factor. In particular, this BRC method
is applicable to testing the action of antagonist of receptor and
ion channels when the modification based on different type of
interaction (with binding site or with the open channel with dif-
ferent kinetics). In such experiments in order to understand the
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mechanism of action of some new substances we only need to
compare the FSBD parameter changes caused by this substance
with typical changes stored in the database.
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