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Synaptic plasticity is often explored as a form of unsupervised adaptation in cortical

microcircuits to learn the structure of complex sensory inputs and thereby improve

performance of classification and prediction. The question of whether the specific

structure of the input patterns is encoded in the structure of neural networks has been

largely neglected. Existing studies that have analyzed input-specific structural adaptation

have used simplified, synthetic inputs in contrast to complex and noisy patterns found

in real-world sensory data. In this work, input-specific structural changes are analyzed

for three empirically derived models of plasticity applied to three temporal sensory

classification tasks that include complex, real-world visual and auditory data. Two forms

of spike-timing dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM)

plasticity rule are used to adapt the recurrent network structure during the training

process before performance is tested on the pattern recognition tasks. It is shown that

synaptic adaptation is highly sensitive to specific classes of input pattern. However,

plasticity does not improve the performance on sensory pattern recognition tasks,

partly due to synaptic interference between consecutively presented input samples. The

changes in synaptic strength produced by one stimulus are reversed by the presentation

of another, thus largely preventing input-specific synaptic changes from being retained

in the structure of the network. To solve the problem of interference, we suggest that

models of plasticity be extended to restrict neural activity and synaptic modification to a

subset of the neural circuit, which is increasingly found to be the case in experimental

neuroscience.

Keywords: synaptic plasticity, spiking neural networks, recurrent neural networks, inference, pattern recognition

1. Introduction

Recurrent neural networks consisting of biologically based spiking neuron models have only
recently been applied to real-world learning tasks under a framework called reservoir computing
(Maass et al., 2002; Buonomano and Maass, 2009). The models of this framework use a recurrently
connected set of neurons driven by an input signal to create a non-linear, high-dimensional
temporal transformation of the input that is used by single layer perceptrons (Rosenblatt, 1958)
to produce desired outputs. This restricts the training algorithms to a linear regression task, while
still allowing the potential to work on temporal data in a non-linear fashion.

Given an initially generated static connectivity, reservoir computing is based on the principle of
random projections of the input signal in which the network structure is completely independent
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of the input patterns. In these models, the only features learned
by the trainable parameters of the perceptron readout are the
correlations between the randomly projected features and the
desired output signal.

We believe that learning in neural networks should go further
than supervised training based on error from the output. All
synapses should adapt to be able to encode the structure of the
input signal and ideally, should not rely on the presence of a
desired output signal from which to calculate an error with the
actual output. The neural activity generated by the input signal
should provide enough information for synapses to adapt and
encode properties of the signal in the network structure. By
applying unsupervised adaptation to the synapses in the form
of biologically derived plasticity rules (Bienenstock et al., 1982;
Bi and Poo, 1998; Wittenberg and Wang, 2006) it is hoped to
provide the means for the recurrently connected neurons of the
network to learn a structure that generates more effective features
than a completely random projection that is not specific to the
input data.

On a conceptual level, unsupervised learning is important in
the understanding of how synaptic adaptation occurs because
it is still unknown what the sources of supervised signals are
in the brain, if any exist. From early work on synaptic self-
organization (Hebb, 1949), the principle of learning has rested on
correlations in neural activity becoming associated together and
forming assemblies that activate simultaneously. These structures
are thought to encode invariances in the sensory input that are
key in developing the ability to recognize previously encountered
patterns.

In this work we will explore the impact of applying several
biologically derived plasticity mechanisms on three temporal
sensory discrimination tasks. Two forms of spike-timing
dependent plasticity (STDP) (Bi and Poo, 1998; Wittenberg and
Wang, 2006) will be tested, along with the Beinenstock-Cooper-
Munro (BCM) rule (Bienenstock et al., 1982). The sensory tasks
will include real-world speech and video data of human motion.
Synaptic plasticity will be applied in an unsupervised pre-training
phase, before the supervised regression of the perceptron readout
occurs. We will compare the impact that plasticity has on the
performance in these tasks and also analyze the specific structural
adaptation of the weight matrices between each of the classes
of input sample in each task. A method will be introduced
to evaluate the extent to which the synaptic changes encode
class-specific features in the network structure.

Interference between different samples is a well-established
phenomenon in sequentially trained learning models
(McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999).
When presented to a learning model, an input pattern will
cause specific changes to be made in the models parameters—in
the case of neural networks, the synapses. However, during
this encoding process, existing structure in the synaptic values
is interfered with. In this way, consecutive input patterns
disrupt previously learned features, sometimes completely. This
effect is known as forgetting. It is of direct concern to neural
networks trained on sensory recognition tasks that consist of
spatio-temporal patterns projected through a common neural
processing pathway. We will quantify the level of interference

between the synaptic parameters for each tested plasticity model
being applied to each type of sensory data.

Existing studies report that adapting neural circuits with
plasticity improves their performance on pattern recognition
tasks (Yin et al., 2012; Xue et al., 2013) but there is no analysis of
how the adaptation of synaptic parameters leads to this result. On
the other hand, work that does detailed analysis on the structural
adaptation of the network does so using synthetic input patterns
that are already linearly separable (Toutounji and Pipa, 2014) or
Poisson inputs projecting to single and recurrently connected
neurons (Gilson et al., 2010). For a review of work applying
plasticity models to improve the general properties of neural
networks, the reader is referred to Chrol-Cannon and Jin (2014a).

