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The visual cortex’s hierarchical, multi-level organization is captured in many biologically
inspired computational vision models, the general idea being that progressively larger
scale (spatially/temporally) and more complex visual features are represented in
progressively higher areas. However, most earlier models use localist representations
(codes) in each representational field (which we equate with the cortical macrocolumn,
“mac”), at each level. In localism, each represented feature/concept/event (hereinafter
“item”) is coded by a single unit. The model we describe, Sparsey, is hierarchical as
well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In
SDC, each represented item is coded by a small subset of the mac’s units. The SDCs
of different items can overlap and the size of overlap between items can be used to
represent their similarity. The difference between localism and SDC is crucial because
SDC allows the two essential operations of associative memory, storing a new item and
retrieving the best-matching stored item, to be done in fixed time for the life of the model.
Since the model’s core algorithm, which does both storage and retrieval (inference),
makes a single pass over all macs on each time step, the overall model’s storage/retrieval
operation is also fixed-time, a criterion we consider essential for scalability to the huge
(“Big Data”) problems. A 2010 paper described a nonhierarchical version of this model
in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical
model (arbitrary numbers of levels and macs per level), describing novel model principles
like progressive critical periods, dynamic modulation of principal cells’ activation functions
based on a mac-level familiarity measure, representation of multiple simultaneously active
hypotheses, a novel method of time warp invariant recognition, and we report results
showing learning/recognition of spatiotemporal patterns.

Keywords: sparse distributed codes, cortical hierarchy, sequence recognition, event recognition, deep learning,

critical periods, time warp invariance

INTRODUCTION
In this paper, we provide the hierarchical elaboration of the
macro/mini-column model of cortical computation described in
Rinkus (1996, 2010) which is now named Sparsey. We report
results of initial experiments involving multi-level models with
multiple macrocolumns (“macs”) per level, processing spatiotem-
poral patterns, i.e., “events.” In particular, we show: (a) single-
trial unsupervised learning of sequences where this learning
results in the formation of hierarchical spatiotemporal memory
traces; and (b) recognition of training sequences, i.e., exact or
nearly exact reactivation of complete hierarchical traces over all
frames of a sequence. The canonical macrocolumnar algorithm—
which probabilistically chooses a sparse distributed code (SDC)
as a function of a mac’s entire input, i.e., its bottom-up (U), hori-
zontal (H), and top-down (D) input vectors, at a given moment—
operates similarly, modulo parameters, in both learning and
recognition, in all macs at all levels. Computationally, Sparsey’s
most important property is that a mac both stores (learns) new
input items—which in general are temporal-context-dependent
inputs, i.e., particular spatiotemporal moments—and retrieves

the spatiotemporally closest-matching stored item in time that
remains fixed as the number of items stored in the mac increases.
This property depends critically on the use of SDCs, is essential
for scalability to “Big Data” problems, and has not been shown for
any other computational model, biologically inspired or not!

The model has a number of other interesting neurally plau-
sible properties, including the following. (1) A “critical period”
concept wherein learning is frozen in a mac’s afferent synaptic
projections when those projections reach a threshold saturation.
In a hierarchical setting, freezing will occur beginning with the
lowest level macs (analogous to primary sensory cortex) and
progress upward over the course of experience. (2) A “progressive
persistence” property wherein the activation duration (persis-
tence) of the “neurons” (and thus of the SDCs which are sets
of co-active neurons) increases with level; there is some evidence
for increasing persistence along the ventral visual path (Rolls and
Tovee, 1994; Uusitalo et al., 1997; Gauthier et al., 2012). This
allows an SDC in a mac at level J to associate with sequences of
SDCs in Level J-1 macs with which it is connected, i.e., a chunking
(compression) mechanism. In particular, this provides a means to
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Rinkus Sparse deep hierarchical vision model

learn in unsupervised fashion perceptual invariances produced by
continuous transforms occurring in the environment (e.g., rota-
tion, translation, etc.). Rolls’ VisNet model, introduced in Rolls
(1992) and reviewed in Rolls (2012), uses a similar concept to
explain learning of naturally-experienced transforms, although
his trace-learning-rule-based implementation differs markedly
from ours. (3) During learning, an SDC is chosen on the basis of
signals arriving from all active afferent neurons in the mac’s total
(U, H, and D) receptive field (RF). However, during retrieval, if
the highest-order match, i.e., involving all three (U, H, and D)
input sources, falls below a threshold, the mac considers a pro-
gression of lower-order matches, e.g., involving only its U and D
inputs, but ignoring its H inputs, and if that also falls below a
threshold, a match involving only its U inputs. This “back-off”
protocol, in conjunction with progressive persistence, allows a
protocol by which the model can rapidly—crucially, the protocol
does not increase the time complexity of closest-match retrieval—
compare a test sequence (e.g., video snippet) not only to the set
of all sequences actually experienced and stored, but to a much
larger space of nonlinearly time-warped variants of the actually-
experienced sequences. (4) During retrieval, multiple competing
hypotheses can momentarily (i.e., for one or several frames) be
co-active in any given mac and resolve to a single hypothesis as
subsequent disambiguating information enters.

While the results reported herein are specifically for the unsu-
pervised learning case, Sparsey also implements supervised learn-
ing in the form of cross-modal unsupervised learning, where one
of the input modalities is treated as a label modality. That is,
if the same label is co-presented with multiple (arbitrarily dif-
ferent) inputs in another (raw sensory) modality, then a single
internal representation of that label can be associated with the
multiple (arbitrarily different) internal representations of the sen-
sory inputs. That internal representation of the label then de facto
constitutes a representation of the class that includes all those sen-
sory inputs regardless of how different they are, providing the
model a means to learn essentially arbitrarily nonlinear categories
(invariances), i.e., instances of what Bengio terms “AI Set” prob-
lems (Bengio, 2007). Although we describe this principle in this
paper, its full elaboration and demonstration in the context of
supervised learning will be treated in a future paper.

Regarding the model’s possible neural realization, our pri-
mary concern is that all of the model’s formal structural and
dynamic properties/mechanisms be plausibly realizable by known
neural principles. For example, we do not give a detailed neural
model of the winner-take-all (WTA) competition that we hypoth-
esize to take place in the model’s minicolumns, but rather rely
on the plausibility of any of the many detailed models of WTA
competition in the literature, (e.g., Grossberg, 1973; Yu et al.,
2002; Knoblich et al., 2007; Oster et al., 2009; Jitsev, 2010). Nor
do we give a detailed neural model for the mac’s computation
of the overall spatiotemporal familiarity of its input (the “G”
measure), or for the G-contingent modulation of neurons’ acti-
vation functions. Furthermore, the model relies only upon binary
neurons and a simple synaptic learning model. This paper is
really most centrally an explanation of why and how the use
of SDC in conjunction with hierarchy provides a computation-
ally efficient, scalable, and neurally plausible solution to event

(i.e., single- or multimodal spatiotemporal pattern) learning and
recognition.

OVERALL MODEL CONCEPT
The remarkable structural homogeneity across the neocortical
sheet suggests a canonical circuit/algorithm, i.e., a core com-
putational module, operating similarly in all regions (Douglas
et al., 1989; Douglas and Martin, 2004). In addition, DiCarlo
et al. (2012) present compelling first-principles arguments based
on computational efficiency and evolution for a macrocolumn-
sized canonical functional module whose goal they describe as
“cortically local subspace untangling.” We also identify the canon-
ical functional module with the cortical “macrocolumn” (a.k.a.
“hypercolumn” in V1, or “barrel”-related volumes in rat/mouse
primary somatosensory cortex), i.e., a volume of cortex, ∼200–
500 um in diameter, and will refer to it as a “mac.” In our view,
the mac’s essential function, or “meta job description,” in the
terms of DiCarlo et al. (2012), is to operate as a semi-autonomous
content-addressable memory. That is, the mac:

(a) assigns (stores, learns) neural codes, specifically sparse dis-
tributed codes (SDCs), representing its global (i.e., combined
U, H, and D) input patterns; and

(b) retrieves (reactivates) stored codes, i.e., memories, on sub-
sequent occasions when the global input pattern matches a
stored code sufficiently closely.

If the mac’s learning process ensures that similar inputs map to
similar codes (SISC), as Sparsey’s does, then operating as a content
addressable memory is functionally equivalent to local subspace
untangling.

Although the majority of neurophysiological studies through
the decades have formalized the responses of cortical neurons in
terms of purely spatial receptive fields (RFs), evidence revealing
the truly spatiotemporal nature of neuronal RFs is accumulat-
ing (DeAngelis et al., 1993, 1999; Rust et al., 2005; Gavornik and
Bear, 2014; Ramirez et al., 2014). In our mac model, time is dis-
crete: U signals arrive from neurons active on the current time
step while H and D signals arrive from neurons active on the pre-
vious time step. We can view the combined U, H, and D inputs as a
“context-dependent U input” (where the H and D signals are con-
sidered the “context”) or more holistically, as an overall particular
spatiotemporal moment (as suggested earlier).

As will be described in detail, the first step of the mac’s canon-
ical algorithm, during both learning and retrieval, is to combine
its U, H, and D inputs to yield a (scalar) judgment, G, as to the
spatiotemporal familiarity of the current moment. Provided the
number of codes stored in the mac is small enough, G measures
the spatiotemporal similarity of the best matching stored moment,
x, to the current moment, I.

G = arg max
x

(sim(I, x))

Figure I-1 shows the envisioned correspondence of Sparsey to
the cortical macrocolumn. In particular, we view the mac’s sub-
population of L2/3 pyramidals as the actual repository of SDCs.
And even more specifically, we postulate that the ∼20 L2/3
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FIGURE I-1 | Proposed correspondence between the cortical

macrocolumn and Sparsey’s mac. Left: schematic of a cortical
macrocolumn composed of ∼70 minicolumns (green cylinder). SDCs
representing context-dependent inputs reside in mac’s L2/3 population. An
SDC is a set composed of one active L2/3 pyramidal cell per minicolumn.
Upper Right: 2-photon calcium image of activity in a mac-sized area of cat
V1 given a left-moving vertical bar in the mac’s RF; we have added dashed

hexagonal boundary to suggest the boundary of macrocolumn/
hypercolumn module (adapted from Ohki et al., 2005). Lower Right: two
formats that we use to depict macs; they show only the L2/3 cells. The
hexagonal format mac has 10 minicolumns each with seven cells. The
rectangular format mac has nine minicolumns each with nine cells. Note
that in these formats, active cells are black (or red as in many subsequent
figures); inactive cells are white.

pyramidals in each of the mac’s ∼70 minicolumns function in
WTA fashion. Thus, a single SDC code will consist of 70 L2/3
pyramidals, one per minicolumn. Note: we also refer to mini-
columns as competitive modules (CMs). Two-photon calcium
imaging movies, e.g., Ohki et al. (2005), Sadovsky and MacLean
(2014), provide some support for the existence of such macro-
columnar SDCs as they show numerous instances of ensembles,
consisting of from several to hundreds of neurons, often span-
ning several 100 um, turning on and off as tightly synchronized
wholes. We anticipate that the recently developed super-fast volt-
age sensor ASAP1 (St-Pierre et al., 2014) may allow much higher
fidelity testing of SDCs and Sparsey in general.

Figure I-2 (left) illustrates the three afferent projections to a
particular mac at level L1 (analog of cortical V1), M1

i (i.e., the ith
mac at level L1). The red hexagon at L0 indicates M1

i ’s aperture
onto the thalamic representation of the visual space, i.e., its clas-
sical receptive field (RF), which we can refer to more specifically as
M1

i ’s U-RF. This aperture consists of about 40 binary pixels con-
nected all-to-all with M1

i ’s cells; black arrows show representative
U-weights (U-wts) from two active pixels. Note that we assume
that visual inputs to the model are filtered to single-pixel-wide
edges and binarized. The blue semi-transparent prism represents
the full bundle of U-wts comprising M1

i ’s U-RF.
The all-to-all U-connectivity within the blue prism is essen-

tial because the concept of the RF of a mac as a whole, not of
an individual cell, is central to our theory. This is because the

“atomic coding unit,” or equivalently, the “atomic unit of mean-
ing” in this theory is the SDC, i.e., a set of cells. The activation
of a mac, during both learning and recognition, consists in the
activation of an entire SDC, i.e., simultaneous activation of one
cell in every minicolumn. Similarly, deactivation of a mac con-
sists in the simultaneous deactivation of all cells comprising the
SDC (though in general, some of the cells contained in a mac’s
currently active SDC might also be contained in the next SDC to
become active in that mac). Thus, in order to be able to view an
SDC as collectively (or atomically) representing the input to a mac
as a whole, all cells in a mac must have the same RF (the same set
of afferent cells). This scenario is assumed throughout this report.

In Figure I-2, magenta lines represent the D-wts comprising
M1

i ’s afferent D projection, or D-RF. In this case, M1
i ’s D-RF con-

sists of only one L2 (analog of V2) mac, M2
j , which is all-to-all

connected to M1
i (representative D-wts from just two of M2

j ’s cells
are shown). Any given mac also receives complete H-projections
from all nearby macs in its own level (including itself) whose cen-
ters fall within a parameter-specifiable radius of its own center.
Signals propagating via H-wts are defined to take one time step
(one sequence item) to propagate. Green arrows show a small rep-
resentative sample of H-wts mediating signals arriving form cells
active on the prior time step (gray). Red indicates cells active on
current time step. At right of Figure I-2, we zoom in on one of
M1

i ’s minicolumns (CMs) to emphasize that every cell in a CM
has the same H-, U-, and D-RFs. Figure I-3 further illustrates
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FIGURE I-2 | Detail of afferent projections to a mac. See text for description.

(using the rectangular format for depicting macs) the concept that
all cells in a given mac have the same U-, H-, and D-RFs and that
those RFs respect the borders of the source macs. Each cell in the
L1 mac, M1

(2,2) (here we use an alternate (x,y) coordinate indexing
convention for the macs), receives a D-wt from all cells in all five
L2 macs indicated, an H-wt from all cells in M1

(2,2) and its N, S, E,
and W neighboring macs (green shading), and a U-wt from all 36
cells in the indicated aperture.

The hierarchical organization of visual cortex is captured in
many biologically inspired computational vision models with the
general idea being that progressively larger scale (both spatially
and temporally) and more complex visual features are repre-
sented in progressively higher areas (Riesenhuber and Poggio,
1999; Serre et al., 2005). Our cortical model, Sparsey, is hierar-
chical as well, but as noted above, a crucial, in fact, the most
crucial difference between Sparsey and most other biologically
inspired vision models is that Sparsey encodes information at
all levels of the hierarchy, and in every mac at every level, with
SDCs. This stands in contrast to models that use localist repre-
sentations, e.g., all published versions of the HMAX family of
models, (e.g., Murray and Kreutz-Delgado, 2007; Serre et al.,
2007) and other cortically-inspired hierarchical models (Kouh
and Poggio, 2008; Litvak and Ullman, 2009; Jitsev, 2010) and
the majority of graphical probability-based models (e.g., hidden
Markov models, Bayesian nets, dynamic Bayesian nets). There
are several other models for which SDC is central, e.g., SDM
(Kanerva, 1988, 1994, 2009; Jockel, 2009), Convergence-Zone

Memory (Moll and Miikkulainen, 1997), Associative-Projective
Neural Networks (Rachkovskij, 2001; Rachkovskij and Kussul,
2001), Cogent Confabulation (Hecht-Nielsen, 2005), Valiant’s
“positive shared” representations (Valiant, 2006; Feldman and
Valiant, 2009), and Numenta’s Grok (described in Numenta white
papers). However, none of these models has been substantially
elaborated or demonstrated in an explicitly hierarchical archi-
tecture and most have not been substantially elaborated for the
spatiotemporal case.

Figure I-4 illustrates the difference between a localist, e.g., an
HMAX-like, model and the SDC-based Sparsey model. The input
level (analogous to thalamus) is the same in both cases: each small
gray/red hexagon in the input level represents the aperture (U-
RF) of a single V1 mac (gray/red hexagon). In Figure I-4A, the
representation used in each mac (at all levels) is localist, i.e., each
feature is represented by a single cell and at any one time, only
one cell (feature) is active (red) in any given mac (here the cell is
depicted with an icon representing the feature it represents). In
contrast, in Figure I-4B, any particular feature is represented by
a set of co-active cells (red), one in each of a mac’s minicolumns:
compare the two macs at lower left of Figure I-4A with the cor-
responding macs in Figure I-4B (blue and brown arrows). Any
given cell will generally participate in the codes of many different
features. A yellow call-out shows codes for other features stored
in the mac, besides the feature that is currently active. If you look
closely, you can see that for some macs, some cells are active in
more than one of the codes.
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FIGURE I-3 | Connectivity scheme. Within each of the three afferent
projections, H, U, and D, to a mac, M1

(2,2) (where the mac index is now in
terms of (x,y) coordinates in the level, and we have switched to the
rectangular mac topology), the connectivity is full and respects mac borders.

L1 is a 5 × 4 sheet of macs (blue borders), each consisting of 36 minicolumns
(pink borders), but the scale is too small to see the individual cells within
minicolumns. L2 is a 4 × 3 sheet of macs, each consisting of nine CMs, each
consisting of nine cells.

Looking at Figure I-4A, adapted from Serre et al. (2005),
one can see the basic principle of hierarchical compositionality
in action. The two neighboring apertures (pink) over the dog’s
nose lead to activation of cells representing a vertical and a
horizontal feature in neighboring V1 macs. Due to the con-
vergence/divergence of U-projections to V2, both of these cells
project to the cells in the left-hand V2 mac. Each of these cells
projects to multiple cells in that V2 mac, however, only the red
(active) cell representing an “upper left corner” feature, is max-
imally activated by the conjunction of these two V1 features.
Similarly, the U-signals from the cell representing the “diagonal”
feature active in the right-hand V1 mac will combine with signals
representing features in nearby apertures to activate the appropri-
ate higher-level feature in the V2 mac whose U-RF includes these
apertures (small dashed circles in the input level). Note that some
notion of competition (e.g., the “max” operation in HMAX mod-
els) operates amongst the cells of a mac such that at any one time,
only one cell (one feature) can be active.

We underscore that in Figure I-4, we depict simple (solid bor-
der) and complex (dashed border) features within individual

macs, implying that complex and simple features can compete
with each other. We believe that the distinction between simple
and complex features may be largely due to coarseness of older
experimental methods (e.g., using synthetic low-dimensional
stimuli): newer studies are revealing far more precise tuning func-
tions (Nandy et al., 2013), including temporal context specificity,
even as early as V1 (DeAngelis et al., 1993, 1999), and in other
modalities, somatosensory (Ramirez et al., 2014) and auditory
(Theunissen and Elie, 2014).

