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To be successful at manipulating objects one needs to apply simultaneously well
controlled movements and contact forces. We present a computational theory of how the
brain may successfully generate a vast spectrum of interactive behaviors by combining
two independent processes. One process is competent to control movements in free
space and the other is competent to control contact forces against rigid constraints.
Free space and rigid constraints are singularities at the boundaries of a continuum of
mechanical impedance. Within this continuum, forces and motions occur in “compatible
pairs” connected by the equations of Newtonian dynamics. The force applied to an object
determines its motion. Conversely, inverse dynamics determine a unique force trajectory
from a movement trajectory. In this perspective, we describe motor learning as a process
leading to the discovery of compatible force/motion pairs. The learned compatible pairs
constitute a local representation of the environment’s mechanics. Experiments on force
field adaptation have already provided us with evidence that the brain is able to predict
and compensate the forces encountered when one is attempting to generate a motion.
Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired
contact force against a simulated rigid surface. If the surface becomes unexpectedly
compliant, the contact point moves as a function of the applied force and this causes the
applied force to deviate from its desired value. We found that, through repeated attempts
at generating the desired contact force, subjects discovered the unique compatible hand
motion. When, after learning, the rigid contact was unexpectedly restored, subjects
displayed after effects of learning, consistent with the concurrent operation of a motion
control system and a force control system. Together, theory and experiment support a
new and broader view of modularity in the coordinated control of forces and motions.

Keywords: force control, motor learning, modularity, impedance, kinematics, dynamics of manual skill

Introduction

When writing and drawing we must push the pencil hard enough against the paper to produce a
steady trace, but lightly enough to avoid breaking the brittle graphite tip. Many other daily activities
require coordinated combinations of motions and contact forces.

Studies of multi-unit activities in posterior-parietal cortex have revealed the existence of
neural structures that appear to be selectively involved in the geometric planning of movement
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(Snyder et al., 1997; Buneo and Andersen, 2006; Torres and
Andersen, 2006), but not in the control of the forces that underlie
movement execution. Kalaska and coworkers (Hamel-Paquet
et al., 2006) have found neurons in the posterior parietal cortex
area 5 that show tuning for the direction of movement, but not for
the direction of hand-applied isometric force. The same authors
(Sergio and Kalaska, 1998; Sergio et al., 2005) also described
systematic differences in the activities of M1 neurons during
movement tasks and isometric tasks.

While motions and forces are likely to have separate
neural representations, they need to be controlled concurrently
in tasks involving mechanical interactions with the external
environment!. A well-known example of concurrent force and
motion control is offered by the adaptation of arm movements
to predictable force perturbations (Flash and Gurevich, 1992;
Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994;
Gandolfo et al, 1996; Conditt et al., 1997; Thoroughman
and Shadmehr, 2000; Scheidt et al., 2001). The brain, as an
adaptive control system, learns to generate forces that cancel
the external field. Is there a similar adaptive mechanism
when the task is to generate a force against a perturbing
motion? In this case, a symmetric—or “dual”—mechanism
would call for the generation of compensatory motions to
restore the desired force profile. In analogy with movement
adaptation to force fields, we expect that the corresponding
adaptive process for the coordinated production of contact
force in the presence of predictable motions would result in
a local representation of the environment mechanics. This
representation would be based on the identification of causal
connections between movement and force trajectories within the
respective experienced domains.

In principle, a desired behavior can be enforced by pure
feedback mechanisms, without forming a representation of
the perturbing environment. When the environment is not
predictable, the maintenance of a desired motion or a desired
contact force by feedback mechanisms can be accomplished by
shifting the interface impedance toward two opposing limits. In
motion control, random forces are counteracted by high position
feedback gains, resulting in high contact impedance. In force
control, random motions are compensated by increasing force
feedback gains, resulting in low impedance. In the biological
system, the neural controller can modulate contact impedance
by varying the level of muscle coactivation (Mussa-Ivaldi et al.,
1985) and by exploiting the kinematic redundancy of the limbs
(Hogan, 1985a). Furthermore, impedance is also regulated—at
least partially—by active mechanisms based on sensory feedback.
However, the possibility to shift impedance toward high or low
values is constrained by the passive mechanics of muscles and
bones and by the long neural transmission delays. Because of
these intrinsic limitations to biological feedback control, the