The experiments undertaken in this work will be performed
on a typical reservoir computing model with its recurrent
connections adapted with plasticity. Two main angles of analysis
are made; we determine the strength of input specific synaptic
adaptation and the extent to which consecutive inputs interfere
within the synapses. Both of these are achieved through analysis
of the change in weight matrix in response to each pattern.

2. Results

2.1. Training Recurrent Networks with Plasticity
Our training and analysis is performed on a typical liquid state
machine (LSM) model (Maass et al., 2002) that is trained to
correctly classify temporal input patterns of sensory signals.
Details of the models and simulations can be found in the
Section 4. Here we present an overview of the experimental
procedure.

An LSM consists of recurrently connected spiking neurons in
which transient activity of the neurons is driven by time-series
input sequentially exciting their membrane potential. In order
for an output to be produced from the network and used to train
a supervised readout, a snapshot must be taken of the transient
activity which we call the state vector. This vector is weighted and
summed to produce an output, the weights of which are trained
with linear regression.

In our experiments we adapt the recurrent connections with
synaptic plasticity before taking the state vectors used for pattern
recognition. We intend to change the synaptic weights from their
initial random structure, to values that are adapted to the general
statistics of the input signals. After this pre-training process, we
take the state vectors for each sample in the data set and use
it to train a set of readouts to recognize labeled patterns in the
data. Performance of pattern recognition is only a small aspect
of our analysis of synaptic adaptation through plasticity. The
analysis methodology described in the next subsection requires
the information of how each sample of input causes unique
adaptation of the synapses. Therefore, for convenience, when
collecting the liquid state vectors of a given sample from the
neural activity, we also compute the synaptic change during
the presentation of that sample and store the weight matrix
adaptation.

Figure 1 illustrates the three step process just described,
delineated into; a pre-training phase of synaptic plasticity, a
collection of the liquid state vectors and weight adaptation

Frontiers in Computational Neuroscience | www.frontiersin.org 2 August 2015 | Volume 9 | Article 103

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Chrol-Cannon and Jin Learning structure of sensory inputs

matrices, and a supervised training phase of linear readouts for
pattern recognition.

2.2. Description of Sensory Inputs
Complex sensory signals are projected through a common set
of nerve fibers to cortical regions that must learn to distinguish
between them based on differences in their spatial-temporal
features.

Three sensory recognition tasks are selected, among which
two of them consist of real audio and video signals of human
speech and motion. For all tasks, the neural network output is
trained to respond uniquely to each of the different types of input
sample and therefore be able to perform effective recognition
between them. Also, sample specific synaptic adaptations are
analyzed to determine if unique structure is learned within the
network due to synaptic plasticity.

The auditory task is to distinguish between nine different
speakers based on short utterances of the vowel /ae/. Each of
the 640 samples consists of a frequency “spectrogram” that
plots frequency intensity over a sequence of audio time frames.
Figure 2 plots an example sample from each of the nine speakers.

The visual task is to distinguish between six types of
human behavior; boxing, clapping, waving, walking, running
and jogging. The 2391 samples are video sequences of many
different subjects performing those six motions. There is a

simple pre-processing stage that converts the video data into
a sparse representation before being used as input to the
neural network. Extracted still frames and processed features are
plotted in Figure 3 for one subject performing each of the six
behaviors.

A synthetic data set is generated to model a low spatial
dimension but very high frequency temporal structure, in
contrast to the previous two sensory tasks. Three functions
generate time-varying single dimensional signals that the
network learns to distinguish between. A complete description
and method for generating the data is described in Jaeger (2007)
(Figure 4) illustrates part of this signal.

The auditory and visual tasks are described in Kudo
et al. (1999) and Schuldt et al. (2004), respectively, with data
availability also provided.

2.3. Analysis of Synaptic Adaptation
Synaptic weight adaptationmatrices form the basis of the analysis
in this work. Figure 5 depicts the process of these matrices being
collected and used for analysis of class-specific synaptic plasticity.
Firstly, synaptic plasticity is applied to the network to adapt
a baseline weight matrix that reflects the general statistics of
the input patterns in the data set. Secondly, each the weight
adaptation matrix is collected for each sample and these are
grouped by class and also into two sets based on the training and

FIGURE 1 | Three step process describing a reservoir computing

model extended by having the recurrent connections adapted with

unsupervised plasticity in a pre-training phase. Firstly, input samples I

are presented in random order while the resulting neural activity drives

synaptic adaptation under plasticity. Secondly, each input sample is

presented in sequence with the resulting neural activity decoded into a series

of state vectors S. Finally, the state vectors are used as the input to train a

set of perceptron readouts, one to recognize each class of sample, Cx.

FIGURE 2 | Vowel samples from the nine speakers in the speaker recognition task. The audio signals in the data set are pre-processed into 12 Mel-frequency

cepstrum coefficients (MFCC) features. Samples from each speaker have variable time duration in the number of audio frames they consist of.
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FIGURE 3 | Human motion samples for the six types of behavior in the

KTH visual discrimination task. This illustration consists of different

behaviors from a single person, while the whole data set contains 25

persons. Top row: Still frames from example video samples; boxing,

clapping, waving, walking, running and jogging. Bottom row: Features

extracted corresponding to the samples above, according to Equations (13)

and (14). Features are the raw time-series activity used as input to the neural

network.