The same hierarchical compositional scheme as between V1
and V2 continues up the hierarchy (some levels not shown),
causing activation of progressively higher-level features. At higher
levels, we typically call them concepts, e.g., the visual concept of
“Jennifer Aniston,” the visual concept of the class of dogs, the
visual concept of a particular dog, etc. We show most of the fea-
tures at higher levels with dashed outlines to indicate that they
are complex features, i.e., features with particular, perhaps many,
dimensions of invariance, most of which are learned through
experience. In Sparsey, the particular invariances are learned
from scratch and will generally vary from one feature/concept to
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FIGURE I-4 | Comparison of a localist (A) and an SDC-based (B) hierarchical vision model. See text.

another, including within the same mac. The particular features
shown in the different macs in this example are purely notional:
it is the overall hierarchical compositionality principle that is
important, not the particular features shown, nor the particular
cortical regions in which they are shown.

The hierarchical compositional process described above in the
context of the localist model of Figure I-4A applies to the SDC-
based model in Figure I-4B as well. However, features/concepts
are now represented by sets of cells rather than single cells. Thus,
the vertical and horizontal features forming part of the dog’s nose
are represented with SDCs in their respective V1 macs (blue and
brown arrows, respectively), rather than with single cells. The U-
signals propagating from these two V1 macs converge on the cells
of the left-hand V2 mac and combine, via Sparsey’s code selection
algorithm (CSA) (described in Section Sparsey’s Core Algorithm),

to activate the SDC representing the “corner” feature, and simi-
larly on up the hierarchy. Each of the orange outlined insets at V2
shows the input level aperture of the corresponding mac, empha-
sizing the idea that the precise input pattern is mapped into the
closest-matching stored feature, in this example, a “upper left 90◦
corner” at left and a “NNE-pointing 135◦ angle” at right. The
inset at bottom of Figure I-4B zooms in to show that the U-
signals to V1 arise from individual pixels of the apertures (which
would correspond to individual LGN projection cells).

In the past, IT cells have generally been depicted as being
narrowly selective to particular objects (Desimone et al., 1984;
Kreiman et al., 2006; Kiani et al., 2007; Rust and DiCarlo, 2010).
However, as DiCarlo et al. (2012) point out, the data overwhelm-
ingly support the view of individual IT cells as having a “diversity
of selectivity”; that is, individual IT cells generally respond to
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FIGURE I-5 | Notional mapping of Sparsey to brain.

many different objects and in that sense are much more broadly
tuned. This diversity is notionally suggested in Figures I-4B, I-5
in that individual cells are seen to participate in multiple SDCs
representing different images/concepts. However, the particular
input (stimulus) dimensions for which any given cell ultimately
demonstrates some degree of invariance is not prescribed a priori.
Rather they emerge essentially idiosyncratically over the history
of a cell’s inclusions in SDCs of particular experienced moments.
Thus, the dimensions of invariance in the tuning functions of
even immediately neighboring cells may generally end up quite
different.

Figure I-5 embellishes the scheme shown in Figure I-4B and
(turning it sideways) casts it onto the physical brain. We add
paths from V1 and V2 to an MT representation as well. We add
a notional PFC representation in which a higher-level concept
involving the dog, i.e., the fact that it is being walked, is active. We
show a more complete tiling of macs at V1 than in Figure I-4B
to emphasize that only V1 macs that have a sufficient fraction
of active pixels, e.g., an edge contour, in their aperture become
active (pink). In general, we expect the fraction of active macs to

decrease with level. As this and prior figures suggest, we currently
model the macs as having no overlap with each other (i.e., they
tile the local region), though their RFs [as well as their projec-
tive fields (PFs)] can overlap. However, we expect that in the real
brain, macs can physically overlap. That is, any given minicolumn
could be contained in multiple overlapping macs, where only one
of those macs can be active at any given moment. The degree of
overlap could vary by region, possibly generally increasing anteri-
orly. If so, then this would partially explain (in conjunction with
the extremely limited view of population activity that single/few-
unit electrophysiology has provided through most of the history
of neuroscience) why there has been little evidence thus far for
macs in more frontal regions.

SPARSE DISTRIBUTED CODES vs. LOCALIST CODES
One important difference between SDC and localist representa-
tion is that the space of representations (codes) for a mac using
SDC is exponentially larger than for a mac using a localist repre-
sentation. Specifically, if Q is the number of CMs in a mac and
K is the number of cells per CM, then there are KQ unique SDC
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codes for that mac. A localist mac of the same size only has Q × K
unique codes. Note that it is not the case that an SDC-based mac
can use that entire code space, i.e., store KQ features. Rather, the
limiting factor on the number of codes storable in an SDC-based
mac is the fraction of the mac’s afferent synaptic weights that are
set high (our model uses effectively binary weights), i.e., degree
of saturation. In fact, the number of codes storable such that
all stored codes can be retrieved with some prescribed average
retrieval accuracy (error), is probably a vanishingly small frac-
tion of the entire code space. However, real macrocolumns have
Q ≈ 70 minicolumns, each with K ≈ 20 L2/3 principal cells: a
“vanishingly small fraction” of 2070 can of course still be a large
absolute number of codes.

While the difference in code space size between localist and
SDC models is important, it is the distributed nature of the SDC
codes per se that is most important. Many have pointed out a key
property of SDC which is that since codes overlap, the number of
cells in common between two codes can be used to represent their
similarity. For example, if a given mac has Q = 100 CMs, then
there are 101 possible degrees of intersection between codes, and
thus 101 degrees of similarity, which can be represented between
concepts stored in that mac. The details of the process/algorithm
that assigns codes to inputs determines the specific definition
of similarity implemented. We will discuss the similarity met-
ric(s) implemented and implementable in Sparsey throughout the
sequel.

However, as stated earlier, the most important distinction
between localism and SDC is that SDC allows the two essential
operations of associative (content-addressable) memory, storing
new inputs and retrieving the best-matching stored input, to be
done in fixed time for the life of the model. That is, given a model
of a fixed size (dominated by the number of weights), and which
therefore has a particular limit on the amount, C, of informa-
tion that it can store and retrieve subject to a prescribed average
retrieval accuracy (error), the time it takes to either store (learn)
a new input or retrieve the best-matching stored input (mem-
ory) remains constant regardless of how much information has
been stored, so long as that amount remains less than C. There
is no other extant model, including all HMAX models, all convo-
lutional network (CN) models, all Deep Learning (DL) models, all
other models in the class of graphical probability models (GPMs),
and the locality-sensitive hashing models, for which this capability—
constant storage and best-match retrieval time over the life of the
system—has been demonstrated. All these other classes of mod-
els realize the benefits of hierarchy per se, i.e., the principle of
hierarchical compositionality which is critical for rapidly learn-
ing highly nonlinear category boundaries, as described in Bengio
et al. (2012), but only Sparsey also realizes the speed benefit, and
therefore ultimately, the scalability benefit, of SDC. We state the
algorithm in Section Sparsey’s Core Algorithm. The reader can see
by inspection of the CSA (Table I-1) that it has a fixed number of
steps; in particular, it does not iterate over stored items.

Another way of understanding the computational power of
SDC compared to localism is as follows. We stated above that in a
localist representation such as in Figure I-4A, only one cell, rep-
resenting one hypothesis can be active at a time. The other cells
in the mac might, at some point prior to the choice of a final

winner, have a distribution of sub-threshold voltages that reflects
the likelihood distribution over all represented hypotheses. But
ultimately, only one cell will win, i.e., go supra-threshold and
spike. Consequently, only that one cell, and thus that one hypoth-
esis, will materially influence the next time step’s decision process
in the same mac (via the recurrent H matrix) and in any other
downstream macs.

In contrast, because SDCs physically overlap, if one particular
SDC (and thus, the hypothesis that it represents) is fully active in
a mac, i.e., if all Q of that code’s cells are active, then all other codes
(and thus, their associated hypotheses) stored in that mac are also
simultaneously physically partially active in proportion to the size
of their intersections with the single fully active code. Furthermore,
if the process/algorithm that assigns the codes to inputs has
enforced the similar-inputs-to-similar-codes (SISC) property, then
all stored inputs (hypotheses) are active with strength in descend-
ing order of similarity to the fully active hypothesis. We assume
that more similar inputs generally reflect more similar world
states and that world state similarity correlates with likelihood.
In this case, the single fully active code also physically functions
as the full likelihood distribution over all SDCs (hypotheses) stored
in a mac. Figure I-6 illustrates this concept. We show five hypo-
thetical SDCs, denoted with φ(), for five input items, A-E (the
actual input items are not shown here), which have been stored
in the mac shown. At right, we show the decreasing intersections
of the codes with φ(A). Thus, when code φ(A) is (fully) active,
φ(B) is 4/7 active, φ(C) is 3/7 active, etc. Since cells represent-
ing all of these hypotheses, not just the most likely hypothesis,
A, actually spike, it follows that all of these hypotheses physically
influence the next time step’s decision processes, i.e., the resulting
likelihood distributions, active on the next time step in the same
and all downstream macs.

We believe this difference to be fundamentally important.
In particular, it means that performing a single execution of
the fixed-time CSA transmits the influence of every represented
hypothesis, regardless of how strongly active a hypothesis is, to
every hypothesis represented in downstream macs. We emphasize
that the representation of a hypothesis’s probability (or likeli-
hood) in our model—i.e., as the fraction of a given hypothesis’s
full code (of Q cells) that is active—differs fundamentally from
existing representations in which single neurons encode such
probabilities in their strengths of activation (e.g., firing rates) as
described in the recent review of Pouget et al. (2013).

SPARSEY’S CORE ALGORITHM
During learning, Sparsey’s core algorithm, the code selection
algorithm (CSA), operates on every time step (frame) in every
mac of every level, resulting in activation of a set of cells (an SDC)
in the mac. The CSA can also be used, with one major variation,
during retrieval (recognition). However, there is a much simpler
retrieval algorithm, essentially just the first few steps of the CSA,
which is preferable if the system “knows” that it is in retrieval
mode. Note that this is not the natural condition for autonomous
systems: in general, the system must be able to decide for itself,
on a frame-by-frame basis, whether it needs to be in learning
mode (if, and to what extent, the input is novel) or retrieval mode
(if the input is completely familiar). We first describe the CSA’s
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Table I-1 | The CSA during learning.

Equation Short description

1 Active(m) =

⎧⎪⎪⎨
⎪⎪⎩

true ϒ (m) < δ(m)

true π−
U ≤ πU (m) ≤ π+

U

false otherwise

Determine if mac m will become active

2 u(i) =
∑

j ∈ RFU

x(j, t) × F (ζ (j, t)) × w (j, i)

h(i) = ∑
j ∈ RFH

x(j, t − 1) × F (ζ (j, t − 1)) × w (j, i)

d (i) = ∑
j ∈ RFD

x(j, t − 1) × F (ζ (j, t − 1)) × w (j, i)

Compute the raw U, H, and D input summations

3 U(i) =
⎧⎨
⎩max

(
1,u(i)/π−

U × wmax
)

L = 1

max
(
1,u(i) min

(
π−

U , π
∗
U

)× Q × wmax
)

L > 1
.

H(i) = max
(
1,h(i)/min

(
π−

H , π
∗
H

)× Q × wmax
)

D(i) = max
(
1,d (i) min

(
π−

D , π
∗
D

)× Q × wmax
)

Compute normalized, filtered input summations

4 V (i) =
⎧⎨
⎩H(i)λH × U(i)λU (t) × D(i)λD t ≥ 1

U(i)λU (0) t = 0
Compute local evidential support for each cell

5a

5b

ζq =
K∑

i = 0

[
V (i) > Vζ

]
ζ = ∑Q − 1

j = 0 ζq/Q

(a) Compute #cells representing a maximally competing
hypothesis in each CM. (b) Compute # of maximally active
hypotheses, ζ , in the mac

6 F (ζ ) =
⎧⎨
⎩ζ

A 1 ≤ ζ ≤ B

0 ζ > B
Compute the multiple competing hypotheses (MCH)
correction factor, F (ζ ), for the mac

7 V̂j = max
i ∈ Cj

{
V (i)

}
Find the max V, V̂j , in each CM, Cj

8 G =
Q∑

q = 1

V̂k/Q Compute G as the average V̂ -value over the Q CMs

9 η = 1 +
([

G − G−
1 − G−

]+)γ
× χ × K Determine the expansivity of the sigmoid activation

function

10 ψ (i) = (η − 1)(
1 + σ1e−σ2(V (i ) − σ3)

)σ4
+ 1 Apply sigmoid activation function (which collapses to the

constant function when G < G−) to each cell

11 ρ(i) = ψ (i)∑
k ∈ CM ψ (k)

In each CM, normalize the relative probabilities of winning
(ψ ) to final probabilities (ρ) of winning

12 Select a final winner in each CM according to the ρ distribution in that CM, i.e., soft max

learning mode, then its variation for retrieval, then its much sim-
pler retrieval mode. See Table I-2 for definitions of symbols used
in equations and throughout the paper.

CSA: LEARNING MODE
The overall goal of the CSA when in learning mode is to assign
codes to a mac’s inputs in adherence with the SISC property,
i.e., more similar overall inputs to a mac are mapped to more
highly intersecting SDCs. With respect to each of a mac’s individ-
ual afferent RFs, U, H, and D, the similarity metric is extremely
primitive: the similarity of two patterns in an afferent RF is sim-
ply an increasing function of the number of features in common
between the two patterns, thus embodying only what Bengio

et al. (2012) refer to as the weakest of priors, the smoothness
prior. However, the CSA multiplicatively combines these com-
ponent similarity measures and, because the H and D signals
carry temporal information reflecting the history of the sequence
being processed, the CSA implements a spatiotemporal similar-
ity metric. Nevertheless, the ability to learn arbitrarily complex
nonlinear similarity metrics (i.e., category boundaries, or invari-
ances), requires a hierarchical network of macs and the ability
for an individual SDC, e.g., active in one mac, to associate with
multiple (perhaps arbitrarily different) SDCs in one or more
other macs. We elaborate more on Sparsey’s implementation of
this capability in Section Learning arbitrarily complex nonlinear
similarity metrics.
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FIGURE I-6 | If the process that assigns SDCs to inputs enforces the

similar-input-to-similar-codes (SISC) property, then the currently active

code in a mac simultaneously physically functions as the entire

likelihood distribution over all hypotheses stored in the mac. At bottom,

we show the activation strength distribution over all five codes (stored
hypotheses), when each of the five codes is fully active. If SISC was enforced
when these codes were assigned (learned), then these distributions are
interpretable as likelihood distributions. See text for further discussion.

The CSA has 12 steps which can be broken into two phases.
Phase 1 (Steps 1–7) culminates in computation of the familiar-
ity, G (normalized to [0,1]), of the overall (H, U, and D) input
to the mac as a whole, i.e., G is a function of the global state
of the mac. To first approximation, G is the similarity of the
current overall input to the closest-matching previously stored
(learned) overall input. As we will see, computing G involves
a round of deterministic (hard max) competition resulting in
one winning cell in each of the Q CMs. In Phase 2 (Steps

8–12), the activation function of the cells is modified based
on G and a second round of competition occurs, resulting in
the final set of Q winners, i.e., the activated code in the mac
on the current time step. The second round of competition is
probabilistic (soft max), i.e., the winner in each CM is cho-
sen as a draw from a probability distribution over the CM’s
K cells.

In neural terms, each of the CSA’s two competitive rounds
entail the principal cells in each CM integrating their inputs,
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engaging the local inhibitory circuitry, resulting in a single
spiking winner. The difference is that the cell activation func-
tions (F/I-curves) used during the second round of integration
will generally be very different from those used during the
first round. Broadly, the goal is as follows: as G approaches 1,
make cells with larger inputs compared to others in the CM
increasingly likely to win in the second round, whereas as G
approaches 0, make all cells in a CM equally likely to win in
the second round. We discuss this further in Section Neural
implementation of CSA.

We now describe the steps of the CSA in learning mode.
We will refer to the generic “circuit model” in Figure II-1 in
describing some of the steps. The figure has two internal levels

with one small mac at each level, but the focus, in describing
the algorithm, will be on the L1 mac, M1

j , highlighted in yellow.

M1
j consists of Q = 4 CMs, each with K = 3 cells. Gray arrows

represent the U-wts from the input level, L0, consisting of 12
binary pixels. Magenta arrows represent the D-wts from the L2
mac. Green lines depict a subset of the H-wts. The represen-
tation of where the different afferents arrive on the cells is not
intended to be veridical. The depicted “Max” operations are the
hard max operations of CSA Step 7. The blue arrows portray
the mac-global G-based modulation of the cellular V-to-ψ map
(essentially, the F/I curve). The probabilistic draw operation is not
explicitly depicted in this circuit model.

FIGURE II-1 | Generic “circuit model” for reference in describing the some steps of the CSA.
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Step 1: Determine if the mac will become active
As shown in Equation (1), during learning, a mac, m, becomes
active if either of two conditions hold: (a) if the number of active
features in its U-RF, πU (m), is between π−

U and π+
U ; or (b) if

it is already active but the number of frames that it has been
on for, i.e., its code age, ϒ(m), is less than its persistence, δ(m).
That is, during learning, we want to ensure that codes remain
on for their entire prescribed persistence durations. We currently
have no conditions on the number of active features in the H
and D RFs.