In this article we focus exclusively on the environment that is external to the
body. The skeletal apparatus can be regarded as an environment upon which the
muscles act under neural control. In this case, when the arm moves in free space,
the humerus, hand, and radioulnar systems are non-singular “objects” controlled
by muscle forces. While one must be aware of this ambiguity in the concept of
environment, here we remain focused on interactive behaviors and, specifically, on
the ability to act on the external environment and to manipulate objects.

brain may exploit the predictable properties of the environment
to modify accordingly the “feedforward” commands. The ability
to do so has been demonstrated for the predictive compensation
of deterministic force fields during reaching movements of the
arm (Shadmehr and Mussa-Ivaldi, 1994) and of the leg (Emken
and Reinkensmeyer, 2005). In this study we investigated the
possibility that a similar mechanism may facilitate the control
of contact forces against deterministic motions. We consider this
issue within a theoretical framework that extends the concept of
internal models and unifies the approach to the motor learning
of forces and motions.

We developed a computational theory that integrates the
control of motion and forces by combining two independent
functional modules. One is competent to generate arbitrary
motions in free space. The other is competent to generate
arbitrary forces against rigid surfaces. Together, these
modules can produce—by simply adding their outputs—a
broad repertoire of adaptive behaviors in several mechanical
environments, represented by state-determined models. In this
framework, both force and motion variables may be concurrently
specified along non-orthogonal directions. This is similar to the
parallel control of Chiaverini, Sciavicco, and Siciliano (Chiaverini
and Sciavicco, 1993; Siciliano, 1996). A key prediction of our
theory is that after subjects have adapted the control of force to
the transition from rigid to soft contact, the sudden reversal to a
rigid contact would cause a sizable after effect.

Materials and Methods
A Theory of Motor Adaptation

The laws of Newton insure that when we apply a force to an
object, the object moves along a unique trajectory. Conversely,
to move an object along a given trajectory we must apply
a unique, well-defined force profile. While apparently trivial,
these two statements are not always true. When we apply a
normal force upon a wall, i.e, an infinitely stiff environment,
we have a particular movement trajectory—x(t) = constant—
associated with an infinite variety of possible contact force
trajectories®. In a related—but opposite or “dual”—condition,
when we move the hand in free space, ie., in an infinitely
compliant environment, infinite possible trajectories can be
paired with a single applied (near) zero- contact-force trajectory
at the interface between the hand and the virtually massless
air. Free space and rigid constraints are two extreme—or
“singular”—cases, between which lies a continuum of regular
environments, where force and movement trajectories come only
in “mutually compatible” pairs: a force trajectory determines
a unique movement, the solution of an ordinary differential
equation, and vice-versa time history of position, velocity and
acceleration determines a unique force trajectory, the solution of
an algebraic identity.

2We use the term “force trajectory;” in analogy with motion trajectory, to denote a
continuous temporal sequence of force vectors. Also, it is important to distinguish
net force and applied force. When we apply a force to a rigid surface, by Newton’s
third law, the net force at contact is zero, because the applied force—the force that
can be measured by a strain gage placed between the hand and the surface—is
countered by an equal and opposite reaction force.
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We make the hypothesis that the brain is competent to
operate in the two singular conditions: it is capable to produce
desired movements of the limbs in free space and to apply
forces of various amplitude, direction and temporal profile
against rigid contacts. Starting from these two basic skills,
learning comes into play when the brain faces new non-singular
environments. The concurrent operation of force and motion
control leads to the formation of what some authors (Shadmehr
and Mussa-Ivaldi, 1994; Kawato and Wolpert, 1998) have called
an “internal model” of the environment. Here, we propose a new
interpretation of this concept. We consider the internal model as
a computational process that explicitly seeks the motion (force)
trajectory compatible with the planned force (motion) trajectory
within non-singular environments, which establish a coupling
between feasible forces and motions.