FIGURE 4 | Plot of 500 of the 50,000 data samples generated according

to Jaeger’s tri-function system recognition time-series task (Jaeger,

2007).

testing data division. Finally, the Euclidean distance is calculated
between each weight matrix, with the average distance between
each set plotted in a type of “confusion matrix” in which a
low distance indicates high similarity between the adaptation of
synaptic parameters.

In the confusion matrix just described, if the diagonal values
are lower than the others it means that synaptic plasticity is
sensitive to the structural differences in input samples that are
labeled as different classes. The stronger the diagonal trend, the
more sensitive plasticity is to features of the input. It means
that plasticity learns to distinguish class labels, such as different
speakers or human actions, without ever being exposed to the
labels themselves a priori.

The weight adaptation matrices are also used to estimate the
amount of interference between different input samples within
the synaptic parameters. This is described further later in the
Results Section.

2.4. Learning Input-Specific Adaptations using
Plasticity
Wewish to test the hypothesis that synaptic plasticity is encoding
a distinct structure for input samples of different labels. For the
speech task, these labels consist of different speakers and for
the video recognition task the labels consist of different human
behaviors.

The data sets are divided evenly into two. Each subset is used
to train a recurrently connected network for 10,000 iterations,
selecting a sample at random on each iteration. The changes to
the weight matrix due to plasticity are recorded for each sample
presentation. This is then used to create a class-specific average
weight change for each of the class labels in both of the sample
subsets. Finally, we calculate the Euclidean distance between each
class in one set and each class in the other according to the
following formula:

Dist(CX
lab,C

Y
lab) =

N
∑

i= 1

|1Wi(C
X
lab)−1Wi(C

Y
lab)| (1)

Where Clab denote class labels, X and Y distinguish the separated
sets of samples, 1W is the change in weight matrix for a
presented sample, N is the number of synapses, and i the synapse
index.

This effectively produces a confusion matrix of similarity in
the synaptic weight change for different classes of input. Having
lower values on the descending diagonal means that there is
structural adaptation that is specific to the class of that column
compared with the similarity between structural adaptations of
two different classes.
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FIGURE 5 | Three step process describing the analysis of

input-specific synaptic adaptations. Firstly, the recurrent connections are

adapted under plasticity in the same way as in Figure 1. Secondly, each

input sample is presented and plasticity adapts the synapses. The change in

the weight matrix is stored for each sample and grouped by the input class

label, Cx and into two sets, train and test. Finally, the Euclidean distance

between the matrices in train and test is calculated and the average for each

class label is plotted in a confusion matrix.

FIGURE 6 | Class correlation of structural synaptic adaptation. Heat map

plots indicate the structure learned on each class for the three tasks under each

of the plasticity rules. Essentially, it is a confusion matrix of the geometric

distance between the weight matrix adaptation of each class of sample. The

training data for each task is divided into two sets. Class-average adaptation is

found for each set. There is then a distance calculated between each class of the

two sets. Lower values on the descending diagonal indicate higher correlation

within a class adaptation and therefore strong class-specific structure learned.

Figure 6 shows the “weight change confusion matrices”
described above, for each plasticity model applied to all sensory
tasks (nine experiments in total). All of the experiments show at
least some stronger similarity in the descending diagonals and
most are stark in this manner. It is certainly a strong enough
pattern to show that through themany iterations of training, each
of the plasticity models have become sensitive to the particular
structure of the sensory input signals so that each different class
of sample will give rise to changes in synaptic strength that

TABLE 1 | Classification error rates.

Static BCM STDP TP-STDP

Tri-func 0.153 0.157 0.204 0.138

KTH 0.283 0.3 0.333 0.383

Vowels 0.089 0.086 0.092 0.086

Values averaged over 10 trials with random seed based on system clock. SD did not

exceed 0.03 for all values. Bold values indicate lowest error rate.

are distinct from other classes compared with the similarity to
themselves. We re-iterate that the class labels were not used in
any way in the plasticity models themselves and so the differences
in the weight change arise from the input signals alone.

There are a few exceptions to the strong diagonal patterns
in Figure 6. This means that some classes are not effectively
distinguished from each other; speakers 8/9 with bi-phasic STDP,
behaviors 1/2 with BCM, behaviors 1/2/3, and 4/5/6 with tri-
phasic STDP. The latter confusion corresponds to the behaviors
of boxing/clapping/waving and walking/running/jogging. From
the similarity of those input features shown in the lower panes of
Figure 3, it is evident why this confusion might occur.

2.5. Classification Performance with Plasticity
Perhaps the ultimate goal of neural network methods when
applied to sensory tasks is the ability to accurately distinguish
different types of input sample by their patterns. We compare
the error rates achieved by our neural network on the three
sensory tasks, with and without the different forms of plasticity
used in this work. Table 1 lists the error rates achieved for each
of the learning tasks with the different plasticity rules active in
a pre-training phase in addition to a static network with fixed
internal synapses.

From the error rates in Table 1 it is evident that pre-training
the network with synaptic plasticity can make insignificant
improvements in lowering the error rate. However, the results
here indicate that it can have a greater negative impact than
a positive one. In the KTH human behavior data set, all three
plasticity models increase the error rate by between 1.7 and 10%.
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Conversely, the best improvement was found on the tri-function
signal recognition task with tri-phasic STDP at only 1.5%.