Active(m) =

⎧⎪⎨
⎪⎩

true ϒ(m) < δ(m)

true π−
U ≤ πU (m) ≤ π+

U

false otherwise

(1)

Step 2: Compute raw U, H, and D-summations for each cell, i, in the
mac
Every cell, i, in the mac computes its three weighted input
summations, u(i), as in Equation (2a). RFU is a synonym for U-
RF. a(j, t) is pre-synaptic cell j’s activation, which is binary, on
the current frame. Note that the synapses are effectively binary.
Although the weight range is [0,127], pre-post correlation causes
a weight to increase immediately to wmax = 127 and the asymp-
totic weight distribution will have a tight cluster around 0 (for
weights that are effectively “0”) and around 127 (for weights
that are effectively “1”). The learning policy and mechanics are
described in Section Learning policy and mechanics. F(ζ (j, t)) is
a term needed to adjust the weights of afferent signals from cells in
macs in which multiple competing hypotheses (MCHs) are active.
If the number of MCHs (ζ ) is small then we want to boost the
weights of those signals, but if it gets too high, in which case we
refer to the source mac as being muddled, those signals will gener-
ally only serve to decrease SNR in target macs and so we disregard
them. Computing and dealing with MCHs is described in Steps 5
and 6. h(i) and d(i) are computed in analogous fashion Equations
(2b) and (2c), with the slight change that H and D signals are
modeled as originating from codes active on the previous time
step (t − 1).

u(i) =
∑

j ∈ RFU

a(j, t) × F(ζ (j, t)) × w(j, i) (2a)

h(i) =
∑

j ∈ RFH

a(j, t − 1) × F(ζ (j, t − 1)) × w(j, i) (2b)

d(i) =
∑

j ∈ RFD

a(j, t − 1) × F(ζ (j, t − 1)) × w(j, i) (2c)

Step 3: Normalize and filter the raw summations
The summations, u(i), h(i), and d(i), are normalized to [0,1]
interval, yielding U(i), H(i), and D(i). We explained above that
a mac m only becomes active if the number of active features
in its U-RF, πU (m), is between π−

U and π+
U , referred to as the

lower and upper mac activation bounds. Given our assumption
that visual inputs to the model are filtered to single-pixel-wide
edges and binarized, we expect relatively straight or low-curvature
edges roughly spanning the diameter of an L0 aperture to occur

rather frequently in natural imagery. Figure II-2 shows two exam-
ples of such inputs, as frames of sequences, involving either only
a single L0 aperture (panel A) or a region consisting of three L0
apertures, i.e., as might comprise the U-RFs of an L2 mac (e.g.,
as in Figure I-4B). The general problem, treated in this figure, is
that the number of features present in a mac’s U-RF, πU (m), may
vary from one frame to the next. Note that for macs at L2 and
higher, the number of features present in an RF is the number
of active macs in that RF, not the total number of active cells in
that RF. The policy implemented in Sparsey is that inputs with
different numbers of active features compete with each other on
an equal footing. Thus, normalizers (denominators) in Equations
(3a–c) use the lower mac activation bound, π−

U , π−
H , and π−

D .
This necessitates hard limiting the maximum possible normalized
value to 1, so that inputs with between π−

U and π+
U active features

yield normalized values confined to [0,1]. There is one additional
nuance. As noted above, if a mac in m’s U-RF is muddled, then
we disregard all signals from it, i.e., they are not included in the
u-summations of m’s cells. However, since that mac is active, it
will be included in the number of active features, πU (m). Thus,
we should normalize by the number of active, nonmuddled macs
in m’s U-RF (not simply the number of active macs): we denote
this value asπ∗

U . Finally, note that when the afferent feature is rep-
resented by a mac, that feature is actually being represented by the
simultaneous activation of, and thus, inputs from, Q cells; thus
the denominator must be adjusted accordingly, i.e., multiplied by
Q and by the maximum weight of a synapse, wmax.

U(i) =
{

max (1, u(i)/π−
U × wmax) L = 1

max (1, u(i)/min (π−
U , π

∗
U ) × Q × wmax) L > 1

(3a)

H(i) = max
(
1, h(i)/min

(
π−

H , π
∗
H

)× Q × wmax
)

(3b)

D(i) = max
(
1, d(i)/min

(
π−

D , π
∗
D

)× Q × wmax
)

(3c)

Step 4: Compute overall local support for each cell in the mac
The overall local (to the individual cell) measure, V(i), of evi-
dence/support that cell i should be activated is computed by mul-
tiplying filtered versions of the normalized inputs as in Equation
(4). V(i) can also be viewed as the normalized degree of match
of cell i’s total afferent (including U, H, and D) synaptic weight
vector to its total input pattern. We emphasize that the V measure
is not a measure of support for a single hypothesis, since an indi-
vidual cell does not represent a single hypothesis. Rather, in terms
of hypotheses, V(i) can be viewed as the local support for the
set of hypotheses whose representations (codes) include cell i.
The individual normalized summations are raised to powers (λ),
which allows control of the relative sensitivities of V to the dif-
ferent input sources (U, H, and D). Currently, the U-sensitivity
parameter, λU , varies with time (index of frame with respect to
beginning of sequence). We will add time-dependence to the H
and D sensitivity parameters as well and explore the space of
policies regarding these schedules in the future. In general terms,
these parameters (along with many others) influence the shapes
of the boundaries of the categories learned by a mac.

V(i) =
{

H(i)λH × U(i)λU (t) × D(i)λD t ≥ 1

U(i)λU (0) t = 0
(4)
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FIGURE II-2 | The mac’s normalization policy must be able to deal

with inputs of different sizes, i.e., inputs having different numbers

of active features. (A) An edge rotates through the aperture over
three time steps, but the number of active features (in this case,
pixels) varies from one time step (moment) to the next. In order for
the mac to be able to recognize the 5-pixel input (T = 1) just as
strongly as the 6 or 7-pixel inputs, the u-summations must be divided

by 5. (B) The U-RFs of macs at L2 and higher consist of an integer
number of subjacent level macs, e.g., here, M2

i ’s U-RF consists of
three L1 macs (blue border). Each active mac in M2

i ’s U-RF represents
one feature. As for panel a, the number of active features varies across
moments, but in this case, the variation is in increments/decrements of
Q synaptic inputs. Grayed-out apertures have too few active pixels for
their associated L1 macs to become active.

As described in Section CSA: Retrieval Mode, during retrieval,
this step is significantly generalized to provide an extremely pow-
erful, general, and efficient mechanism for dealing with arbitrary,
nonlinear invariances, most notably, nonlinear time-warping of
sequences.

Step 5: Compute the number of competing hypotheses that will be
active in the mac once the final code for this frame is activated
To motivate the need for keeping track of the number of compet-
ing hypotheses active in a mac, we consider the case of complex
sequences, in which the same input item occurs multiple times
and in multiple contexts. Figure II-3 portrays a minimal exam-
ple in which item B occurs as the middle state of sequences
[ABC] and [DBE]. Here, the model’s single internal level, L1,

consists of just one mac, with Q = 4 CMs, each with K = 4
cell. Figure II-3A shows notional codes (SDCs) chosen on the
three time steps of [ABC]. The code name convention here is
that φ denotes a code, the superscript “1” indicates the model
level at which code resides. The subscript indicates the specific
moment of the sequence that the code represents; thus, it is
necessary for the subscript to specify the full temporal context,
from start of sequence, leading up to the current input item.
Successively active codes are chained together, resulting in spa-
tiotemporal memory traces that represent sequences. Green lines
indicate the H-wts that are increased from one code to the next.
Black lines indicate the U-wts that are increased from currently
active pixels to currently active L1 cells (red). Thus, as described
earlier, e.g., in Figure I-2, individual cells learn spatiotemporal
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FIGURE II-3 | Portrayal of reason why macs need to know how many

multiple competing hypotheses (MCHs) are/were active in their afferent

macs. (A) Memory trace of 3-item sequence, [ABC]. This model has a single
internal level with one mac consisting of Q = 4 CMs, each with K = 4 cells. We
show notional SDCs (sets of red cells) for each of the three items. The green
lines represent increased H-wts in the recurrent H-matrix: the trace is shown
unrolled in time in time. (B) A notional memory trace of sequence [DBE]. The
SDC chosen for item B differs from that in [ABC] because of the different

temporal context signals, i.e., from the code for item D rather than the code
for item A. (C) We prompt with item B, the model enters a state that has
equal measures of both of B’s previously assigned SDCs. Thus multiple (here,
two) hypotheses are equally active. (D) If the model can detect that multiple
hypotheses are active in this mac, then it can boost its efferent H-signals
(multiplying them by the number of MCHs), in which case the combined H
and U signals when the next item, here “C”, is presents, causing the SDC for
the moment [ABC] to become fully active. See text for more details.

inputs in correlated fashion, as whole SDCs. Learning is
described more thoroughly in Section Learning Policy and
Mechanics.

As portrayed in Figure II-3B, if [ABC] has been previously
learned, then when item B of another sequence, [DBC], is
encountered, the CSA will generally cause a different SDC, here,
φ1

DB, to be chosen. φ1
DB will be H-associated with whatever

code is activated for the next item, in this case φ1
DBE for item

E. This choosing of codes in a context-dependent way (where
the dependency has no fixed Markov order and in practice can
be extremely long), enables subsequent recognition of complex
sequences without confusion.

However, what if in some future recognition test instance, we
prompt the network with item B, i.e., as the first item of the
sequence, as shown in Figure II-3C? In this case, there are no
active H-wts and so the computation of local support Equation
(4) depends only on the U-wts. But, the pixels comprising item
B have been fully associated with the two codes, φ1

AB and φ1
DB,

which have been assigned to the two moments when item B was
presented, [AB] and [DB]. We show the two maximally impli-
cated (more specifically, maximally U-implicated) cells in each
CM as orange to indicate that a choice between them in each
CM has not yet been made. However, by the time the CSA com-
pletes for the frame when item B is presented, one winner must
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be chosen in each CM (as will become clear as we continue to
explain the CSA throughout the remainder of section Sparsey’s
Core Algorithm). And, because it is the case in each CM, that both
orange cells are equally implicated, we choose winners randomly
between them, resulting in a code that is an equal mix of the win-
ners from φ1

AB and φ1
DB. In this case, we refer to the mac as having

multiple competing hypotheses active (MCHs), where we specif-
ically mean that all the active hypotheses (in this case, just two)
are approximately equally strongly active.

The problem can now be seen at the right of Figure II-3C when
C is presented. Clearly, once C is presented, the model has enough
information to know which of the two learned sequences, or more
specifically, which particular moment is intended, [ABC] rather
than [DBE]. However, the cells comprising the code representing
that learned moment, φ1

ABC, will, at the current test moment
(lower inset in Figure II-3C), have only half the active H-inputs
that they had during the original learning instance (i.e., upper
inset in Figure II-3C). This leads, once processed through steps
2b, 3b, and 4, to V-values that will be far below V = 1, for sim-
plicity, let’s say V = 0.5, for the cells comprising φ1

ABC. As will
be explained in the remaining CSA steps, this ultimately leads to
the model not recognizing the current test trial moment [BC] as
equivalent to the learning trial moment [ABC], and consequently,
to activation of a new code that could in general be arbitrarily
different from φ1

ABC.
However, there is a fairly general solution to this problem

where multiple competing hypotheses are present in an active
mac code, e.g., in the code for B indicated by the yellow call-
out. The mac can easily detect when an MCH condition exists.
Specifically, it can tally the number cells with V = 1—or, allow-
ing some slight tolerance for considering a cell to be maximally
implicated, cells with V(i) > Vζ , where Vζ is close to 1, e.g.,
Vζ = 0.95—in each of its Q CMs, as in Equation (5a). It can
then sum ζq over all Q CMs and divide by Q (and round to the
nearest integer, “rni”), resulting in the number of MCHs active
in the mac, ζ , as in Equation (5b). In this example, ζ = 2, and
the principle by which the H-input conditions, specifically the
h-summations, for the cells in φ1

ABC on this test trial moment
[BC] can be made the same as they were during the learning trial
moment [ABC], is simply to multiply all outgoing H-signals from
φ1

B by ζ = 2. We indicate the inflated H-signals by the thicker
green lines in the lower inset at right of Figure II-3D. This ulti-
mately leads to V = 1 for all four cells comprising φ1

ABC and,
via the remaining steps of the CSA, reinstatement of 1φABC with
very high probability (or with certainty, in the simple retrieval
mode described in Section CSA: Simple Retrieval Mode), i.e.,
with recognition of test trial moment [BC] as equivalent to
learning trial moment [ABC]. The model has successfully gotten
through an ambiguous moment based on presentation of further,
disambiguating inputs.

We note here that uniformly boosting the efferent H-signals
from φ1

B also causes the h-summations for the four cells compris-
ing the code φ1

DBE to be the same as they were in the learning
trial moment [DBE]. However, by Equation (4), the V-values
depend on the U-inputs as well. In this case, the four cells of φ1

DBE
have u-summations of zero, which leads to V = 0, and ultimately
to essentially zero probability of any of these cells winning the

competitions in their respective CMs. Though we don’t show the
example here, if on the test trial, we present E instead of C after
B, the situation is reversed; the u-summations of cells compris-
ing the code φ1

DBE are the same as they were in the learning trial
moment [DBE] whereas those of the cells comprising the code
φ1

ABC are zero, resulting with high probability (or certainty) in
reinstatement of φ1

DBE.

ζq =
K∑

i = 0

[
V(i) > Vζ

]
(5a)

ζ = rni

⎛
⎝Q − 1∑

j = 0

ζq/Q

⎞
⎠ (5b)

Step 6: Compute correction factor for multiple competing
hypotheses to be applied to efferent signals from this mac
The example in Figure II-3 was rather clean in that it involved
only two sequences having been learned, containing a total of six
moments, [A], [AB], [ABC], [D], [DB], and [DBE], and very lit-
tle pixel-wise overlap between the items. Thus, cross-talk between
the stored codes was minimized. However, in general, macs will
store far more codes. If for example, the mac of Figure II-3 was
asked to store 10 moments where B was presented, then, if we
prompted the network with B as the first sequence item, we would
expect almost all cells in all CMs to have V = 1. As discussed in
Step 2, when the number of MCHs (ζ ) in a mac gets too high,
i.e., when the mac is muddled, its efferent signals will generally
only serve to decrease SNR in target macs (including itself on the
next time step via the recurrent H-wts) and so we disregard them.
Specifically, when ζ is small, e.g., two or three, we want to boost
the value of the signals coming from all active cells in that mac
by multiplying by ζ (as in Figure II-3D). However, as ζ grows
beyond that range, the expected overlap between the competing
codes increases and to approximately account for that, we begin
to diminish the boost factor as in Equation (6), where A is an
exponent less than 1, e.g., 0.7. Further, once ζ reaches a thresh-
old, B, typically set to 3 or 4, we multiply the outgoing weights by
0, thus effectively disregarding the mac completely in downstream
computations. We denote the correction factor for MCHs as F(ζ ),
defined as in Equation (6). We also use the notation,F(ζ (j, t)), as
in Equation (2), where ζ (j, t) is the number of hypotheses tied for
maximal activation strength in the owning mac of a pre-synaptic
cell, j, at time (frame) t.

F(ζ ) =
{
ζA 1 ≤ ζ ≤ B
0 ζ > B

(6)

Step 7: Determine the maximum local support in each of the mac’s
CMs
Operationally, this step is quite simple: simply find the cell with
the highest V-value, V̂j, in each CM, Cj, as in Equation (7).

V̂j = max
i ∈ Cj

{V(i)} (7)
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Conceptually, the cell with V̂j in a CM is the cell most implicated

by the mac’s total input (multiple cells can be tied for V̂j), or in
other words, the most likely winner in the CM. In fact, in the sim-
ple retrieval mode (Section CSA: Simple Retrieval Mode), the cell
with V̂j in each CM is chosen winner.

Step 8: Compute the familiarity of the mac’s overall input
The average, G, of the maximum V ’s across the mac’s Q CMs is
computed as in Equation (8): G is a measure of the familiarity of
the macs overall input. This is done on every time step (frame),
so we sometimes denote G as a function of time, G(t). And, G is
computed independently for each activated mac, so we may also
use more general notation that indicates mac as well.

G =
Q∑

q = 1

V̂k/Q (8)

The main intuition motivating the definition and use of G is as
follows. If the mac’s current input moment has been experienced
in the past, then all active afferent weights (U, H, and D) to the
code activated in that instance would have been increased. Thus,
in the current moment, all Q cells comprising that code will have
V = 1. Thus, G = 1. Thus, a familiar moment must always result
in G = 1 (assuming that MCHs are accounted for as described
above). On the other hand, suppose that the current overall input
moment is novel, even if sub-components of the current overall
input have been experienced exactly before. In this case, pro-
vided that few enough codes have been stored in the mac (so that
crosstalk remains sufficiently small), there will be at least some
CMs, Cj, for which V̂j is significantly less than 1. Thus, G < 1.
Moreover, as the examples in the Results section will show, G
correlates with the familiarity of the overall mac input. Thus, G
measures the familiarity, or inverse novelty, of the global input to
the mac.

Note that in the brain, this step requires that the Q cells with
V = V̂j become active (i.e., spike) so that their outputs can be
summed and averaged. This constitutes the first of two rounds of
competition that occurs within the mac’s CMs on each execution
of the CSA. However, as explained herein, this set of Q cells will,
in general, not be identical to (and can often be substantially dif-
ferent from, especially when G ≈ 0) the finally chosen code for
this execution of the CSA (i.e., the code chosen in Step 12).

Step 9: Determine the expansivity/compressivity of the I/O function
to be used for the second and final round of competition within the
mac’s CMs
Determine the range, η, of the sigmoid activation function, which
transforms a cell’s V-value into its relative (within its own CM)
probability of winning, ψ . We refer to that transform as the
V-to-ψ map. We refer to χ as the sigmoid expansion factor and
γ as the sigmoid expansion exponent.

η = 1 +
([

G − G−

1 − G−

]+)γ
× χ × K (9)

As noted several times earlier, the overall goal of the CSA when
in learning mode is to assign codes to a mac’s inputs in adher-
ence with the SISC property, i.e., more similar overall inputs
to a mac are mapped to more highly intersecting SDCs. Given
that G represents, to first approximation, the similarity of the
closest-matching stored input to the current input, we can restate
the goal as follows.

1. as G goes to 1, meaning the input X is completely familiar,
we want the probability of reinstating the code φX that was
originally assigned to represent X, to go to 1. It is the cells com-
prising φX , which are causing the high G-value. But these are
the cells with the maximal V ’s (V = V̂j = 1) in their respec-
tive CMs. Thus, within each CM, Cj, we want to increase the

probability of picking the cell with V = V̂j relative to cells with

V < V̂j, i.e., we want to transform the V’s via an expansive
nonlinearity

2. as G goes to 0 (completely novel input), we want the set of win-
ners chosen to have the minimum average intersection with
all stored codes. We can achieve that by choosing the winner
in each CM from the uniform distribution, i.e., by making all
cells in a CM equally likely to win, i.e., transform the V ’s via a
maximally compressive nonlinearity.

The first goal is met by making the activation function a very
expansive nonlinearity. Figure II-4 shows how the expansivity
of the V-to-ψ map affects cell win probability, and indirectly,
whole-code reinstatement probability. All nine panels concern a
small example mac with Q = 6 CMs each comprised of K = 7
cells. Each panel shows hypothetical V and ρ vectors over the
cells of the CMs, across two parametrically varying conditions:
model “age” (across columns), which we can take as a correlate of
the number of stored codes and thus, of the amount of interfer-
ence (crosstalk) between codes during retrieval, and expansivity
(η) (across rows) of the V-to-ψ map. As described shortly, the
V-values are first transformed to relative probabilities (ψ) (Step
10), which are then normalized to absolute probabilities (ρ) (Step
11). In all panels, the example V vector in each CM has one cell
with V = 1 (pink bars). Thus, by Step 8, all panels correspond
to a G = 1 condition. The other six cells (black bars) in each
CM are assigned uniformly randomly chosen values in defined
intervals that depend on the age of the model. The intervals for
“Early,” “Middle,” and “Late,” are [0.0, 0.1], [0.1, 0.5], and [0.2,
0.8], respectively, simulating the increasing crosstalk with age.