It is clear from the network output that pre-training with
synaptic plasticity is not a suitable method for this class of model,
This does not contradict the result that plastic synapses are
learning useful, input-specific structure. However, it does suggest
that the structure being learned is not effectively utilized in the
generation of a network output. We next investigate interference
between synaptic changes to determine if the structural learning
is retained in the network or if interference is a barrier for
effective application of synaptic plasticity.

2.6. Synaptic Interference
When a model adapts incrementally to sequentially presented
input, existing patterns that have been learned by the model
parameters are prone to be overwritten by learning new patterns.
This is known as interference. The work that has studied this
effect (McCloskey and Cohen, 1989; Ratcliff, 1990; French, 1999),
test the ability to recognize previously presented input after the
model has been trained on new ones in order to estimate how
much learning has been undone. When new training leaves the
model unable to recognize old patterns, it is said there has been
catastrophic interference and forgetting.

We introduce a method of measuring interference directly in
synaptic parameters instead of the model output. Our measure
is described in detail in the Section 4. Itotal directly quantifies all
synaptic changes that are overwritten.

The interference for each of our experiments is listed in
Table 2. In all but one of the experiments the interference level is
between 82 and 96%. Most of the learned structure for each class
of input is forgotten as consecutive samples overwrite each other’s
previous changes. Bi-phasic STDP applied to speaker recognition
has the lowest level of interference at 58%.

To further explore interference and visualize the impact of
plasticity, synaptic changes will be analyzed directly. Figure 7 is
an illustrative example in which a reduced network size of 35
neurons is used to improve visual clarity of the plotted patterns.
It is an example for the speaker recognition task with BCM
plasticity with similar figures for the other experiments given
in Supplementary Figures 1–8. It shows the adaptation of the
synaptic weight matrix produced by each speaker in the voice
recognition task. This is plotted against the activity level for each
neuron, S, and the readout weights,R, that are trained to generate
an output that is sensitive to that given speaker. Each of these sub
plots is the average response taken over all sample presentations
from that speaker. Thismakes a whole chain of effect visible: from

TABLE 2 | Synaptic interference.

BCM STDP TP-STDP

Tri-func 0.82 0.8 0.88

KTH 0.92 0.93 0.96

Vowels 0.96 0.58 0.9

Values averaged over 10 trials with random seed based on system clock. SD did not

exceed 0.07 for all values. Bold values indicate lowest interference.

the synaptic change of an internal network connection, to the
average neuron state for a given speaker, to the selective weights
of the readout for that speaker. For all to be working well in a
cohesive system, we expect that a positive weight change should
correspond with a neuron activation unique to the class which
would in turn improve the recognition ability of the readout to
identify that class.

The sections of the class weight matrix highlighted in green
in Figure 7, highlight an example where synaptic interference is
occurring between different types of pattern. Directly opposing
features in the weight matrix adaptations show the samples
negating each other’s changes. However, the same features are
also most distinctively class specific.

Any synapse can only change in two directions: positively or
negatively, which means that a single synapse can only adapt
to distinguish between two mutually exclusive kinds of input
pattern. If n synapses are considered in combination, then the
number of input patterns that can be discriminated becomes 2n

in ideal theoretical conditions. Figure 7 illustrates this principle
in practice with regards to the nine speaker recognition tasks.
The adapted synapses labeled (a) can clearly distinguish speaker
{#1} from speakers {#2, #3} but cannot distinguish {#2} from
{#3}. Similarly, the adapted synapses labeled (b) can distinguish
speakers {#1, #6, #8} from speakers {#3, #4, #9} but cannot
distinguish speakers within either of those sets. However, if the
synapses (a–d) are considered in combination, then all speakers
can be distinguished by synaptic plasticity changes alone.

Figure 7 also shows the weight changes are not correlated with
the neural activity or readout weights. For plasticity to improve
the accuracy of sensory discrimination, it would be expected that
synapses would strengthen for class specific neural activity and
weaken for common neural activity. This is not the case in our
results.

3. Discussion

3.1. Evolution of Synaptic Weights
Our main conclusions are drawn from the observation that the
synaptic plasticity models tested become sensitive to specific
class labels during a competitive process of synaptic interference
between input patterns. For our conclusions to be generally
applicable to recurrent neural circuits and liquid state machines
in particular, we must demonstrate that synaptic weights reach
some stability during pre-training and that the neural activity
dynamics are working in a balanced regime.

Figure 8 shows a series of plots taken at 1, 100, and 1000
input iterations that show the evolving distributions of synaptic
weights and inter-spike intervals (ISI) for each of the experiments
performed in this work.

In general, the plots show that between the first and
100th pattern, the synaptic weights are adapted significantly by
plasticity, with a corresponding—but more subtle—change in the
distribution of ISIs. While there is also some level of change
in weights between the 100th and 1000th iteration, the level is
far smaller, which indicates that the synapses are converging
on a common structure. However, it is important to note that
for simulations even up to 10,000 iterations there is always
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FIGURE 7 | The class-specific synaptic adaptation for the 9 class

speaker recognition task under BCM plasticity. The main heat maps in

each subplot show the adaptation of the weight matrix (synapses) after the

presentation of voice input data from each speaker. Blue values show a

reduction in synaptic strength and red values show an increase. Each N × N

weight matrix has pre-neurons on the x-axis and post-neurons on the y-axis.

The bar-chart, S, shows the average neuron activation for each class. The

bar-chart,R, shows the learned readout weights. Labeled synapses a–d

indicate key structural changes that are selective between different speakers.

Each label alone can distinguish between two sets of speaker. Taken all

together, the labeled synapses adapt specifically to each speaker in a unique

pattern, learning a distinct network structure for each one.

some low level of synaptic change. The plasticity models tested
never stabilize to a point in which there is no further synaptic
adaptation, even when we repeatedly present a single input
sample.

Each of the plasticity models drives the synaptic weights
to a different kind of distribution. STDP creates a bi-modal
distribution that drives most weights to the extremes: 0 and
10, with a few that are in a state of change leading up to each
boundary. It leads to a structure with more full strength synapses
than zeroed. TP-STDP and BCM plasticity leads to sparser
connectivity that drives most weights to zero. In particular,
TP-STDP only maintains a small number of weak connections
due to the narrow window of potentiation being surrounded
by depressive regions that suppress most connections. BCM
includes an implicit target level of post-synaptic activity that
encourages some synapses to take larger values but doesn’t drive
them to their maximum.

The distribution of ISIs give an indication of the dynamics
of the neural activity. The plots in Figure 8 show that a
balance between completely sparse and saturated activity is
maintained during the simulation. The shape of the ISI

distributions tend to stabilize between 100 and 1000 sample
presentations.

The above observations provide some evidence that the results
presented in this article are not simply an artifact of a particular
choice of model parameters but are observed for a normally
functioning liquid state machine.

3.2. Unsupervised Plasticity Learns Label
Specific Structure
Both STDP and BCM models adapt the synapses of a network
in distinctive patterns according to which type of sample
is being presented to the network. We can conclude that
presenting a training signal with the sample label is not
required for plasticity to learn specific information for complex
sensory inputs from different sources. This result holds for
the speech, visual and benchmark pattern recognition tasks.
To achieve this feat, we hypothesize that plasticity drives the
synaptic parameters to a structure that represents an average
between all input samples. Once converged, any further input
stimulus will drive the synaptic parameters in a unique direction
away from this average structure. On balance, scrambled
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FIGURE 8 | Plots of evolving synaptic weight (black, top) and ISI (blue, bottom) distributions given for each recognition task and each plasticity model.

The plots are snapshots of the parameter distributions after 1, 100, and 1000 input samples have been presented during pre-training.

presentation of random inputs keeps the network in this sensitive
state.

3.3. Uniformly Applied Plasticity Leads to
Synaptic Interference
We show synaptic plasticity spends most of its action counter-
acting previous changes and overwriting learned patterns. The
same patterns of synaptic adaptation that distinctly characterizes
each class of input are the same ones that reverse adaptations
made by other inputs.

Plasticity is applied uniformly to all synapses. All neurons in
a recurrent network produce activity when given input stimulus.
Combined, these factors mean that any input sample will cause
the same synapses to change. This leads to synaptic competition,
interference and ultimately, forgetting.

3.4. Local Plasticity Required to Overcome
Interference
To overcome the problem of interference, the mechanisms of
plasticity need to be restricted to adapt only a subset of the
synapses for any given input stimulus. There is much existing
research that supports this conclusion and a number of possible
mechanisms that can restrict the locality of plasticity.

It has been shown in vivo (using fMRI and neurological
experiment) that synaptic plasticity learns highly specific
adaptations early in the visual perceptual pathway (Karni
and Sagi, 1991; Schwartz et al., 2002). Simulated models of
sensory systems have demonstrated that sparsity of activity is
essential for sensitivity to input-specific features (Finelli et al.,
2008; Barranca et al., 2014). In fact, in a single-layer, non-
recurrent structure, STDP is shown to promote sparsity in

a model olfactory system (Finelli et al., 2008). Conversely,
in recurrent networks, STDP alone is unable to learn input
specific structure because it “over-associates” (Bourjaily and
Miller, 2011). Strengthened inhibition was used to overcome
this problem and combined with reinforcement learning to
produce selectivity in the output (Bourjaily and Miller, 2011). By
promoting sparsity, the lack of activity inmost of the network will
prevent activity-dependent models of plasticity in adapting those
connections.

Reward modulated plasticity has also been widely explored
in simulated (Gavornik et al., 2009; Darshan et al., 2014) and
biological experiment (Li et al., 2013; Lepousez et al., 2014).
Input-specific synaptic changes are shown to be strongest in the
presence of a reward signal (Gavornik et al., 2009; Lepousez
et al., 2014). Lasting memories (synaptic changes not subject
to interference), are also seen to rely on a process of re-
consolidation consisting of fear conditioning (Li et al., 2013). A
reinforcement signal based on either reward or fear conditioning
can be effectively used to restrict synaptic changes in a task
dependent context such as sensory pattern recognition.

Another way to restrict synaptic changes in a task dependent
way is to rely on a back-propagated error signal that has
well-established use in artificial neural networks. This might
be achieved in a biologically plausible way through axonal
propagation (Kempter et al., 2001) or top-down cortical
projections sending signals backwards through the sensory
pathways (Schäfer et al., 2007). Top-down neural function in
general is thought to be essential in determining structure in
neural networks (Sharpee, 2014), providing a context for any
adaptations. A molecular mechanism for the retro-axon signals
required for back-propagation is has been proposed (Harris,
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2008). However, in general these retro-axon signals are known
to be important for neural development but may be too slowly
acting to learn sensory input.