For each age condition, we show the effects of using a V-to-ψ
map with three different η-values. Note that in actual operation
(specifically, Step 9), all panels would be processed with a V-to-ψ
map with the maximal η-value (again, because G = 1 in all pan-
els). But our purpose here is just to show the consequences on
the final ρ distribution for a given V distribution (the V distri-
bution is the same for all three rows in any given column) as a
function of η. And, note that the minimum ψ-value in all cases
is 1. Thus, for the “Early” column, the highly expansive V-to-ψ
map (η = 300) (top row) results in a 300/306 ≈ 98% probability
of selecting the cell with V = 1 (pink) in each CM. This results
in a (300/306)6 ≈ 89% probability of choosing the pink cell in
all Q = 6 CMs, i.e., of reinstating the entire correct code. In the
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FIGURE II-4 | G-based sigmoid transform characteristics. All panels
show hypothetical V and ρ vectors over the K = 7 cells in each of the
Q = 6 CMs comprising the mac. In all nine panels, the V vector in
each CM has one cell prescribed to have V = 1 (pink bars). The V’s of
the other six cells (black bars) in each CM are drawn randomly from
defined intervals that depend on the age (amount of inputs

experienced) of the model. For each age condition, we show the
effects of using a V -to-ψ map with three different η-values. But our
purpose here is just to show the consequences on the final ρ
distribution for a given V distribution (the V distribution is the same for
all three rows in any given column) as a function of the
expansivity/compressivity (η) of the V -to-ψ map. See text for details.

second row, η is reduced to 30. Each of the six black cells ulti-
mately ends up with a 1/36 probability of winning and the pink
cell, with a 30/36 = 5/6 win probability. In this case the likeli-
hood of reinstating the entire correct code, is (5/6)6 ≈ 33%. In
the bottom row, η = 1, i.e., the V-to-ψ map has been collapsed
to the constant function,ψ = 1. As can be seen, all cells, including
the cell with V = 1 become equally likely to be chosen winner in
their respective CMs.

Greater crosstalk can clearly be seen in the “Middle” con-
dition. Consequently, even for η = 300, several of the cells
with nonmaximal V end up with significant final probability
ρ of being chosen winner in their respective CMs. The ρ-
distributions are slightly further compressed (flatter) when η =
30, and completely compressed when η = 1 (bottom row). The
“Late” condition is intended to model a later period of the life
of the model, after many memories (codes) have been stored
in this mac. Thus, when the input pattern associated with any
of those stored codes is presented again, many of the cells in
each CM will have an appreciable V-value (again, here they
are drawn uniformly from [0.2, 0.8]). In this condition, even
if η = 300, the probability of selecting the correct cell (pink)
in each CMs is close to chance, as is the chance of reinstating
the entire correct code. And the situation only gets worse for
lower η-values.

Note that for any particular V distribution in a CM, the rel-
ative increase to the final probability of being chosen winner is
a smoothly and faster-than-linearly increasing (typically, γ ≥ 2)

function of G. Thus, in each CM, the probability that the most
highly implicated (by the mac’s total input) cell (those corre-
sponding to the pink bars in Figure II-4) wins increases smoothly
as G goes to 1. (Strictly, this is true only for the portion of
the sigmoid nonlinearity with slope > 1). The initial (left) and
final (right) portions of the sigmoid are compressive ranges.)
And since the overall code is just the result of the Q indepen-
dent draws, it follows that the expected intersection of the code
consisting of the Q most highly implicated cells, i.e., the code
of the closest-matching stored input, with the finally chosen
code is also an increasing function of G, i.e., thus realizing the
“SISC” property.

Step 10: Apply the modulated activation function to all the mac’s
cells, resulting in a relative probability distribution of winning over
the cells of each CM
Apply sigmoid activation function to each cell. Note: the sig-
moid collapses to a constant function, ψ(i) = 1, when η = 1
(i.e., when G < G−).

ψ(i) = (η − 1)

(1 + σ1e−σ2(V(i)−σ3 ))σ4
+ 1 (10)

In a more general development, the CSA could include additional
prior steps for setting any of the other sigmoid parameters, σ1, σ2,
σ3, and σ4, all of which interact to control overall sigmoid expan-
sivity and shape. In particular, in the current implementation,
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FIGURE II-5 | Moving the inflection point of the sigmoidal V -to-ψ map to the right greatly increases the probability of selecting the correct cell

despite mounting crosstalk due to a growing number of codes stored in superposition.

the horizontal position of the sigmoid’s inflection point is moved
rightward as additional codes are stored in a mac. Figure II-5
shows that doing so greatly increases the probability of choosing
the correct cell in each CM and thus, of reinstating the entire cor-
rect code, even when many codes have been stored in the mac. In
the “Middle” condition, even if η = 30, the probability of choos-
ing the pink cell in each CM is very close to 1. For the “Late”
condition, setting η = 30 significantly improves the situation rel-
ative to the top right panel of Figure II-4 and setting η = 300
makes the probability of choosing the correct cell close to 1 in four
of the six CMs. Thus, we have a mechanism for keeping memories
accessible for longer lifetimes.

Step 11: Convert relative win probability distributions to absolute
distributions
In each of the mac’s CMs, the ψ-values of the cells are converted
to true probabilities of winning (ρ) and the winner is selected by
drawing from the ρ distribution, resulting in a final SDC, φ, for
the mac, as in Equation (11).

ρ(i) = ψ(i)∑
k ∈ CM ψ(k)

(11)

Step 12: Pick winners in the mac’s CMs, i.e., activate the SDC
The last step of the CSA is just selecting a final winner in each CM
according to the ρ distribution in that CM, i.e., soft max. This is
the second round of competition. Our hypothesis that the canon-
ical cortical computation involves two rounds of competition is
a strong and falsifiable prediction of the model with respect to
actual neural dynamics, which we would like to explore further.

The CSA is given in Table I-1.

Learning policy and mechanics
Broadly, Sparsey’s learning policy can be described as Hebbian
with passive weight decay. As noted earlier, the model’s synapses
are effectively binary. By this we mean that although the weight
range is [0,127], the several learning related properties conspire
to cause the asymptotic weight distribution to tend toward having
two spikes, one at 0 and the other at wmax = 127, thus effectively
being binary.

In actuality, a synapse’s weight, w(j, i), where j and i index the
pre- and postsynaptic cells, respectively, is determined by two pri-
mary variables, its age, σ (j, i), which is the number of time steps
(e.g., video frames) since it was last increased, and its perma-
nence, θ(j, i), which measures how resistant to decrease the weight
is (i.e., the passive decay rate). The learning law is implemented
as follows. Whenever a synapse’s pre- and postsynaptic cells are
coactive [i.e., a “pre-post correlation,” a(j) = 1 ∧ a(i) = 1], its
age is set to zero, as in Equation (12a), which has the effect of
setting its weight to wmax (as can be seen in the “weight table”
of Figure II-6, an age of zero always maps to wmax). Otherwise,
σ (j, i) increases by one on each successive time step (across all
frames of all sequences presented) on which there is no pre-post
correlation Equation (12c), stopping when it gets to the maxi-
mum age, σmax Equation (12d). Also note that once a synapse has
reached maximum permanence, θmax, its age stays at zero, i.e., its
weight stays at wmax Equation (12b). At any point, the synapse’s
weight, w(j,i), is gotten by dereferencing σ (j, i) and θ(j, i) from
the weight table shown in Figure II-6.

The intent of the decay schedule (for any permanence value)
is to keep the weight at or near wmax for some initial window of
time (number of time steps), Tσ (θ), and then allow it to decay
increasingly rapidly toward zero. Thus, the model “assumes” that
a pre-post correlation reflects an important / meaningful event
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FIGURE II-6 | The “weight table”: Indexed by age (columns) and permanence (rows). A synapse’s weight is gotten by dereferencing its age, σ (j, i ), and its
permanence, θ (j, i ). See text for details.

in the input space and therefore strongly embeds it in memory
(consistent with the notion of episodic memory). If the synapse
experiences a second pre-post correlations within the window
Tσ (θ), its permanence is incremented as in Equation (13) and
σ (j, i) is set back to 0 (i.e., its weight is set back to wmax); other-
wise the age, σ (j, i), increases by one with each time step and the
weight decreases according to the decay schedule in effect. Thus,
pre-post correlations due to noise or spurious events, which will
have a much longer expected time to recurrence, will tend to fade
from memory. Sparsey’s permanence property is closely related to
the notion of synaptic tagging (Frey and Morris, 1997; Morris and
Frey, 1999; Sajikumar and Frey, 2004; Moncada and Viola, 2007;
Barrett et al., 2009).

σ (j, i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , a(j) = 1 ∧ a(i) = 1 (12a)

0 , θ(j, i) = θmax (12b)

σ (j, i) + 1 , a(j) = 0 ∨ a(i) = 0 (12c)

σ (j, i) , σ (j, i) = σmax (12d)

θ(j, i) =
{
θ(j, i) + 1 , a(j) = 1 ∧ a(i) = 1 ∧ σ (j, i) ≤ Tσ (θ(j, i))
θ(j, i) , otherwise

(13)
The exact parametric details are less important, but as can be
seen in the weight table, the decay rate decreases with θ(j, i) and
the window, Tσ (θ), within which a second pre-post correlation
will cause an increase in permanence, increases with θ(j, i) (three
example values shown). Permanence can only increase and in our
investigations thus far, we typically make a synaptic weight com-
pletely permanent on the second or third within-window pre-post
correlation [θmax = 1 or θmax = 2, respectively]. The justification
of this policy derives from two facts: (a) a mac’s input is a sizable

set of co-active cells; and (b) due to the SISC property, the prob-
ability that a weight will be increased correlates with the strength
of the statistical regularity of the input (i.e., the structural per-
manence of the input feature) causing that increase. These two
facts conspire to make the expected time of recurrence of a pre-
post correlation exponentially longer for spurious/noisy events
than for meaningful (i.e., due to structural regularities of the
environment) events.

If we run the model indefinitely, then eventually every synapse
will experience two successive pre-post correlations occurring
within any predefined window, Tσ . Thus, without some addi-
tional mechanism in place, eventually all afferent synapses into a
mac will be permanently increased to wmax = 127 at which point
(total saturation of the afferent weight matrices) all information
will be lost from the afferent matrices. Therefore, Sparsey imple-
ments a “critical period” concept, in which all weights leading
to a mac are “frozen” (no further learning) once the fraction of
weights that have been increased in any one of its afferent matri-
ces crosses a threshold. This may seem a rather drastic solution to
the classic trade-off that Grossberg termed the “stability-plasticity
dilemma” (Grossberg, 1980). However, note that: (a) “critical
periods” have been demonstrated in the real brain in vision and
other modalities (Wiesel and Hubel, 1963; Barkat et al., 2011;
Pandipati and Schoppa, 2012); (b) model parameter settings can
readily be found such that in general, all synaptic matrices afferent
to a mac approach their respective saturation thresholds roughly
at the same time (so that the above rule for freezing a mac
does not result in significantly underutilized synaptic matrices);
and (c) in Sparsey, freezing of learning is applied on a mac-by-
mac basis. We anticipate that in actual operation, the statistics
of natural visual input domains (filtered as described earlier,
i.e., to binary 1-pixel wide edges) in conjunction with model
principles/parameters will result in the tendency for the lowest
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level macs to freeze earliest, and progressively higher macs to
freeze progressively later, i.e., a “progressive critical periods” con-
cept. Though clearly, if the model as a whole is to be able to learn
new inputs throughout its entire “life,” parameters must be set so
that some macs, logically those at the highest levels, never freeze.
We are still in the earliest stages of exploring the vast space of
model parameters that influence the pattern of freezing across
levels.

The ultimate test of whether the use of critical periods as
described above is too drastic or not is how well a model can con-
tinue to perform recognition/retrieval (or perform the specific
recognition/retrieval-contingent tasks with which it is charged)
over its operational lifetime (which will in general entail large
numbers of novel inputs), in particular, after many of its lower
levels have been frozen.

Learning arbitrarily complex nonlinear similarity metrics
The essential property needed to allow learning of arbitrarily
complex nonlinear similarity metrics (i.e., category boundaries,
or invariances) is the ability for an individual SDC in one mac
to associate with multiple, perhaps arbitrarily different, SDCs in
one or more other macs. This ability is present a priori in Sparsey
in the form of the progressive persistence property wherein code
duration, or persistence (δ), (measured in frames) increases with
hierarchical level (in most experiments so far, δ doubles with

level). For example, the V2 code φ
2,j
X in Figure II-7A becomes

associated with the V1 code φ1, i
Y at time t, and because it per-

sists for two time steps, it also becomes associated with φ
1, i
Z

at t + 1. By construction of this example, φ
2,j
X represents (a

particular instance of) the spatiotemporal concept, “rightward-
moving vertical edge.” However, if for the moment, we ignore the
fact that these two associations occurred on successive time steps,

then we can view φ
2,j
X as representing XOR

(
φ

1, i
Y , φ

1, i
Z

)
, i.e., just

two different (in fact, pixel-wise disjoint) instances of a vertical
edge falling within the U-RF of M2

j . That is, the U-signals from

either of these two input patterns alone (but not together1) can

cause reinstatement of φ
2,j
X . This provides an unsupervised means

by which arbitrarily different, but temporally contiguous, input
images, which may in principle portray any transformation that
can be carried out over a two-time-step period and over the spa-
tial extent of the RF in question, can be associated with the same
object or class (the identity of which is carried by the persisting

code, φ
2,j
X ).

Figure II-7B shows two more instances in which φ
2,j
X is active,

denoted t and t’ to suggest that they may occur at arbitrary times.

If there is a supervisory signal by which φ
2,j
X can be activated

whenever desired, then φ
2,j
X will associate with whatever codes are

active in its RF (in this example, specifically, its U-RF) at such

times. In this case, the two inputs associated with φ
2,j
X are just

two different instances of a vertical edge falling within φ
2,j
X ’s RF.

Furthermore, note that the number of active codes (features) in

the RF can vary across association events. Thus, φ
2,j
X can serve as

a code representing any invariances present in the set of codes with
which it has been associated.

1Indeed, the two codes, φ1, i
Y and φ1, i

Z , cannot occur together since they occur
in the same L1 mac, M1

i .

FIGURE II-7 | (A) The basic model property, progressive persistence,
allows SDCs in higher level macs to associate with sequences of
temporally contiguous SDCs active in macs in their U-RFs. (B) More
generally, any mechanism which allows a particular code, e.g., φ2,j

X , to

be activated under the control of a supervisory signal can cause φ
2,j
X to

associate with two or more arbitrarily different codes presented at
arbitrarily different times, thus allowing φ

2,j
X to represent arbitrary

invariances (classes, similarity metrics).
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This is in fact how supervised learning is implemented in
Sparsey. That is, the supervised learning signal (label) is essen-
tially just another input modality and supervised learning is
therefore treated as a special case of cross-modal unsupervised
learning. We have conducted preliminary supervised learning
studies involving the MNIST digit recognition database (LeCun
et al., 1998) using a model architecture like that in Figure II-8.
However, to adequately describe the supervised learning archi-
tecture, protocol, and theory, would add too much length to this
paper and so we save that work for a separate paper. Nevertheless,
we are confident that the general framework described here
will allow arbitrarily complex nonlinear similarity metrics, e.g.,
functions described as comprising the “AI Set,” by Bengio et al.
(2012), to be efficiently learned as unions, where each element
of the union is a hierarchical spatiotemporal composition of the
locally primitive (i.e., smoothness prior only) similarity metrics
embedded in individual macs.

Neural implementation of CSA
Though we identify the broad correspondence of model struc-
tures and principles to biological counterparts throughout the
paper, we have thus far been less concerned with determining

precise neural realizations. Our goal has been to elucidate com-
putationally efficient and biologically plausible mechanisms for
generic functions, e.g., the ability to form large numbers of
permanent memory traces of arbitrary spatiotemporal events on-
the-fly and based on single trials, the ability to subsequently
directly (i.e., without any serial search) retrieve the best-matching
or most relevant memories, invariance to nonlinear time warp-
ing, coherent handling of simultaneous activation of multiple
hypotheses, etc. We believe that Sparsey meets these criterion
so far. For one thing, it does not require computing any gra-
dients or sampling of distributions, as do the Deep Learning
models (Hinton et al., 2006; Salakhutdinov and Hinton, 2012).
Nevertheless, we do want to make a few points concerning
Sparsey’s relation to the brain.

First, we believe it is quite important, both for distinguishing
Sparsey from other canonical cortical microcircuit models and
for falsifiability, that the CSA really does entail two rounds, in
quick succession, in which the mac’s principal cells integrate their
inputs, resulting in at least one of the cells in each CM reaching
threshold and sending action potentials to the local inhibitory cir-
cuitry, which then fires, thus keeping all other cells in the CM
from spiking (according to any number of detailed biophysical

FIGURE II-8 | The 4-level model used in preliminary supervised learning

studies involving the MNIST digit recognition task. This shows the
recognition test trial in which the “8” was presented, giving rise to a flow of

U-signals activating codes in macs throughout the hierarchy, and finally a
top-down flow from the activated V3 code to the Label field, where the unit
with maximal D-summation, the “8” unit, wins.
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mechanisms, e.g., Jitsev, 2010). The first round winners’ out-
puts (in addition to engaging the local inhibitory circuitry to
suppress the other cells in their respective CMs) are averaged to
yield G. And G then drives a modulation of the cell activation
functions (as described in Sections Step 9: Determine the expan-
sivity/compressivity of the I/O function to be used for the second
and final round of competition within the mac’s CMs and Step
10: Apply the modulated activation function to all the mac’s cells,
resulting in a relative probability distribution of winning over the
cells of each CM) in preparation for the second round of competi-
tion. Due to the modulated activation functions, the second (and
final) round winners will generally differ from the first round
winners. Specifically, the intersection of the set of second round
winners with the first round winners increases with G. In Rinkus
(2010), we speculated that some combination of neuromodula-
tors could underlie this behavior, but we have not yet refined that
hypothesis.

Second, we note that Sparsey is a highly simplified/reduced
model of cortical processing. It lacks analogs of layers 4, 5, or
6, and does not explicitly model inhibitory cells. In addition,
it uses binary (nonspiking) neurons, effectively binary weights
with variable permanence, and a simple Hebbian learning scheme
with passive decay. The general consensus is that L4 is the main
recipient of feedforward signals (from thalamus or from earlier
cortical stages), whereas L2/3 receives horizontal (intrinsic) and
top-down inputs. And, L5 and L6 project to earlier cortical stages
and to subcortical structures and are involved in local feedback
loops with L2/3. While numerous studies provide more detailed
specifications fitting the above supra/infra-granular canonical cir-
cuit motif (Douglas and Martin, 2004), numerous details are
yet to be understood and various new studies force significant
modification/clarification of the canonical view, e.g., that L5/6
cells are also activated directly by U (specifically, thalamic) input
Constantinople and Bruno (2013) and that thalamic input to L1 is
much more substantial than previously thought (Rubio-Garrido
et al., 2009).

In any case, while realizing the generic functionalities noted
above has thus far required only a single population (layer)
of principal cells, which best matches the L2/3 pyramidals, we
anticipate incorporating modeling of other layers as needed. In
particular, in its current “1-layer” form, Sparsey can be viewed
as carrying out spatiotemporal processing underlying percep-
tion/recognition of spatiotemporal patterns and thinking, but
without the accompanying motor output. Incorporating a “motor
side” to the model will surely minimally force a move to a
“2-layer” concept, i.e., supragranular (L2/3 and L4) and infra-
granular (L5 and L6).

CSA: RETRIEVAL MODE
In this section, we will first motivate the need for introducing
some complexity to the computation of G when in retrieval mode
and then describe the modification. We begin by thinking about
how the model should respond to test trials involving previously
learned sequences corrupted in particular ways. For example, if
the model has learned the sequence S1 = [BOUNDARY] in the
past and is now presented with S2 = [BOUNDRY], should it
decide that S2 is functionally equivalent to S1? That is, should

it respond equivalently to S2 and S1? More precisely, should
its internal state at the end of processing S2 be the same as it
was at the end of processing S1? The reader will probably agree
that it should. We all encounter spelling errors like this all the
time and read right through them. Similarly, if one encoun-
tered S3 = [BBOUNDARY], S4 = [BBOOUUNNDDAARRYY],
S5 = [BOUNNNNNNDARY], or any of numerous other vari-
ations, he/she would likely decide it was an instance of S1. We
could think of all these variations (corruptions) simply as omis-
sions/repetitions. However, we prefer to think of this class of
corruptions as instances of the class of nonlinearly time-warped
instances of (discrete) sequences. Thus, S2 can be thought of as
an instance of S1 that is presented at the same speed as during
learning up until item “D” is reached, at which time the pro-
cess presenting the items momentarily speeds up (e.g., doubles
its speed) so that “A” is presented but then replaced by “R” before
the model’s next sampling period. Then the process slows back
down to its original speed and item “Y” is sampled. Thus, S2 is a
nonlinearly time-warped instance of S1. We can construct simi-
lar explanations, involving the underlying process producing the
sequences undergoing a schedule of speedups and slowdowns rel-
ative to the original learning speed, for S3, S4, etc. In fact, S4 is
even simpler; it’s just a uniform slowing down, to half speed, of
the whole process.

Of course, there are limits to how much we want a system
to generalize regarding these warpings. And the final equivalence
classes, in particular for processing language, must be experience-
dependent and idiosyncratic. For example, should a model think
that S6 = [COD] is just an instance of S7 = [CLOUDS], produced
twice as fast as during the learning instance? In general, probably
not. Furthermore, we have not even considered in these exam-
ples the fact that the individual sequence items are actually pixel
patterns which can themselves be noisy, partially occluded, etc.,
which would of course influence the normative category deci-
sions. Nevertheless, the ubiquity of instances such as described
above, not just in the realm of language, but in lower-level raw
sensory inputs, suggests that a model have some mechanism for
dealing with them, i.e., some mechanism for treating moments
produced by nonlinearly time-warping as equivalent.

Our explanation of the modified G computation in retrieval
mode uses an example involving a 3-level model that has only one
mac at each level. Figure II-9 shows representative samples of the
U, H, and D learning that occurs as the model is presented with
the sequence, [BOTH]. Note that the model is unrolled in time
here, i.e., the model is pictured at four successive time steps and
in particular, the origin and destination cell populations of the
increased H synapses (green) are the same. This figure illustrates
several key concepts. First, learning a sequence involves increas-
ing the H-wts from the previously active code to the currently
active code. The D-wts (magenta) are also increased from the pre-
viously active code (in this case, in the L2 mac) to the currently
active destination code in the L1 mac. Note however that the U-
wts (blue) are increased from the currently active input (L0 code)
to the currently active L1 code. We show the full set of afferent
U, H, and D wts that are increased for one cell—the winner in
the upper left CM of the L1 mac—at each time step. Thus, this
figure emphasizes that, on each moment, individual cells become
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FIGURE II-9 | The formation of a hierarchical spatiotemporal

memory trace, unrolled in time, of the input sequence, [BOTH].

We only show representative samples of the increased weights on
each frame. The model has one L1 mac with Q1 = 9 CMs, each with
K = 4 cells and one L2 mac with Q2 = 6 CMs, each with K = 4

cells. The resulting trace can be said to have been produced using
both chaining (increasing H-wts between successively active codes at
the same level) and chunking increasing U and D wts between single
higher-level (L2) codes and multiple lower-level (L1) codes. See text for
detailed explanation.

associated with their entire afferent input (spatiotemporal con-
text) in one fell swoop. Though we only show this occurring for
one cell on each frame, all winners in a mac code will receive the
same weight increases simultaneously. Thus, we can say not only
that individual cells become associated with the mac’s entire spa-
tiotemporal contexts but that whole mac codes become associated
with the mac’s entire spatiotemporal contexts.

The second key concept illustrated is progressive persistence,
in this case, that L2 codes persist for twice as long as L1 codes.
Cell color in this figure is used to make persistence clear. Thus, the
first L2 code that becomes active D-associates with two L1 codes.
And, because of the modeling decision that D-wts are increased
from previously active to currently active codes, the two L1 codes
are those at t = 2 and t = 3. The second L2 code to become
active (orange) D-associates with the L2 code at t = 3 and would
associate with a t = 4 L1 code if one occurred.

Having illustrated (in Figure II-9) the nature of the hierar-
chical spatiotemporal memory trace that the model forms for
[BOTH], Figure II-10 compares model conditions when process-
ing one particular moment—the second moment—of a test trial
that is identical to the learning trial (Figure II-10A) to conditions
when processing the second moment of a time-warped instance
of the learning trial—specifically, a moment at which the item
that originally appeared as the third item of the learning trial,
“T,” now appears as the second item immediately after “B,” i.e.,
“O” has been omitted (Figure II-10B). We can represent the two
test trial moments as [BO] and [BT], respectively, where bolding
indicates the frame currently being processed and the nonbolded
letters indicate the context leading up to the current moment.

The first thing to say is that the second moment of the time-
warped instance is simply a novel moment. Thus, the caveat we
mentioned above applies. That is, deciding whether a particu-
lar novel input moment should be considered a time-warped
instance of a known moment or as a new moment altogether
cannot be done absolutely.

Figure II-10A shows the case where the test trial moment [BO]
is identical to the learning trial moment [BO]. The main point to
see here is that, given the weight increases that will have occurred
on the learning trial, all three input vectors, U, H, and D, will be
maximal (equal to 1) for the red cell (which is in φ1

2) in each L1
CM. At right (yellow), we zoom in on the conditions only for the
upper left L1 CM, but the conditions are statistically similar for all
L1 CMs. We show that for the red cell, U = 1, H = 1, and D = 1.
The blue cell (which is in φ1

3) also has maximal D-support and the
blue, green, and black cells have nonzero U inputs (their U-inputs
are not shown in the main figure to minimize clutter), due to the
pixel overlap amongst the four input patterns, but they all have
H = 0. Thus, according to Equation (4) of the CSA (Table II-1),
the red cell has V = U × H × D = 1, whereas the others have
V = 0. We refer to red cell as having a “3-way match” in that all
three evidence vectors are maximal and agree. Also, we refer to
the G version computed using all three input vectors as GHUD.
Thus, in this case, where the test moment is identical to a learned
moment, CSA Equation (4) is sufficient as is.

However, as shown in Figure II-10B, when an item (“O”) has
been omitted with respect to the learning trial, the H and D
vectors to the red cell will no longer agree with its U vector.
Various policies could be imagined for handling this situation.
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FIGURE II-10 | Motivation for the Back-off Strategy for computing G in

retrieval mode. (A) Detail of conditions that exist at L1 when processing the
second moment [BO] of a test trial that is identical to the learning trial (in
Figure II-8). (B) Detail of conditions that exist at L1 when processing the

second moment [BT] of a test trial that is a time-warped version of the
learning trial, specifically, a sequence that is sped up by 2x at t = 1, causing
the “O” to be missed and the “T” to occur immediately after the “B.” See
text for detailed discussion.

The model could simply consider such a case as being a novel
moment, [BT]. This would require no modification to the CSA.
Or, as discussed earlier, the model could check to see whether
the current moment could have resulted from a nonlinear time-
warping process, and should therefore be judged identical to some
previously learned moment. In this case, the current moment
[BT] is identical to the learning trial moment [BOT] if we assume
that the process presenting the sequence to the model sped up by
2x at t = 1, causing the “O” to be missed.

So, how does the model check this possibility? It is quite sim-
ple. All it needs to do is disregard the H signals when computing
the V’s (CSA Step 4). In other words, it “backs off” from the
more stringent 3-way GHUD match criterion to the more per-
missive 2-way GUD criterion. Note that the model begins by

computing the highest-order G available at the current moment,
in this case, using all three input vectors. Only if that highest-
order G falls below a threshold, which we typically set rather
high, e.g., GHUD = 0.9, does it bother to compute the next lower
order version(s) of G, i.e., GUD, GHU , and GHD. Similarly, only if
whichever 2-way version has been considered falls below another
threshold, which is typically set even higher than the first, e.g.,
G+

UD = 0.95, does the model back-off to the next lower order
match criterion.

In this example, GUD = 1, meaning that there is a code stored
in the L1 mac—specifically, the set of blue cells assigned as the
L1 code at t = 3 of the learning trial (Figure II-9)—which yields
a perfect 2-way match. Thus, there is no need to back-off to the
“1-way” match criterion, GU . However, there are many naturally
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occurring instances in which backing all the way off to the lowest-
order criterion (i.e., basing the V-values and thus, the G, on only
the U signals, ignoring the H and D signals) is appropriate. There
are myriad policy considerations regarding possible precedence
orders of the different G versions and whether or not and under
what conditions the various versions should be considered. We
are actively exploring these issues, but cannot delve into this topic
in this paper.

Figure II-11 completes this example by showing that the
back-off policy allows the model to keep pace with nonlinearly
time-warped instances of previously learned sequences. That is,
the model’s internal state (i.e., the codes active in the macs) can
either advance more quickly (as in this example) or slow down

(not demonstrated herein) to stay in sync with the sequence
being presented. Figure II-11A is given for comparison, show-
ing the full memory trace that becomes active during a retrieval
trial for an exact duplicate of the training trial, [BOTH]. In this
case, no back-off would be required because all signals at all
times would be the same during retrieval as they were during
learning. Figure II-11B shows the trace that obtains, using the
back-off protocol, throughout presentation of the nonlinearly
time-warped instance of the training trial, [BTH].

The back-off from GHUD to GUD occurs in the L1 mac at
t = 2 (as was described in Figure II-10B). Since GUD = 1, the
V-to-ψ map is made very expansive, resulting in activation, at
t = 2 of the test trial, of the code, φ1

3 (blue cells), which was

FIGURE II-11 | This figure shows the complete test trial traces for: (A) an

exact duplicate of the training trial, [BOTH]; and (B) the nonlinearly

time-warped instance of the training trial, [BTH]. In (B), back-off from
GHUD to GUD occurs in the L1 mac at t = 2 (as was described in

Figure II-10B), which allows entire internal state of the model (i.e., at L1 and
L2) to “catch up” with the momentary speed up of the sequence. The
remainder of the sequence and the associated internal trace then obtains the
same as during learning. See text for detailed description.
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originally activated at t = 3 in the learning trial. Thus, the back-
off has allowed the model’s internal state (in L1) to “catch up”
to the momentarily sped up process that is producing the input
sequence. Once φ1

3 is activated, it sends U-signals to L2 (blue sig-
nals converging on orange cell in rose highlight box). This results
in the L2 code, φ2

3 (orange cells), being activated without requir-
ing any back-off. That’s because the L2 code from which H signals
arrive at t = 2, φ2

1 (purple cells) increased its weights not only
onto itself (at t = 2 of the learning trial) but also onto φ2

3 at t = 3
of the learning trial. Thus, the six cells comprising φ2

3 (orange)
yield GHU = 1 (note that GHU is the highest order G version
available at L2 since there is no higher level). Consequently, a
maximally expansive V-to-ψ map is used in the L2 mac, resulting
in reinstatement of φ2

3 . At this point—t = 2 of the test trial—the
entire internal state of the model (i.e., at L1 and L2) is identical
to its state at t = 3 of the learning trial (two central dashed boxes
connected by double-headed black arrow): the model, as a whole,
has “caught up” with the momentary speed up of the sequence.
The remainder of the sequence proceeds the same as it did during
learning, i.e., state at t = 3 of retrieval trial equals state at t = 4 of
learning trial.

The final, and really the most important, point of this section is
that Sparsey’s back-off policy does not change the time complexity
of the CSA: it still runs with fixed time complexity, which is essen-
tial in terms of scalability to real-world problems. True, expanding
the logic to compute multiple versions of G increases the absolute
number of computer operations required by a single execution of
the CSA. However, the number of possible G versions is small and
more to the point, fixed. Thus, adding the back-off logic adds only
a fixed number of operations to the CSA and so does not change
the CSA’s time complexity.

During each execution of the CSA, all stored codes compete
with each other. In general, the set of stored codes will correspond
to moments spanning a large range of Markov orders. For exam-
ple, in Figure II-9, the four moments, [B], [BO], [BOT], and
[BOTH], are stored, which are of progressively greater Markov
order. During each moment of retrieval, they all compete. More
specifically, they all compete first using the highest-order G, and
then if necessary, using progressively lower-order G’s. However,
it is crucial to see that with back-off, not only are the explic-
itly stored (i.e., actually experienced) moments compared, but
so are a far larger number of time-warped versions of the
actually-experienced moments. For example in Figures II-10B,
II-11B, the moment [BT], which never actually occurred com-
petes and wins (by virtue of back-off) over the moment [BO],
which did occur. And crucially, as noted above, all these com-
parisons take place with fixed time complexity! Space does not
permit here, but the above mechanism and reasoning gener-
alizes to arbitrarily deep hierarchies. As the number of levels
increases, with persistence doubling at each level, the space of
hypothetical nonlinearly time-warped versions of actually expe-
rienced moments, which will materially compete with the actual
moments (on every frame and in every mac) grows exponentially.
And, we emphasize that these exponentially increasing spaces of
never-actually-experienced hypotheses are envelopes around the
actually-experienced moments: thus, the invariances implicitly
represented by these envelopes are (a) learned and (b) idiosyn-
cratic to the specific experience of the model.

CSA: SIMPLE RETRIEVAL MODE
Both the learning mode CSA and the retrieval mode CSA
described above, which is just the learning mode CSA augmented
by the back-off protocol, involve the G-based modification of
the cell activation functions and the second, probabilistic round
of competition for choosing the final code (CSA Steps 8–12,
Table I-1). If the model is operating as a truly autonomous agent,
then it, or rather any of its constituent macs, may be presented
with a truly novel input pattern at every moment experienced.
Thus, a mac must be prepared to learn, i.e., assign a new SDC,
at every moment2 . As described in earlier sections, the CSA’s
two competitive stages, with the second, probabilistic stage using
the G-modulated cell activation functions, satisfies the require-
ments for autonomous operation. That is, as G decreases, the
expected intersection of the final code (for the current frame)
chosen with the closest matching stored code decreases to chance,
which results in the occurrence of novel pre-post correlations, and
thus new learning. On the other hand, as G increases toward 1, the
expected intersection of the finally chosen code with the closest
matching stored code increases to complete, which results in no
(or at least, statistically, very few) novel pre-post correlations and
thus no new learning.

However, if the model “knows” that is operating in pure
retrieval mode, i.e., that at each moment each mac should sim-
ply activate the code of the learned moment that most closely
matches its current input moment, then there is no advantage
to having the second G-dependent probabilistic stage of com-
petition. In fact, the optimal strategy in this case is simply to
choose the cell with the highest V-value in each CM. The trans-
fer of global information (G) back into the local (within each
CM) winner selection processes, which occurs in steps 8–12,
does not help and in fact, can only hurt (i.e., it can only reduce
the probability of the maximally likely cell in a given CM win-
ning). Thus, in this “simple retrieval mode,” in which the model
knows that it will not be asked to learn anything new, the opti-
mal algorithm is just the first seven steps of the CSA given in
Table I-1, but augmented with the back-off protocol described in
the previous section. Thus, we do not state the simple retrieval
mode of the CSA separately. We will clearly indicate which of the
two retrieval modes is used in the studies reported in the next
section.

We emphasize that the deterministic “simple retrieval mode”
algorithm cannot be used during learning because it would result
in essentially mapping all of the mac’s input patterns to one
or a very small number of codes, vastly over-utilizing only a
tiny fraction of the mac’s cells and vastly decreasing the num-
ber of codes (amount of information) that can be stored in
the mac.

However, based on first principles, it seems plausible that for
the vast majority of Sparsey’s envisioned operational regime,
i.e., the regime in which the number of codes stored in the
macs (or more specifically, the fraction of synapses that have

2Actually, in a hierarchical model faced with the prospect of possibly hav-
ing to learn something new on every moment of its operational lifetime, it’s
sufficient only that at least one mac (which would typically be at the highest
level) be prepared to learn at every moment (cf. earlier discussion of critical
periods).
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been increased) remains below a threshold, the simple retrieval
mode should always do better (on average) than the probabilistic
retrieval mode Specifically, recall that in probabilistic retrieval
mode, the winner in a CM is chosen as a draw from the V
distribution. Depending on the particular shape/statistics of the
V distribution, the cell with the maximum V might therefore be
chosen winner only a small fraction of the time. Yet, that max-V
cell is the most likely cell given the total evidence (from the U,
H, and D signals) arriving at the mac. In simple retrieval mode,
the max-V cell always wins. Again, provided that the fraction of
the mac’s afferent synapses that have been increased remains low
enough, simply choosing the max-V cell as winner yields higher
expected accuracy.

DEFINITIONS OF SYMBOLS USED HEREIN

Table I-2 | Major symbols in CSA equations.