3.5. Learning Input Structure Does Not
Necessarily Improve Performance
Structural adaptation with plasticity in the pre-training phase,
while specific, may not be utilized by the output produced
by the network readout. This could be due to the following
reasons. Firstly, there is a disparity in the neural code. The
output from a recurrent spiking network model is currently
decoded as a rate code. In contrast, synaptic plasticity updates
structure in a way that depends on the precise temporal activity
of neural spikes. Secondly, information content is reduced.
While creating associations between co-activating neurons,
Hebbian forms of plasticity may also increase correlations and
reduce information and separation. These can determine the
computational capacity of a recurrent network model (Chrol-
Cannon and Jin, 2014b). Both discrepancies could be barriers
for the effective application of plasticity to improve pattern
recognition. Therefore, new frameworks of neural processing
should be based directly on the adapting synapses. This will lead
to functional models of neural computing that are not merely
improved by synaptic plasticity, but that rely on it as an integral
element.

This finding contrasts with some existing work that shows pre-
training with plasticity including STDP (Xue et al., 2013) and
BCM (Yin et al., 2012) can improve performance in a recurrent
spiking network. To address this discrepancy we note that pre-
training might improve the general computational properties
of recurrent networks without learning input-specific structure.
Furthermore, if this is the case, the likelihood of plasticity leading
to an improvement will largely depend on how well-tuned the
initial parameters of the network are before the pre-training
phase begins.

4. Materials and Methods

4.1. Simulation Procedure
The three step procedure depicted in Figure 1 for training an
LSM with plasticity is now described below in pseudocode.
Where relevant, some of the expressions within the pseudocode
refer to equations that can be found in subsequent subsections
where the models for neurons, connectivity, plasticity and pre-
processing of inputs can also be found.

Firstly, the following section of pseudocode illustrates the pre-
training process in which the recurrent synaptic connections are
adapted with plasticity. Input samples are selected at random
(scrambled) for a total number of preTrainIterations which is
10,000. For a single input sample, each of the time-series frames is
presented to the network in sequence by setting the input current
of the connected neurons to Win[x][c] · S[f ][x] · inputScale. The
inputScale is 20, which is based on the neuron membrane model
selected. The neural activity of the network is then simulated
for frameDuration which is 30 ms. Plasticity is calculated and
updated in between each frame of input in a sample. Neural
activity is reset for the next input sample.

// pre-train recurrent neurons with
plasticity

for each iteration I in preTrainIterations
select random sample S from trainingSamples
for each frame f in S

for each attribute x in f
for each connection c in Cin

c.input(Win[x][c] · S[f ][x] ·
inputScale)

for each timestep t in frameDuration
neurons.simulateActivity()

// Equations 2, 3, 4
synapses.applyPlasticity()

// Equations 8, 9, 10
neurons.resetActivity()

Secondly, we collect the reservoir states for each sample. The
simulation procedure is essentially the same as in pre-training
but iterates once for each sample in the dataset. Activity
feature vectors are stored in S.fv and weight matrix adaptation
in S.dw.

// collect neural activation state vectors
baseWeights.value ← synapses.value
for each sample S in trainingSamples

for each frame f in S
for each attribute x in f

for each connection c in Cin

c.input(Win[x][c] · S[f ][x] ·
inputScale)

for each timestep t in frameDuration
neurons.simulateActivity()

// Equations 2, 3, 4
synapses.applyPlasticity()

// Equations 8, 9, 10
S.fv ← neurons.filteredSpikes()

// Equation 5
S.dw ← synapses.value − baseWeights.value
neurons.resetActivity()
synapses.value ← baseWeights.value

Finally, for determining the pattern recognition performance of
the LSM, we train a set of readouts using least mean squares
regression. There is one readout to predict the presence of each
possible class of input. For a total of readoutTrainingIterations
that is set to 100,000, a randomly selected samples state vector fv
will be used to adapt the readout weights. The desired signal will
be set to 1 for the readout matching the sample class and 0 for the
others. For predicting class labels on the training and testing data,
the readout with the maximum value for a given fv is selected to
predict the class (winner takes all).

// train readouts with linear regression
for each iteration I in readoutTrainIterations

select random feature vector fv from
trainingSamples.fv

for each class readout R in nClass
if R.classLabel = fv.classLabel
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// boost readout for matching
class

R.output ← R.lms(fv, 1)
// Equations 6, 7

else
// suppress other readouts
R.output ← R.lms(fv, 0)

// Equations 6, 7
prediction P ← max(R.output)
if P.classLabel 6= fv.classLabel

errorSum ← errorSum + 1
errorCummulative ← errorSum ÷ I

4.2. Recurrent Network
The neural network model used in this work is illustrated in
Figure 9. Recurrently connected neurons, indicated by L are
stimulated by current I that is the sum total of injected current
from the input signal, Iinj and stimulating current from the
pre-synapses, Irec. The total current I perturbs the membrane
potential that is modeled with a simple model that matches
neuron spiking patterns observed in biology (Izhikevich, 2003).
This method for modeling the spiking activity of a neuron
is shown to reproduce most naturally occurring patterns of
activity (Izhikevich, 2004). The real-valued inputs are normalized
between 0 and 1, which are multiplied by a scaling factor of
20 before being injected as current into L. Input connections
number 0.2 · network size, projected randomly to the network
nodes. Weights are uniformly initialized at random between
0 and 1. The video data set used in this work consists of
significantly higher dimension inputs—768 features—than the
other data sets. Therefore, in this case each feature only projects
to one neuron, initially selected at random (a neuron can have
connections from multiple inputs). Also the synaptic weights are
scaled by 0.25.

The network activity dynamics are simulated for 30 ms for
each frame of data in a time-series input sample. This value is
chosen as it roughly approximates the actual millisecond delay
between digital audio and video data frames. Then, the resulting
spike trains produced by each of the neurons are passed through
a low-pass filter, f , to produce a real valued vector used to train
a linear readout with the iterative, stochastic gradient descent
method (each described in the next section).

FIGURE 9 | Depiction of the elements of our recurrent network model. I

is a multi-dimensional input signal, L nodes constitute the recurrent network,

the x vector is the neural activation state, f is the filtering of the spike trains

and y is the output after weight and sum.

In our experiments the network consists of 35 or 135 spiking
neurons (weight matrix plots consist of 35, performance trials
consist of 135) with the ratio of excitatory to inhibitory as
4:1. Neurons are connected with static synapses i.e., the delta
impulse (step) function. Connectivity is formed by having
N2 · C synapses that each have source and target neurons
drawn according to uniform random distribution, where N
is the number of neurons and C is 0.1, the probability of
a connection between any two neurons. Weights are drawn
from two Gaussian distributions; N (6, 0.5) for excitatory and
N (−5, 0.5) for inhibitory. When plasticity adapts the reservoir
weights, wmax is clamped at 10 and wmin at −10. All parameters
for excitatory and inhibitory neuron membranes are taken from
Izhikevich (2003). The equations for the membrane model are as
follows:

v′ = 0.04v2 + 5v+ 140− u+ I (2)

u′ = a(bv− u) (3)

With the spike firing condition:

if v > 30mV then

{

v← c

u← u+ d
(4)

Parameters for the above equations are; a = 0.2, b = 0.2,
c = −65, d = 8 for excitatory neurons and; a = 0.1, b = 0.2,
c = −65, d = 2 for inhibitory neurons.

4.3. Trained Readout
To generate a real-valued output from the discrete spiking
activity, the spike train from each neuron is convolved with
a decaying exponential according to Equation (5). The vector
of values produced is then weighted with the readout weight
matrix and summed to produce a single output value, shown in
Equation (6).

xi = f (S(t)) = max

(

T
∑

t= 1

exp

(

−S(t)

τ

)

)

(5)

y =

n
∑

i= 1

xi � wi (6)

The state vector for a neuron is denoted by xi, the filter function
is f () and the spike train is S(t). The maximum number of
time-steps in S(t) is T, in this case 50. The decay constant τ

is 6ms.
The maximum value is taken from the low-pass filtered values

in Equation (5) in order to detect the highest level of burst
activity in the given neuron. We take this approach under the
assumption that burst activity is more representative of spiking
neural computation than a sum total of the firing rate.

These output weights are updated according to the iterative,
stochastic gradient descent method: Least Mean Squares, given
in Equation (7).

wi ←− wi + µ(yd − yo)xi. (7)
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Here, yd is the desired output, yo is the actual output, xi is
the input taken from a neuron’s filtered state, and µ is a small
learning rate of 0.005. The weight from xi to the output is wi. For
the classification tasks of pattern recognition, yd takes the values
of 0 or 1 depending if the class corresponding to the readout is
the label of the current input sample.

4.4. Synaptic Plasticity Models
Three synaptic plasticity mechanisms are employed in this study,
each of them based on the Hebbian postulate (Hebb, 1949) of
“neurons that fire together, wire together.” Each mechanism is
outlined as follows:

4.4.1. BCM Plasticity
The BCM rule (Bienenstock et al., 1982) is a rate based Hebbian
rule that also regulates the post-neuron firing rate to a desired
level. It works on a temporal average of pre- and post-synaptic
activity. The BCM rule is given in Equation (8). The regulating
parameter is the dynamic threshold θM , which changes based
on the post-synaptic activity y in the following function: θM =

E[y], where E[·] denotes a temporal average. In our case, E[·]
is calculated as an exponential moving average of the post-
synaptic neurons membrane potential. The exponential decay
coefficient used for this is 0.935. As the membrane potential is
model-dependant, we normalize it between 0..1 in real-time by
continuously updating max and min variables of previous values.
There is also a uniform decay parameter ǫw set as 0.0001 that
slowly reduces connection strength and so provides a means for
weight decay, irrespective of the level of activity or correlation
between pre-synaptic inputs and post synaptic potential. A plot of
the BCM weight change is presented in Supplementary Figure 9.

1w = y(y− θM)x− ǫw (8)

4.4.2. Bi-phasic STDP
The STDP rule depends on the temporal correlation between
pre- and post-synaptic spikes. The synaptic weight change is
computed based on the delay between the firing times of the
pre- and post- neuron. This is described in a fixed “learning
window” in which the y-axis is the level of weight change and the
x-axis is the time delay between a pre- and post-synaptic spike
occurrence. The bi-phasic STDP rule consists of two decaying
exponential curves (Song et al., 2000), a positive one to potentiate
in-order spikes, and a negative one to depress out-of-order
spikes. This rule was derived from experimental work carried out
on populations of neurons in vitro (Markram et al., 1997; Bi and
Poo, 1998). Bi-phasic STDP is given in Equation (9).