Symbol Definition Symbol Definition

Active(m) Whether mac m is active
or not

λU(t) Power to which U is
raised prior to being
multiplied with H and D
signals. It can vary as a
function of time from
beginning of the
sequence (snippet) being
processed

ϒ (m) Age, in number of time
steps (frames), of the
currently active code in
mac m

λH , λD Analogous to λU(t) except
that for now they are not
functions of time

Q,Qi Number of CMs per mac;
same but for a specific
level, i

δ(m) Persistence, in number
of time steps, of mac m.
Currently, all macs of a
given level have the
same persistence

K ,Ki Number of cells per CM;;
same but for a specific
level, i

M2,3

M3
4

The mac at coordinates
(2,3) (when the level is
unambiguous). Alternate
notation: Mac with index
“4” at level “3.”

u(i),
h(i),d (i)

Raw sum of weighted
signals from cells
comprising cell i’s U-RF.
h(i),d (i) are analogous

U(i),
H(i), D(i)

U(i) is the normalized
u(i), to [0,1] range.
H(i),D(i) are analogous

U− Lower threshold below
which a cell’s U-value is
considered
0.H−,D−analogous

U+ Upper threshold above
which a cell’s U-value is
considered 1. H+,D+
analogous

πU The # of active features
in a mac’s U-RF

π∗
U Number of active

features in a mac’s U-RF,
which are active in macs
with ζ ≤ B

(Continued)

Table I-2 | Continued

Symbol Definition Symbol Definition

π−
U , π+

U Lower and upper bounds
on the number of active
features that must be
present in a mac’s U-RF for
that mac to activate

V (i) Overall local evidence
that cell i should become
active. Product of
functions of U(i), H(i),
and D(i)

V̂j Maximum V (i) in CM, Cj . Vζ Threshold for a cell to be
considered as part of an
active hypothesis

G
G(t)

Average V̂ -value over a
mac’s Q CMs. It is a
measure of the familiarity
of a mac’s total input,
normalized to [0,1]

G− Threshold below which
the mac’s G-value is
considered effectively
zero

χ The sigmoid expansion
factor

γ The sigmoid expansion
exponent

η Range of the V -to-ψ map,
which transforms a cell’s
V -value into its relative
(within its own CM)
probability of winning, ψ

σ1, σ2

σ3, σ4

Parameters that interact
to control overall sigmoid
expansivity and shape,
e.g., horizontal position
of inflection pt., etc

a(j, t) Activation (0,1) of cell j at
time t

Mj Number of macs in
Level j

ζq # of cells in CM q with
V (i) > Vζ . Typically, Vζ is
set close to 1, e.g., 0.95

ζ The number of maximally
active hypotheses, ζ , in a
mac

F (ζ ) The correction factor for
increasing the weights of
outgoing signals from cells
in macs that have multiple
competing hypotheses
(MCHs), i.e., ζ > 1

F (ζ (j, t)) The MCH correction
factor F (ζ ) at time t for
mac that contains cell j

A Exponent (<1.0) for
discounting MCH
correction factor when
ζ > 1

B Threshold on ζ above
which we ignore
completely signals from
the source mac

ψ (i) The relative probability of
activating cell i in a mac

ρ(i) The absolute probability
of activating cell i in a
mac

GU G computed based only on the U signals to a mac. Similarly,
GHUD is G computed based on all three input vectors, U, H, and
D. Similarly, for GHU , GUD , GHD , GH

G +
HU (t) Threshold below which we back off to the next lower-order (or

more generally, the next-considered) version of G. Here, we
suggest that this threshold can be a function of time (frame)

U-RF,
H-RF,
D-RF

U-RF is a bottom-up receptive field. Can be applied to single
cells or to whole macs. For cells/macs at L1 the U-RF is a set
(or array) of individual binary cells (e.g., pixels). For cells/macs at
higher levels, the U-RF is a set (array) of macs. H-RF and D-RF
are analogous, but they always consist of a set (array) of macs
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RESULTS
STUDY 1: SPATIOTEMPORAL SISC PROPERTY
Study 1 is an unsupervised learning study that demonstrates
that Sparsey maps spatiotemporally more similar inputs to more
highly intersecting SDCs, i.e., the similar-inputs-to-similar-codes
(SISC) property. This is an instance of what others have referred
to as the “smoothness prior” (Bengio et al., 2012). The model
instance used here has a 12 × 12-pixel input level (L0) and one
internal level (L1) consisting of one mac with Q = 25 CMs, each
with K = 9 cells, as in Figure III-1B. The set of six 2-frame
sequences (S0–S5) used in this study are shown in Figure III-1A.
All sequences have the same second item, X, while the pixel-wise
overlap of the sequence-initial item with S0’s first item, A,
decreases across sequences, S1 = [BX], S2 = [CX], etc. Thus, the

spatiotemporal similarity of the second frame of each sequence
with the second frame of S0 drops across sequences (even though
the purely spatial similarity of the second frame remains the same
at 100%). We will show that the codes assigned to the second
frame of the progressively spatiotemporally less similar sequences
have progressively smaller intersection with the code assigned to
the second frame of S0.

During learning, on each frame of an input sequence, an L1
code is chosen using the learning mode CSA (Table I-1). Then,
associative learning occurs from active L0 units (active pixels)
to active L1 units: these U-wts are set high, i.e., they are effec-
tively binary. Also, on the second frame (T = 1), H wts from L1
units active at T = 0 to currently active L1 units are set high.
Figure III-1C shows the memory trace assigned to S0. The trace

FIGURE III-1 | (A) The six 2-frame sequences used in Study 1. (B) The model
whose internal level consists of one mac comprised of Q = 25 CMs, each
with K = 9 cells. A subset of the U-wts (blue) increased at T = 0 of
sequence S0 = [AX] from the active pixels to the cells comprising the
winning SDC. (C) The memory trace assigned to S0 to which we will

compare (in Figure III-2) the memory traces assigned to the other five
sequences in this figure. The green arrow represents the learning that occurs
in the recurrent H-matrix from the 25 winners at T = 0, when A is presented,
to the 25 winners at T = 1, when X is presented. The blue (magenta) arrows
represent the learning in the U (D) matrix on each of the two time steps.
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FIGURE III-2 | Memory traces assigned to specific instances of the six

sequences of Study 1. The basic SISC property can be seen (across
panels A–F) in the decreasing intersection size of the L1 codes assigned
to the second moment of each sequence (highlighted in yellow) to the
L1 code assigned to the second moment of (S0) (in Figure III-1C), [AX]
(black units are those that do intersect, red are those that do not). The

G-values are the model’s estimates of spatiotemporal similarity of the
current moment. Note that the same trend of intersection size
decreasing with similarity can be seen in comparing the first moments
of each sequence, (S1–S5), with the first moment of (S0). However,
strictly that is a purely spatial similarity measure since no temporal
context signals present on the first moment of a sequence.

consists of two SDCs. One might also refer to the set of weight
increases made during presentation of S0 as the “memory trace,”
however, it is the sequence of SDCs across time steps which,
unless otherwise stated, we refer to as the memory trace of a
sequence. Note that because [AX] is the first sequence presented
to the model, the particular units chosen on both frames of S0 are
chosen at random.

Figure III-2 shows, in panels B–F, the memory traces assigned
to five sequences, [BX], [CX], [DX], [EX], and [FX], which are
progressively less spatiotemporally similar to [AX]. In addition,
Figure III-2A shows the memory trace reactivated in response
to a second presentation of [AX]. For each of the experiments
represented by the six panels of Figure III-2, the sequence shown
is presented as the second sequence experienced by the model.

For example, when S4 = [EX] is presented, it is presented to the
model after the model has only learned [AX], not the rest of the
intervening sequences, S1–S3.

The main result visible in Figure III-2 is that in comparing
the L1 codes assigned to frame 2 of each sequence, S1–S5, to
the L1 code assigned to frame 2 of S0 (in Figure III-1C), we
see progressively smaller intersection. These five L1 codes are
highlighted in yellow. Black units are units which are the same
as for frame 2 of sequence [AX] (Figure III-1C); red units are
different3. Thus, on the second moment, [BX], of sequence S1,

3If we viewed the presentations of S1–S5 as recognition trials in which we
were presenting progressively more perturbed variants of [AX], then these red
units would be considered errors. However, in this case, we are viewing these
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Table II-1 | Code similarity decreases with spatiotemporal similarity

of moments.

Decreasing similarity of 1st

moment

Decreasing similarity of 2nd

moment∣∣∣S0φ
1
[A] ∩S0 φ

1
[A]
∣∣∣ = 22 (88%)

∣∣∣S0φ
1
[AX] ∩S0 φ

1
[AX]

∣∣∣ = 23 (92%)∣∣∣S1φ
1
[B] ∩S0 φ

1
[A]
∣∣∣ = 22 (88%)

∣∣∣S1φ
1
[BX] ∩S0 φ

1
[AX]

∣∣∣ = 21 (84%)∣∣∣S2φ
1
[C] ∩S0 φ

1
[A]
∣∣∣ = 23 (92%)

∣∣∣S2φ
1
[CX] ∩S0 φ

1
[AX]

∣∣∣ = 23 (92%)∣∣∣S3φ
1
[D] ∩S0 φ

1
[A]
∣∣∣ = 18 (72%)

∣∣∣S3φ
1
[DX] ∩S0 φ

1
[AX]

∣∣∣ = 16 (64%)∣∣∣S4φ
1
[E] ∩S0 φ

1
[A]
∣∣∣ = 16 (64%)

∣∣∣S4φ
1
[EX] ∩S0 φ

1
[AX]

∣∣∣ = 13 (52%)∣∣∣S5φ
1
[F] ∩S0 φ

1
[A]
∣∣∣ = 4 (16%)

∣∣∣S5φ
1
[FX] ∩S0 φ

1
[AX]

∣∣∣ = 3 (12%)
(∼chance)

the code assigned, S1φ
1[BX], has 21 out of the maximum possi-

ble 25 units in common with the code, S0φ
1[AX], assigned to the

second moment, [AX], of S0, i.e.,
∣∣∣S1φ

1[BX] ∩S0 φ
1[AX]

∣∣∣ = 21. Note

that we have slightly generalized the code name convention: the
lead subscript indicates the sequence in which the code occurs.
As the spatiotemporal similarity of the second sequence moment
with [AX] decreases further across panels c-f, the intersection
of the assigned code with S0φ

1[AX] trends downward, despite the

fact that in this particular instance,
∣∣∣S2φ

1[CX] ∩S0 φ
1[AX]

∣∣∣ = 23 even

though [CX] must clearly be considered less similar to [AX]
than [BX] is to [AX]. Despite this statistical blip, the codes
assigned for the remaining progressively less spatiotemporally
similar moments, [DX], [EX], and [FX], have monotonically
decreasing intersection with S0φ

1[AX] as summarized in the right
column of Table II-1. In fact, the same trend obtains with respect
to the first sequence moment as well (left column). However, note
that in the latter case, it is purely spatial similarity in the input
space that is relevant (since no temporal context information is
present on the first moment of a sequence).

We emphasize that each of the memory traces shown in
Figure III-2 is a particular instance. The winner in a CM is
chosen as a draw from a likelihood distribution over the CM’s
units, i.e., “softmax” (CSA Step 12), not by simply choosing
the max likelihood unit, i.e., plain (“hard”) max. Thus, we
will generally see some variation in the chosen codes across
instances of the same experiment and the amount of vari-
ation will increase as the similarity of the test sequence to
the learned sequence, [AX], decreases. This statistical varia-
tion, for example, is why the memory trace in Figure III-2A
is not perfect. Due to the statistical nature of Sparsey’s CSA,
demonstration of the SISC property requires running many
instances of each of the experiments shown in Figure III-2
and reporting average results. Such a protocol was followed in
Study 2.

as presentations of similar but not identical sequences to S0, in which case it is
appropriate for the model to assign unique codes. In this case, the red units are
not errors, but simply just different from the unit chosen in the corresponding
CM in frame 2 of S0.

STUDY 2: SINGLE-TRIAL LEARNING OF SETS OF LONGER SEQUENCES
Study 2 demonstrates single-trial learning of longer and more
complex sequences, derived from natural video, by a model with
multiple internal levels. We presented eight 20-frame 24 × 24-
pixel, natural-derived, snippets (movies), produced from the
KTH Video data set (Schuldt et al., 2004). All 160 frames of the
eight snippets are shown in Figure III-3. These are taken from
instances of people waving their arms. See example video. The
snippets were presented once each.

The model in Study 2 had 4 levels, a total of 21 macs, 3285 cells
(“neurons”), and 1,880,568 synapses4. As shown in Figure III-4,
the first internal level (L1) had 16 macs, each consisting of Q1 = 9
CMs, each having K1 = 16 cells. L2 had 4 macs, each having of
Q2 = 9 CMs, each having of K2 = 9 cells. The top level (L3) con-
sisted of one mac, consisting of Q3 = 9 CMs, each with K3 = 9
cells. The semi-transparent blue prisms indicate the bottom-up
(U) wiring scheme. Each 6 × 6-pixel aperture of the input level,
L0, U-connects to all 9 × 16 = 144 cells in the corresponding L1
mac. Each L1 mac U-connects to all 9 × 9 = 81 cells in the over-
lying L2 mac. All four L1 macs forming one quadrant of level L1
U-connect to the same overlying L2 mac (i.e., convergence). All
four L2 macs U-connect to all 9 × 9 = 81 L3 cells (more conver-
gence). The figure is a snapshot of the model while processing
frame 15 of Snippet 1. L1 mac activation criteria were set in this
study so that an L1 mac would only become active if between 5
and 7 (of the 36) pixels in its aperture were active: apertures with
too few or too many active pixels are grayed out. Criteria were
set to allow an L2 mac to become active if between 1 and 4 of
its four afferent L1 macs were active, and to allow the L3 mac
to become active if between 1 and 4 of its four afferent L2 macs
were active.

Before discussing the features learned by several of the model’s
macs, we first report the recognition accuracy. The core accuracy
measure, �(x, x′), is the similarity (normalized intersection) of

the codes (SDCs) active in a given mac M
j
i on a given frame t

during the learning and test presentations of a snippet x as in
Equation (14), where we normalize by the fixed size Qj of codes
in macs at level j. Note that the test presentation of x is denoted as
x′. We can then average over all macs at all levels to get the recog-
nition accuracy for the whole network on frame t of the test trial
for x′, Rt(x′), as in Equation (15). (Note that since these studies
involve exact-match recognition, where the test and training snip-
pets are identical, we can drop x from the notation.) We can then
average over all T frames of the test trial to get the recognition
accuracy of the entire hierarchical spatiotemporal memory trace
for snippet x′, R∗(x′), as in Equation (16). We also report the full
network accuracy on just the last frame of the test snippet, R�(x′),
which is just Equation (15) with t equal to the final frame of the
snippet.

�
j,i
t

(
x, x′) =

∣∣∣xφj,i
t ∩x′ φj,i

t

∣∣∣ /Qj (14)

4The model included an additional 82,944 top-down (D) synapses from cells
at the first internal level (L1) to cells at the input level (L0). However, these
synapses are neither required for nor used during recognition and thus, are
not counted in computation of information storage capacity in bits/synapse.
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FIGURE III-3 | The frames of the eight snippets used in Study 2.

Rt (x′) =
J∑

j = 1

Mj∑
i = 1

�
j,i
t

(
x, x′) (15)

R∗(x′) =
∑

t

Rt
(
x′) /T (16)

Table II-2 reports R∗(x′) and R�(x′) for all snippets (and broken
down by level as well) and averaged across all snippets (bottom
row). It provides these results using the two CSA retrieval modes
described in Section Sparsey’s Core Algorithm, the probabilis-
tic mode (columns 5 and 6), which is identical to the learning
mode except that it uses the back-off protocol, and the simple
mode (columns 3 and 4), which simply chooses the cell with
the maximum V in each CM as winner (i.e., without using the
mac-global information, G). The first point to make regard-
ing Sparsey’s performance on this set is that using the simple
retrieval mode, it achieves an overall accuracy across all frames
of all episodes of 85% and across all final frames of 91%. One
can readily see that the simple retrieval mode does far better
than the probabilistic mode. But again, the simple mode pre-
sumes that the model “knows” that it is operating purely in
retrieval mode.

As noted above, these are exact-match recognition tests: the
test sequences are identical to the training sequences. One might
therefore be underwhelmed by anything less than 100% recogni-
tion. After all, in classification experiments, perfect classification
of all training inputs is typically considered a basic sanity test.
However, our R measures are not reporting the class of the test
sequences: they are reporting the detailed comparison of the hier-
archical, spatiotemporal patterns of activation that occur during

the test and training trials. (Note: we refer to the activation
pattern that transpires on the test trial as a memory trace and to
the one that transpires on the training trial as the learning trace.)
In this study, these traces span four levels, 20 time steps, involve
precisely ordered activation of 1–2 thousand neurons, and are
formed with one trial. Figure III-5 gives some idea of this com-
plexity: it shows the full 4-level learning trace for the first four
frames of Sequence (Snippet) 1.

Thus, despite being less than perfect on this exact-match
recognition experiment, we consider this performance (in the
simple retrieval mode) to be good. Bear in mind that these
experiments reflect very little in the way of parameter optimiza-
tion: the model parameter space is very large and its exploration
will be ongoing for quite some time. Moreover, we anticipate
that there are many possible straightforward model modifica-
tions that would likely boost performance without increasing
the model’s time complexity for either learning or retrieval.
For example, many of the static parameters in the CSA equa-
tions could be made dynamic, e.g., to depend on temporal
offset from start of sequence, or on degrees of saturation of
weight matrices, etc. There is a very large landscape to explore
here. Furthermore, as noted, this study involved only unsu-
pervised learning. As discussed in Section Learning arbitrarily
complex nonlinear similarity metrics, the addition of super-
vised learning to the model greatly increases its capabilities,
i.e., to learning arbitrarily nonlinear (spatiotemporal) cate-
gories. However, we do not report supervised learning studies in
this paper.

While the simple mode performance is good, we note that
the model in this case has almost 1.9 million weights. Thus,
the information storage capacity here is rather low, ∼0.018
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FIGURE III-4 | The 4-level model used in Study 2. Blue
semi-transparent prisms show the U-RFs of the macs at the prism
tops, i.e., the L3 mac M3

(0,0)’s U-RF contains all four L2 macs, each L2
mac’s U-RF contains the four underlying L1 macs, and each L1 mac’s
U-RF is the underlying 6 × 6-pixel L0 aperture. At left, we show plan

views of individual macs showing their active codes at the particular
spatiotemporal moment depicted (T = 15 of Snippet 1). The four gray
L0 apertures have too few/many active pixels for their associated L1
macs to activate. Subsets of the U (black), H (green), and D (magenta)
wts are shown.

bits/synapse. However, in the course of our investigations, we
were routinely able to achieve the same or better performance on
this data set with much smaller networks, e.g., 4-level networks
with a total of 331,000 weights5 , yielding a storage capacity of
∼0.1 bits/synapse, which is within an order of magnitude of the
theoretical maximum for associative memory, ∼0.69 bits/synapse
(Willshaw et al., 1969). Those results are given in the last two
columns Table II-2.

While this unsupervised learning study involves only the exact-
match condition (the test inputs are identical to the training
inputs), the more typical goal of an unsupervised learning study is
to show that the model learns the higher-order statistical structure
of the input space, or in terms we used earlier, that the model
maps similar inputs to similar codes (SISC). Study 3 involves

5The smaller model had 4 levels, a total of 21 macrocolumns (macs), 1692 cells
(“neurons”), and 343,116 synapses. It had an additional 32,256 D synapses
from L1 cells to L0 cells. However, these synapses are neither required for
nor used during recognition and thus, are not counted in the computation
of information storage capacity in bits/synapse. L1 consisted of 16 macs, each
with of Q1 = 4 CMs, and each CM consisting of K1 = 14 cells. L2 had 4 macs,
each having of Q2 = 4 CMs, each having of K2 = 12 cells. The top level (L3)
consisted of one mac, consisting of Q3 = 4 CMs, each with K3 = 7 cells.

the nonexact-match condition (the test inputs differ from the
training inputs) and directly demonstrates that the model
retrieves the spatiotemporally best matching stored input given
a novel input.

The effect of the lower and upper mac activation bounds on
the number of active features needed for a mac to activate (see
Section Step 3: Normalize and filter the raw summations) can also
be seen in Figure III-5. For L1, π1,−

U = 5 and π1,+
U = 7 (we’ve

added the level index to the superscript since these parameters can
vary by level): thus only a few of the 16 L1 macs become active
on each frame, e.g., five on Frame 0, six on Frame 1, etc. One
such criterion-meeting L1 mac, M1

12, and its L0 aperture (with
six active pixels) are highlighted in yellow in Frame 0. As noted
in Section Normalize and filter the raw summations, for L2 and
higher, the number of active features equals the number of active
macs in a mac’s U-RF. In this simulation, the bounds for L2 macs
were π2,−

U = 1 and π2,+
U = 4 and the bounds for the L3 mac were

π
3,−
U = 1 and π3,+

U = 3. Thus, on Frame 1, we can see that L2
mac M2

2 (yellow) is active because the number of active features

in its U-RF, π2,2
U (1) = 1, meets the criteria:

π
2,−
U = 1 ≤ π

2,2
U (1) = 1 ≤ π

2,+
U = 4
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Table II-2 | Recognition accuracy for Study 2.

Snippet Level Larger model Smaller model

Simple mode Probabilistic mode Simple mode

Rd∗(x ′) R�(x ′) R∗(x ′) R�(x ′) R∗(x ′) R�(x ′)

1 L3 0.56 0.78 0.46 0.67 0.53 1.00
L2 0.90 1.00 0.73 0.50 0.77 1.00
L1 0.95 0.97 0.71 0.53 0.82 0.88

2 L3 0.53 0.33 0.29 0 0.39 0.50
L2 0.84 1.00 0.39 0 0.55 0.50
L1 0.86 1.00 0.55 0.37 0.72 0.75

3 L3 0.57 0.56 0.26 0.67 0.69 0.75
L2 0.92 1.00 0.65 1.00 0.92 1.00
L1 0.98 1.00 0.74 0.89 0.98 1.00

4 L3 0.85 0.78 0.86 0.78 0.90 1.00
L2 0.94 1.00 0.86 1.00 0.91 1.00
L1 0.94 1.00 0.83 0.95 0.93 1.00

5 L3 0.63 0.89 0.46 0.56 0.84 1.00
L2 0.91 1.00 0.86 1.00 0.90 1.00
L1 0.94 1.00 0.85 0.93 0.93 1.00

6 L3 0.86 1.00 0.69 1.00 0.81 1.00
L2 0.97 1.00 0.82 0.83 0.92 1.00
L1 0.96 1.00 0.82 0.93 0.95 1.00

7 L3 0.64 0.78 0.55 0.44 0.84 0.75
L2 0.95 1.00 0.91 0.33 0.99 0.88
L1 0.98 1.00 0.84 0.41 1.00 1.00

8 L3 0.79 0.78 0.55 0.78 0.93 1.00
L2 0.95 1.00 0.85 0.89 0.94 1.00
L1 0.94 1.00 0.84 0.81 0.93 1.00

All
Snippets

All
Levels

85.0 91.0 0.68 0.68 0.84 0.92

All accuracies expressed as decimal (between 0 and 1). R∗(x ′ ) is averaged over

all 20 frames of snippet, x′, where in this case (the exact-match test case), x′ is
identical to the training snippet, x. R�(x ′ ) is the accuracy only on the final frame

of snippet x ′ .

M2
1 (rose) and M2

3 (no color) also activate because they also meet
the criteria:

π
2,−
U = 1 ≤ π

2,1
U (1) = 2 ≤ π

2,+
U = 4

π
2,−
U = 1 ≤ π

2,3
U (1) = 3 ≤ π

2,+
U = 4

The blue boxes indicate that L3 mac M3
0 ’s U-RF is the entire L2

level; M3
0 is active on all four frames because it meets its mac

activation bound criteria on all for frames.
The progressive persistence property can also be seen in

Figure III-5. The persistence at L2 is two frames, i.e., δ2 = 2.
Thus, the L2 code (the set of 9 black cells) that becomes active
in M2

2 on Frame 0 remains active on Frame 1. That same L2 code,

which (following earlier notation) we can denote, φ2,2
0 , becomes

D-associated with the L1 codes active in its U-RF on Frames 0
and 1, denoted φ1,12

1 and φ1,9
2 , respectively. Magenta lines show

the increased D-wts from one of the cells in φ2,2
0 to the L1 codes,

φ
1,12
1 and φ1,9

2 , though the same increases would occur from the

other eight cells comprising φ2,2
0 (= φ

2,2
1 ) as well. Similarly, the

code that becomes active in M2
2 on Frame 2 remains active on

Frame 3. L3 persistence is δ3 = 4, thus the code activated in M3
0

on Frame 0 remains active until Frame 3.
The reader may note a discrepancy at L3 between the pro-

gressive persistence policy, which says that (during learning) once
active, an L3 code will remain active for 4 frames, and the acti-
vation bounds, which in this simulation says that an L3 mac will
only become active if it has between 1 and 3 active features in its
U-RF, whereas on Frames 3 and 4, there are four active features in
M3

0 ‘s U-RF. The resolution is that persistence trumps the activa-
tion criteria: that is, the policy, during learning, is to allow a mac
that has already become active to remain active for its full persis-
tence regardless of how the number of active features in its U-RF
changes throughout its persistence.

We also note that though not shown in Figure III-5, large
numbers of (U, H, and D) synapses are increased within/between
macs on each of these frames. This is especially true early in
the system’s life, when most input patterns that occur will be
novel. In general, as more and more frames are experienced,
fewer and fewer synapses are increased with each new frame.
However, as described in Section Learning policy and mechanics,
the model has a “freezing” policy wherein, once a critical frac-
tion of the weights of any of a mac’s three afferent projections (U,
H, or D) have been increased, all of that mac’s afferent projec-
tions are frozen, preventing any further codes (i.e., features) from
being stored in its basis. Freezing is necessary in order to avoid
oversaturating the weight matrices, which would lead to infor-
mation (memory) loss. Once a mac’s learning is frozen, the set
of features that has been stored in it, remains its permanent lex-
icon, or basis, for perceiving/recognizing all future inputs to it.
Note that even if a mac’s afferent matrices are frozen, its effer-
ent matrices are not, meaning that previously stored codes in
a frozen mac can still be efferently-associated with other codes
following freezing.

Although none of the macs in the model in this study became
frozen, the codes that were stored in the various macs across
the 160 frames of the input set still constitute their learned fea-
ture bases. Figure III-6 shows the complete set of criteria-meeting
inputs, i.e., having between π1,−

U = 5 and π1,+
U = 7 active pixels,

which present to L0 Aperture 0 across all 160 frames. These 45
inputs constitute the learned feature basis of L1 mac M1

0 . Note
the near-canonical nature of many of the patterns, e.g., perfect, or
near-perfect vertical, horizontal, diagonal edges.

As another example, Figure III-7 shows the complete set of
unique, criteria-meeting patterns that occurred in Aperture 8,
and were stored in M1

8 over the course of the training set. Here,
we manually ordered them so as to emphasize the “canonical-
ness” of the resulting features. In this case, seven of these features
(blue underbars) occurred at least twice during the 160 frames.
It is perhaps surprising that given such a small number of frames
derived from natural video, the resulting basis can be so canon-
ical. Moreover, several of these features are already beginning to
recur in the input stream even within the first 160 frames of this
model’s experience. These phenomena are due to the conjunc-
tion of the preprocessing (1-pixel wide edges and binarization),
the small aperture size, and the L1 mac activation criteria. Similar
bases were learned in the other 14 L1 macs as well. These findings
give us confidence that freezing L1 macs even very early in the
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FIGURE III-5 | The inputs (L0) and codes that become active at all

three internal levels on the first four frames of Snippet 1 (panels

A–D). Note that the mac codes that become active at L2 persist for
two time steps. Thus, the code active in mac, M2

2 , on frames 0 and 1

can be referenced by two names, φ2,2
0 and φ

2,2
1 . The magenta lines

show the D-wts from one of the cells comprising φ
2,2
0 , which are

increased onto φ
1,12
1 on frame 1 and onto φ

1,9
2 on frame 2. See text

for further discussion.

“life” of the model, e.g., after a few hundred features have been
stored, will allow the macs to parse/recognize all future inputs
with quite sufficient fidelity. We feel these results provide an illu-
minating framework for understanding the various critical period
phenomena observed in the visual and other modalities of biolog-
ical brains (Wiesel and Hubel, 1963; Barkat et al., 2011; Pandipati
and Schoppa, 2012).

We used the same protocol as above to catalog the input pat-
terns learned by, and stored in, the L2 macs and in the L3 mac.
Figure III-8 shows 78 of the 112 unique, criteria-meeting patterns
that occurred in the 12 × 12-pixel region comprising the U-RF of
L2 mac M2

0 , throughout the 160 frames of the training set (the
thich-outlined green and red pairs are duplicates). This region is
the union of the U-RFs of the four L1 macs, M1

0 , M1
1 , M1

4 , and
M1

5 . The gray/yellow 6 × 6 quadrants are L0 apertures in which

too many (> π
1,+
U = 7)/too few (< π

1,−
U = 5) pixels were active

for the L1 mac to activate. Thus, when any of the 12 × 12 patterns
in the figure occurs, the actual input passed up to M2

0 will be from

codes active only in the L1 macs whose 6 × 6 RFs are not gray or
yellow.

As can be seen in Figure III-8, the spatial extent of the L2 RF
has doubled in width and height compared to L1 RF. Thus, the
space of possible inputs in such an RF is exponentially larger.
Nevertheless, most of these larger features still have low intrin-
sic dimensionality, e.g., an essentially straight or low-curvature
edge across the whole 12 × 12 RF. Even the more complex features
such as the angle features in the bottom row, i.e., two straight/low-
curvature segments with a single “elbow” point (thick pink out-
line), have rather low intrinsic dimensionality (i.e., we can give
short verbal descriptions of them). Again, these are canonical-
looking features, and they end up in the basis of M2

0 , but they
were not hand-engineered. The number of active features (quad-
rants that are neither gray nor yellow) in each 12 × 12 pattern
varies from 0 (in which case, M2

0 will not become active on
that frame, thick blue outline) to 4. Thus, M2

0 learns input pat-
terns having varying numbers of features (varying complexities).
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FIGURE III-6 | The set of all unique patterns with between π
1,−
U

= 5 and π
1,+
U

= 7 active pixels that occurred in L0 Aperture 0 (and are stored in mac

M1
0

) throughout the 160 frames of the training set.

FIGURE III-7 | The set of all unique patterns with between π
1,−
U

= 5 and π
1,+
U

= 7 active pixels that occur in L0 Aperture 8 (and are stored in mac M1
8

)

throughout the 160 frames of the training.

Thus, it is also the case that during retrievals, all these fea-
tures, of varying complexities, formally compete with each other.
In general, this argues for narrower mac activation ranges,
[π−

U , π
+
U ], because narrower ranges make normalization easier.

Exploration of the interaction of mac activation ranges across
levels and with other parameters is another ongoing effort of
our research.

Note that since L2 codes persist for two frames, these input
patterns, or to be more precise the SDCs in the correspond-
ing L1 macs, will be associated to only roughly half as many
codes in M2

0 . Thus, each consecutive pair of two 12 × 12 panels

(in row-major order) would become associated with the same
M2

0 code. Figure III-9 illustrates this concept for the first pair of
12 × 12 panels of Figure III-8 (thick black outline). Thus, the L2
codes formally represent spatiotemporal patterns. Given the dis-
crete nature of our overall framework, i.e., discrete frames, binary
pixels, constrained wiring schemes, these larger-scale (both spa-
tially and temporally) spatiotemporal patterns, i.e., L2 features,
can be viewed as spatiotemporal compositions of lower-level fea-
tures. A detailed development and analysis of this spatiotemporal
compositional aspect is one major focus of current and future
studies.
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FIGURE III-8 | 78 of the 112 unique patterns with between π
2,−
U

= 1 and π
2,+
U

= 4 active features that occurred in the U-RF of L2 mac M2
0

throughout

the 160 frames of the training set. Gray/yellow quadrants are ones in which too many/few pixels were active for the corresponding L1 mac to activate.

The concept of operation during learning and also during
recognition, is one in which all of the macs across all lev-
els operate, in parallel, on the particular spatiotemporal frag-
ments of the input that they receive, dealing with variation
on a fragment-by-fragment basis. Support for this view comes
from recent experimental work (Bart and Hegdé, 2012). In
subsequent work, we will be quantitatively assessing the sim-
ilarity of features that occur, over the long time frame of
experience, following the initial period in which many of the
lower-level macs become frozen, within apertures of the dif-
ferent scales corresponding to the model’s different levels, to
the (frozen) bases of those macs. The goal will be to assess
how well the model is able to represent (and if novel, learn)
future inputs using the fixed lexicon of features stored in its
lower levels.

Finally, before leaving this section, we want to underscore the
very different concept of feature basis present in Sparsey than that
present in localist models such as Olshausen and Field (1997).

This difference is summarized in terms of four characteristics in
Table II-3.

STUDY 3: SPATIOTEMPORAL BEST-MATCH RETRIEVAL
In this study, we demonstrate spatiotemporal best-match retrieval
as follows. In this case, we are again using a model with one inter-
nal level (L1) consisting of one mac with Q = 9 CMs; K varies
across experiments. In each experimental run, we train the model
on a set of random sequences. We then create a noisy version
of each training sequence by randomly changing some fraction
of the pixels in each of its frames. Figure III-10 (middle) shows
a typical training sequence. Figure III-10 (top) shows the cor-
responding randomly produced noisy version of that sequence:
one pixel was randomly changed in each frame, which actually
yields two pixel-level differences between the original and the
noisy frame. Each frame in the training set had between 9 and 12
active pixels, which yields noise levels from 2/9 = 22.2% to 2/12 =
16.7%. Figure III-10 (bottom) shows a sequence produced from
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FIGURE III-9 | All L1 codes that become active in M2
0

’s U-RF on the two

frames depicted will associate with the same M2
0

code. Notice that that
same code is active for both frames. Thus, a total of four unique L1
codes—the two active in M1

1 on Frames 2 and 3 and the two active in M1
5 on

Frames 2 and 3—will associate with the M2
0 code shown. There will in

addition be H-association from the L1 codes active on Frame 2 to those
active on Frame 3 and also from the L2 code recurrently to itself (since it is
on for two consecutive frames), and D-associations as well.

the middle one by randomly changing two pixels in each frame,
which yields four pixel-level differences and thus noise levels,
from 4/9 = 44.4% to 4/12 = 33.3%. In this study, we ran one series
of experiments testing with the 1-pixel-changed frames (columns
5–7 of Table II-4) and one series testing with the 2-pixels-changed
frames (columns 8–10 of Table II-4).

Given the random method of creating individual frames of
the training set and the high input dimension involved (144),
if the fraction of changed pixels is small enough, e.g., <10–
20%, then the probability that a changed frame, x′ will end up
closer to (having higher intersection with) any other frame in the
training set than to the frame, x, from which it was created, is
extremely small. Moreover, remember that Sparsey actually “sees”
each input frame in the context of the sequence frames leading up
to it, i.e., it computes the spatiotemporal similarity of particular
moments in time (by virtue of its combining of U and H signals on
each time step), not simply the spatial similarity between isolated
snapshots. Thus, the relevant point is that the probability that
a changed moment, e.g., [x′,y′,z′], with its exponentially higher
dimensionality (1443), will end up closer to any other moment
in the training set than to the moment, [x,y,z], from which it

was created, is vanishingly small6 . This condition is required
to validate the testing protocol/criterion described above, which
compares the L1 code on each test frame to the L1 code on the cor-
responding training frame. Thus, if we can show that the model
activates the exact same sequence of L1 codes in response to the
noisy sequence, then we will have shown that the model is doing
spatiotemporal best-match retrieval.

Columns 5–7 of Table II-4 show that the model is able to rec-
ognize a set of training sequences despite significant noise on
every frame. The absolute capacity increases with network size.
For example, the network of Row 1 had 6336 weights and showed
good recognition of two 10-frame random sequences despite
16.7–22.2% noise on each frame, while the larger network of Row
4 had 39,168 weights and showed very good recognition for 10,
similarly noisy, 10-frame sequences, and so on. Columns 8–10 of
Table II-4 show that the model still performs well even for much

6The notation [x,y,z], with z bolded, indicates the moment on which frame
z is being presented as the third frame of a sequence after x and y have been
presented as the first and second frames of the sequence.
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Table II-3 | Comparison of the concept of “feature basis” present in

Sparsey and localist models.