1w(1t) =







A+ · exp
(

−1t
τ+

)

if t > 0

−A− · exp
(

1t
τ−

)

if t ≤ 0
(9)

A+ and A− are the learning rates for the potentiation and
depression, respectively.1t is the delay of the post-synaptic spike
occurring after the transmission of the pre-synaptic spike. τ+
and τ− control the rates of the exponential decrease in plasticity
across the learning window. For our experiments the learning
window is symmetric with A+ = A− = 0.15 and τ+ = τ− =

20 ms.

4.4.3. Tri-phasic STDP
A tri-phasic STDP learning window consists of a narrow
potentiating region for closely correlated activity but depressing
regions on either side: for recently uncorrelated activity, and
for correlated but late activity. This learning window has been
observed in vitro, most notably in the hippocampi, between areas
CA3 and CA1 (Wittenberg and Wang, 2006). The tri-phasic
STDP is given in Equation (10).

1w(1t) = A+ exp

(

−(1t − 15)2

200

)

− A− exp

(

−(1t − 15)2

2000

)

(10)

The learning rates are set as A+ = 0.25 and A− = 0.1. Both
STDP learning windows are plotted in Supplementary Figure 10.

4.5. Synaptic Interference Measure
We wish to quantify interference directly between synaptic
adaptations of plasticity. Our formulation of synaptic
interference is based on the synaptic changes from sequentially
presented samples. Synaptic adaptation for a given class of
sample is called 1Wt and average adaptation for all others are
1Wo. Interference must be calculated individually for each
class of sample, Iclasst , and averaged together to get the overall
interference, Itotal. The equations are as follows:

Iclasst =
1

N

N
∑

i= 1

[1Wti ·1Woi < 0][|1Wti| < |1Woi| · Cn]

(11)

Itotal =

Cn
∑

t= 1

Iclasst

Cn
(12)

Where I is interference, N is the number of synapses, Cn is
the number of competing sample classes and 1W is a vector
of synaptic changes. Subscript i denotes the parameter index,
subscript t denotes samples of a given class “this” and subscript o
denotes samples of all “other” classes.

In Equation (11), the first set of Iverson brackets returns 1 if
synaptic adaptation of a given class is of a different sign than that
of the average adaptation of other class samples. The second set of
Iverson Brackets returns 1 only if the magnitude of the synaptic
adaptation of a class is less than the average weight adaptation
of other classes multiplied by the total number. This leads to us
taking a conservative measure of synaptic interference where we
will only flag interference within a synapse for a class of pattern if
the weight change is in a different direction to the average as well
as being lower in magnitude than the total weight adaptation of
other inputs.

4.6. Synthetic Signal Data
A synthetic benchmark task is taken from a study performed with
Echo State Networks (Jaeger, 2007), a similar type of network
model to the one we employ, but using continuous rate-based
neurons instead. The task is to predict which of three signal
generating functions is currently active in producing a time-
varying input signal. To generate a sample of the signal at a
given time step, one of the three following function types is
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used; (1) A sine function of a randomly selected period, (2) A
chaotic iterated tent map, (3) A randomly chosen constant. The
generator is given some low probability, 0.05, of switching to
another function at each time-step. The full method of generating
the data is described in Jaeger (2007). A short window of the
generated signal is plotted in Figure 4.

4.7. Speaker Recognition Data
A speaker recognition task is a classification problem dealing with
mapping time-series audio input data to target speaker labels. We
use a data set taken from Kudo et al. (1999) which consists of
utterances of nine male Japanese speakers pronouncing the vowel
/ae/. The task is to correctly discriminate each speaker based on
the speech samples. Each sample is comprised of a sequence of
12 feature audio frames. The features of each frame are the LPC
cepstrum coefficients. The sample sequence ranges between 7 and
29 frames. The dataset is divided into training and testing sets
of 270 and 370 samples each, respectively. Note that unlike the
benchmark data used in this report, the samples are not in a
consecutive time-series, yet each sample consists of a time-series
sequence of audio frames.

4.8. Pre-processing of the Human Motion Data
A visual task is selected to test high dimensional spatial-temporal
input data. The KTH data set (Schuldt et al., 2004) consists
of 2391 video files of people performing one of six actions;
boxing, clapping, waving, walking and jogging. There are 25
different subjects and the samples cover a range of conditions
that are described in more detail in Schuldt et al. (2004). Each
video sample is taken at 25 frames per second and down
sampled to a resolution of 160 × 120 pixels. We process the raw
video sequences according to a formula shown in the following
equations:

M(t) = ‖[1(I1, I2), ...,1(IN− 1, IN)]‖ (13)

M(t, i) =

{

1 ifM(t, i) ≥ 0.2 ·max(M(·))

0 else
(14)

The final input matrixM is indexed by time-frames, t and spatial

samples i. Column vectors In are individual frames, re-shaped
into one dimension. Each sample contains up to a total of N
frames. In plain language, this process essentially further down
samples by a factor of 0.2 and calculates the difference between
pixels in consecutive frames, which are then used as the new input
features. Each frame is then re-shaped into a single dimensional
column vector then appended together to form an input matrix
in which each column is used as the neural network input at
consecutive time steps. Figure 3 shows frames extracted from an
example of each type on motion along with the corresponding
processed features.
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