1. ORIGIN OF ANY SINGLE BASIS FEATURE

Sparsey A single input pattern experienced, even with a single trial

Localist An average of many inputs experienced
2. CONTENT OF ANY SINGLE FEATURE

Sparsey Multiple spatial phases (i.e., multiple edge segments at
different locations in the aperture), as apparent, e.g. in
Figure III-8, multiple spatial frequencies, multiple orientations
(i.e., each of the multiple possible edge segments in the
aperture can have a different orientation), and multiple temporal
frequencies. Because each Sparsey feature is derived from a
single event (and not an average over multiple events), it’s not
really appropriate to speak of a Sparsey feature as having
multiple modes on each of the encoded stimulus dimensions

Localist A single spatial phase, a single spatial frequency, a single
orientation, and a single temporal frequency. In general, a
localist feature such as these is unimodal (e.g., Gaussian,
Gabor) on each of the encoded stimulus dimensions

3. NUMBER OF UNITS IN THE CODE OF ANY SINGLE FEATURE

Sparsey Many. Q, where, in real macrocolumns, Q is order 100

Localist One
4. NUMBER OF BASIS FEATURES PARTICIPATING IN THE

REPRESENTATION OF ANY SINGLE INPUT (MOMENT)

Sparsey One. But again, that one active feature is represented by Q
active units. Thus, this type of representation is called
“sparse” specifically because the number of physical units
active in representing any one input is small compared to the
total number of physical units. But, these representations can
also be sparse in the senses typically used for localist models
(below). As noted above, any single active SDC represents the
presence of multiple (but, for most natural inputs, a smallish
number of ) spatial phases, spatial frequencies, orientations,
and temporal frequencies

Localist Few, several. These representations are called “sparse” for
two reasons
• The number of features in a sufficient basis is small

compared to the number of all possible features definable
on the input space

• The number of features active in the representation of any
one input is small compared to the number of features in
the basis

larger per-frame noise levels. In these tests, which involved ran-
domly changing two pixels on every frame, the frame-wise noise
levels varied from 33.3% (on frames which had 12 active pixels)
to 44.4% (on frames with 9 active pixels). A key point to note
in Table II-4 is that while the absolute capacities (the number
of sequences that are can be stored) are lower for the 2-pixel-
changed series compared to the 1-pixel-chaged series, capacity
still remains large. The primary reason for lower storage capacity
in the 2-pixel-changed case is that because the test input frames
are less similar to the training input frames (than in the 1-pixel-
changed case), the ρ distributions from which winners in the CMs
are chosen [Equation (11) and Step 12 of the CSA] will be flatter,
yielding more single-unit errors, thus reducing R∗(x′).

Table II-5 gives the detailed (frame-by-frame) accuracies for
all sequences for individual runs of Experiments 1 and 4. The
top two rows are for Experiment 1 in which the small network
could store only two sequences while maintaining reasonably
high recognition accuracy. The bottom 10 rows are for a run of
Experiment 4 in which the network had Z = 144 L1 units and
39,168 weights. The rightmost column, R∗(x′), is the average over
all 10 frames of a given sequence presentation. It is important to
note how the model fails as it is stressed by having to store addi-
tional sequences. Specifically, even as accuracy averaged over all
sequences falls, a subset of the stored sequences is still recognized
perfectly. This can be seen even in the small network example:
Seq. 1 is retrieved virtually perfectly. Only a single unit-level error
is made on frame 6. Seq. 2 starts out being recalled perfectly for
the first few frames but then begins picking up errors in frame
4 and hobbles along for the rest of the sequence. Nevertheless,
note that even on the last frame of Seq. 2, the L1 code is still
correct in 5 of the 9 CMs. In Experiment 4, we see that 9 of
the 10 sequences are recalled virtually perfectly, while one (Seq.
9) begins perfectly but then picks up some errors on frame 5
and then degrades to 0% accuracy by the last frame. It is also
important to realize that while the model occasionally makes
mistakes, it generally recovers by the next frame. In other exam-
ples (not shown here), the model can often recover from more
significant errors.

Figure III-11 shows the pair-wise L1 code intersections over
the full set of frames experienced over all training and test frames
(moments) of the experimental run described in the top two lines
of Table II-5. Since there were two 10-frame sequences, this is a
total of 40 frames. The upper yellow triangle shows the intersec-
tions between all codes assigned on the 10 frames of the training
presentation of Seq. 1. Similarly for the other triangles down the
main diagonal. The top value the green triangle (row 20, col. 1)
shows that L1 code “20,” i.e., the code activated on the first frame
of the test presentation of Seq.1 intersects completely (in all Q = 9
CMs) with L1 code 0, i.e., the code activated on the first frame of
the training presentation of Seq. 1. Similarly, for codes, 21 and
1, 22 and 2, etc. Reading down the minor diagonal (between
the red lines) tells how well the model does: perfect recogni-
tion of all noisy frames of all sequences would yield “9”s all the
way down.

Constant-time retrieval
When each frame is presented during a recognition test trial
the likelihoods of all codes stored during the learning trial
are formally evaluated. They are evaluated in parallel by the
constant-time code selection algorithm (CSA). However, at no
point does the model produce explicit representations of the like-
lihoods of the individual codes (hypotheses) stored. Such an
explicit representation, e.g., a list, of likelihoods would consti-
tute a localist representation of those likelihoods. What the model
actually does is make Q draws, one in each CM. However, the
net effect of making these Q draws (soft-max operations) is that
a hard-max over all stored hypotheses is evaluated. This is true
whether the model has stored a single 5-frame sequence, or a sin-
gle 500-frame sequence, or 100 5-frame sequences. And crucially,
because the numbers of CMs, and thus units, and weights, are
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FIGURE III-10 | (Middle row) An example 10-frame training sequence

used in Study 3. (Top row) A noisy version of the training sequence
in which one pixel was randomly changed in each frame. The resulting

frame has two pixel-level differences from the original. (Bottom Row)

A noisy version of the training sequence in which two pixels were
randomly changed in each frame.

Table II-4 | Best-match recognition testing.

Exp K Z W 16.7% (1-pixel-) 33.3% (2-pixels-)

changed) changed)

S R∗(x ′) R�(x ′) S Rd∗(x ′) R�(x ′)

1 4 36 6336 2 83.0 67.0 2 83.0 76.0

2 8 72 14,976 5 91.0 86.0 4 98.0 97.0

3 12 108 25,920 8 96.0 96.0 7 94.0 93.0

4 16 144 39,168 10 95.0 94.0 8 92.0 89.0

5 20 180 54,720 11 87.0 84.0 9 90.0 84.0

6 24 216 72,576 12 88.0 84.0 10 86.0 79.0

7 28 252 92,736 13 88.0 84.0 10 89.0 82.0

8 32 288 115,200 15 88.0 86.0 10 91.0 83.0

The R measures (defined in the text) are in %. Z = Q × K is the total number

of L1 units. W is the total number of U and H weights in the model. S is the

number of sequences in the training set. All sequences were 10 frames long.

R∗ (x ′) and R�(x ′) are averages over the 10 runs of an experiment.

fixed, the time it takes to make those Q draws remains constant as
additional codes (hypotheses) are stored.

What the results in this report say is that that hard-max, i.e.,
the max-likelihood hypothesis, is returned with probability that
can be very close to 1 if the amount of information (i.e., number
of hypotheses) stored remains below a soft threshold, and which
decreases as we move beyond that threshold. For example, look-
ing at Table II-5, we see that for the second experiment (bottom
10 rows), the model chooses the correct, i.e., maximum likeli-
hood, hypothesis on almost all of the 100 frames (moments) of
test phase. These are 100 independent decisions, in each of which,
all 100 stored hypotheses competed and had some non-zero pos-
sibility of being activated. Yet, almost all 100 whole-code-level
decisions were correct. And, at the finer scale of the individual
CMs, where the actual decision process, albeit a soft decision

Table II-5 | Detailed frame-by-frame accuracies.

Seq 0 1 2 3 4 5 6 7 8 9 R∗(x ′)

1 100 100 100 100 100 100 88.9 100 100 100 99

2 100 100 100 100 55.6 66.7 66.7 66.7 55.6 55.6 77

1 88.9 100 100 100 100 100 100 100 88.9 100 98

2 100 100 100 100 100 100 100 100 100 88.9 99

3 100 100 100 100 100 100 100 100 100 100 100

4 88.9 100 88.9 88.9 100 100 100 100 100 100 97

5 100 100 100 100 100 100 100 100 100 100 100

6 100 88.9 100 100 100 100 100 88.9 100 100 98

7 100 100 100 100 100 100 88.9 100 100 100 99

8 88.9 100 100 100 100 100 100 100 100 100 99

9 100 100 100 100 100 77.8 66.6 22.2 11.1 0 68

10 100 100 100 100 100 100 100 100 100 100 100

All table cells give accuracies as percent. Last column is average of columns

indexed 0–9.

process, takes place, almost all (861) of the 900 decisions were
correct.

Table II-6 shows what happens when we move past or perhaps
through, the aforementioned soft threshold. In these two exper-
iments, we again used the network with 36,198 weights and the
1-pixel-changed test, but the training set contained 11 sequences
(upper 11 rows) and 12 sequences (lower 12 rows), compared
to only 10 in the experiment reported in Table II-5. For the 11-
sequence case, the model still performs very well on six of the
sequences, but adding another sequence degrades performance
substantially more.

SUMMARY AND CONCLUSION
In this paper, we described the hierarchical and spatiotemporal
elaboration of the SDC-based macro/mini-column model of cor-
tical computation described in Rinkus (2010), named Sparsey.
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FIGURE III-11 | Pair-wise intersections of all L1 codes assigned in one run of the 1-pixel-changed testing condition for the smallest model tested,

which had Q = 9, K = 4, and 6336 weights.

The notion that hierarchical representation is essential to event
recognition and intelligence more generally, has been present in
models for decades (Fukushima, 1984; Damasio, 1989; Edelman
and Poggio, 1991; Riesenhuber and Poggio, 1999; Lucke, 2004;
George and Hawkins, 2005; Dean, 2006; Jitsev, 2010) including
in the recent “Deep Learning” motif (LeCun and Bengio, 1995;
Hinton et al., 2006; Hinton, 2007; Taylor et al., 2010; Le et al.,
2011). The representational and processing economy/efficiency of
learning and recognition (inference) that is afforded by hierar-
chical decomposition of concepts/events has been understood (at
least implicitly) for thousands of years, e.g., the game of “Twenty
Questions,” which works because of hierarchical way in which
information is organized in our brains.

The hierarchical models noted above and many more all real-
ize the benefit of compositional representation. However, most of
those models use localist representations in which, in any given
cortical patch, each feature/concept/event is represented by a sin-
gle unit. In contrast, Sparsey uses sparse distributed codes (SDCs)
in every cortical patch. As stated at the outset, the most important
distinction between localism and SDC is that SDC allows the two

essential operations of associative (content-addressable) memory,
storing new inputs and retrieving the best-matching stored input,
to be done in fixed time for the life of the model, which is essential
for scalability to the huge problem sizes increasingly associated
with label, “Big Data.” The basis for this fixed-time capability
was explained in Section Sparse Distributed Codes vs. Localist
Codes.

(1) Because SDCs physically overlap, if one particular SDC, φ
(and thus, the hypothesis that it represents), stored in a mac
is fully active, i.e., if all Q of φ’s cells are active, then all other
codes (and thus, their associated hypotheses) stored in that mac
are also simultaneously physically partially active in proportion
to the size of their intersections with φ7.

7There is a nuance here. Although we say “all” stored hypotheses physically
influence the next time step’s decision processes, there may generally be a sig-
nificant number of hypotheses stored in a mac, which have zero intersection
with the current fully active code, φ. One might therefore assert that these
hypotheses do not physically influence the next time step’s decision processes.
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Table II-6 | Detailed frame-by-frame accuracies. overloaded case.

Seq 0 1 2 3 4 5 6 7 8 9 R∗(x ′)

1 88.9 88.9 100 100 88.9 100 100 100 100 100 97

2 66.7 77.8 88.9 100 77.8 55.6 22.2 22.2 11.1 0 52

3 100 88.9 100 100 88.9 100 100 100 100 100 99

4 66.7 77.8 77.8 66.7 44.4 33.3 11.1 44.4 0 0 42

5 88.9 100 100 100 100 88.9 77.8 66.7 33.3 33.3 79

6 88.9 100 100 100 100 100 100 100 100 88.9 98

7 66.7 55.6 22.2 22.2 11.1 11.1 33.3 22.2 0 11.1 26

8 66.7 33.3 11.1 11.1 22.2 0 11.1 11.1 22.2 33.3 22

9 100 100 100 100 88.9 100 100 88.9 88.9 88.9 96

10 88.9 100 88.9 88.9 88.9 100 100 100 88.9 66.7 91

11 88.9 100 100 100 100 100 100 100 88.9 88.9 97

1 66.7 66.7 44.4 44.4 11.1 44.4 44.4 11.1 22.2 11.1 37

2 88.9 100 100 100 100 88.9 88.9 77.8 77.8 66.7 89

3 88.9 88.9 100 100 100 100 88.9 100 88.9 66.7 92

4 100 100 88.9 100 88.9 88.9 88.9 88.9 88.9 100 93

5 77.8 77.8 66.7 55.6 44.4 44.4 44.4 22.2 0 0 43

6 100 77.8 88.9 77.8 66.7 66.7 22.2 33.3 44.4 33.3 61

7 88.9 77.8 88.9 88.9 88.9 100 88.9 100 88.9 100 91

8 55.6 100 100 100 88.9 66.7 66.7 44.4 33.3 11.1 67

9 88.9 77.8 100 88.9 77.8 66.7 66.7 44.4 22.2 22.2 66

10 66.7 88.9 77.8 88.9 77.8 77.8 66.7 33.3 55.6 66.7 70

11 100 100 88.9 77.8 55.6 55.6 33.3 11.1 11.1 11.1 54

12 88.9 77.8 77.8 77.8 77.8 77.8 66.7 55.6 88.9 77.8 77

All table cells give accuracies as percent. Last column is average of columns

indexed 0–9.

(2) Because the process/algorithm that assigns the codes to
inputs (the code selection algorithm, CSA) enforces the
similar-inputs-to-similar-codes (SISC) property, it follows
that all stored inputs (hypotheses) are active with strength in
descending order of similarity to (likelihood of) the hypoth-
esis represented by φ.

Crucially, since the Q active (spiking) cells represent all stored
hypotheses (with varying strengths), not just the single most likely
hypothesis, φ, it follows that all of these hypotheses physically influ-
ence the next time step’s decision processes. Specifically, any stored
hypothesis whose code has even one cell in common with φ, will
physically influence:

(a) the V distributions (and ultimately the ρ distributions) in all
CMs of all downstream macs on the next time step, and thus

(b) the resulting likelihood distributions over all the stored
hypotheses in each of the downstream macs on the next time
step.

While this is true, it still makes sense to say that all stored hypotheses are
physically influencing subsequent decisions; it’s just that the hypotheses hav-
ing zero intersection with φ are so different from φ that they are appropriately
viewed as having zero likelihood and thus as having no causal influence on
subsequent decisions.

We emphasize that the representation of a hypothesis’s likelihood
(or probability) in our model—i.e., as the fraction of the its code
(of Q cells) that is active—differs fundamentally from existing
representations in which single neurons encode such probabili-
ties in their (typically real-valued) scalar strengths of activation
(e.g., firing rates) as described in the recent review of Pouget et al.
(2013).

Another way of understanding the advantage of SDC over
localism is that an individual machine operation on a single unit
(cell), and moreover, on a single synapse—e.g., the addition of
a synapse’s weight into the input summation of a postsynap-
tic cell—transmits information about multiple items (hypothe-
ses) represented in the synapse’s presynaptic cell’s mac. In stark
contrast, in a localist model in which the presynaptic cell rep-
resents only one hypothesis, adding the synapse’s weight into
the input summation of a postsynaptic cell necessarily trans-
mits information only about that one hypothesis. We believe this
aspect of SDC—which qualifies as an instance of what has been
termed algorithmic, or representational, parallelism—to be at the
core of the biological brain’s remarkable efficiency at processing
information.

We also described several other important computational
principles/mechanisms used in Sparsey:

1. How a single SDC code active in a mac can simultaneously
represent two or more equally likely hypotheses and how
information entering that mac on subsequent time steps can
pare down the set of equally likely hypotheses (Section Step
5: Compute the number of competing hypotheses that will
be active in the mac once the final code for this frame is
activated).

2. How an important type of invariance, nonlinear time invari-
ance, can be computed via a “back-off” policy that does
not increase the time complexity of recognition (inference)
(Section CSA: Retrieval Mode). Essentially, on each frame,
a mac computes a series of estimates of the match of the
current temporal-context-dependent input (i.e., the current
spatiotemporal moment) not just to the set of actual moments
it experienced during learning (which constitute its explicit
spatiotemporal basis), but to a much larger (encompass-
ing) space of variants of the basis moments that were not
actually experienced. This is similar in spirit to dynamic
time warping (DTW) (Sakoe and Chiba, 1978), but is far
more efficient, again because of the underlying algorithmic
parallelism.

3. How Sparsey can learn arbitrarily nonlinear and intertwined,
i.e., “tangled,” classes via supervised learning of associations
between codes in different macs (Section Learning arbitrar-
ily complex nonlinear similarity metrics). That categories in
the physical world are smooth in the neighborhood around
any single exemplar but possibly very nonlinear and inter-
twined, i.e., “tangled,” with other classes at the global scale
has been pointed out by many, (e.g., Saul and Roweis, 2002;
Bengio, 2007; Bengio et al., 2012). In particular, DiCarlo
et al. (2012) state as a next step the need to formally specify
what is meant by “untangling local” subspace. We believe that
Sparsey addresses this need. First, the CSA’s two functions of
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storing (learning) and (best-match) retrieval of stored mem-
ories, can be viewed as a SISC-respecting content-addressable
memory. Thus, individual macs handle the smooth category
structure around individual exemplars: i.e., a novel input that
is sufficiently similar to a known exemplar should activate
an SDC with high intersection with the known exemplar’s
code and therefore exert similar downstream influence to
that which would be produced by the familiar exemplar’s
code. The global highly nonlinear category structure is untan-
gled by the hierarchy of macs, and specifically, by the ability
(strongly subserved by progressive persistence) for multiple
arbitrarily different codes in one cortical patch (e.g., one
mac or set of macs) to be associated with a single code in
another patch.

4. That, during learning, the CSA formally involves two rounds
of competition amongst the mac’s cells. In the first round,
CSA Step 8, the Q cells with the maximal V-values in their
respective CMs are determined and must activate (i.e., spike)
so that their outputs can be summed and averaged to yield G.
In the second round, CSA Step 12, a final winner is chosen in
each CM according to the ρ distribution in that CM, i.e., soft
max. In general, the second round winners may differ (perhaps
substantially, especially when G ≈ 0) from the first round win-
ners. This hypothesis that the canonical cortical computation
involves two rounds of competition is a strong and falsifiable
prediction.

5. And, that the concept of feature basis present in Sparsey dif-
fers markedly from that present in localist models such as
Olshausen and Field (1997), summarized in in Table II-3.

A great deal of work remains, particularly in understanding and
mechanistically explaining the learning and usage (as in on-
line rapid recognition/inference) of a hierarchy of spatiotemporal
features. Even though Sparsey centers around a single canoni-
cal algorithm/circuit, the CSA [much of which was described
(Rinkus, 1996)], the ultimate algorithmic solution of cortex lives
in what DiCarlo et al. (2012) term a “very, very large space of
details,” which will take quite some time to explore, as suggested
by Study II (Sections Study 2: Single-trial Learning of Sets of
Longer Sequences), which itself only begins to scratch the sur-
face of the myriad parameter interactions that we would like to
understand.
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