In this perspective, the experiments on force field adaptation
(Shadmehr and Mussa-Ivaldi, 1994; Gandolfo et al., 1996;
Conditt et al., 1997; Thoroughman and Shadmehr, 2000) are
particular instances, in which the brain recovers a desired
movement trajectory by producing a force trajectory that cancels
the perturbing field. Starting from these known results, we now
propose that the brain also accomplishes the dual outcome of
producing a desired force trajectory against a “soft” environment
by finding and generating the unique movement that the
environment associates to the desired force.

If one is applying a desired force against a rigid contact
and the contact suddenly becomes compliant, one observes an
unexpected change both in position and contact force. There
are two options in this case for maintaining the desired force
amplitude and direction: (a) changing the desired position based
on the observed motion of the contact point, or (b) changing
the desired force, based on the observed force error. Both
approaches would converge to the same end result, ie., to
the unique pair of force and motion trajectories, compatible
with the impedance of the soft contact. Here, we pursued the
first approach based on the consideration that the accurate
feedback of force errors is likely to be unavailable to the
neural control system (Jones and Hunter, 1982; Jones, 1986;
Toffin et al., 2003). The ability to form through practice a
representation of compatible force/motion pairs corresponds to
representing the environment mechanics in a way that extends
the dual concepts of impedance (input motion/output force) and
admittance (input force/output motion) beyond the limits of
linear analysis.

Mathematical Formulation
Consider the act of manipulating an object. Two sets of
independent generalized coordinates describe the configuration
space of the arm and of the object. To begin, arm and object have
typically a different number of configuration variables. In first
approximation, 7 angular coordinates ¢ = [q1. 4, ..., qy]T
describe the configuration of the human arm. In contrast, six
coordinates -x = [x1, X2, ..., xG]T—or less may be sufficient to
uniquely identify the configuration of manipulated objects, such
as a hammer or a pencil.

When object and arm are considered separately, two
uncoupled systems of ordinary differential equations (ODEs)

describe their respective behaviors:
E(s,8,F)=0 Object (1)
D(o,0) =u(t) + t Arm

Here s = [x,)'c]T, and 0 = [q, q]T are the state vectors of
the object and arm, respectively. The terms F and t represent
externally applied forces (a force/torque vector for the object
and joint torque vector for the arm). The arm equation has an
additional input term, u(t), representing the neural command.

If arm and object are coupled, the respective configuration
spaces are joined by a forward-kinematics map, x = X(gq) with
Jacobian®

86X

= 5 2)

J(9)
Accordingly, the generalized forces for the object and the arm
become related as:

t=-J"(q)-F 3)

Note that in this convention, we are assuming that the object’s
forces are opposing the internal forces, u(t), generated by the
controller.

The environment dynamics, E(s, $, F), define implicitly two
functions:

F=2Z7(5% if =0
{&:Y(S,F) yf%é;eo @

The two conditions above are in matrix form. Therefore, the
inequalities on the right sides represent the requirements that the
functional determinants, g—f; and %—f be full row rank.

If either condition is not satisfied, then the environment is
singular and we have two possible cases:

or (5)

The first case describes a rigid constraint (no motion is allowed),
the second describes free space (zero interface force).

We make the hypothesis that the neural control system is
perfectly competent in both cases, i.e., that is capable to generate:

(a) Desired force trajectories, Fp(t) against rigid fixtures
(b) Desired motion trajectories, qp (¢) with xp (£) = X (gp(t))
in free space.

Perfect competence is insured by the operation of two specialized
modules, which we call singular-controllers:

ur(q, Fp(t)) = ]T(q) - Fp(t) Contact Force Controller  (6)

3In general, because of kinematic redundancy, the configuration, qp, at the point
of contact is not unique. However, here we consider only a two-joint planar
configuration of the arm, with well-defined inverse kinematics. Also note that
here and in the remainder of the article the lower case x indicates the object/arm
contact position variable, while the upper case X(-) indicates the forward kinematic
function.

Frontiers in Computational Neuroscience | www.frontiersin.org

November 2015 | Volume 9 | Article 118


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Casadio et al.

Adaptive control of contact forces

and

upm(o, op(t)) = D(op(t), op(t)) + ®(o, op(t)) Motion
Controller (7)
with

o =(g,q)andop (t) = (qp () ., qp (1)) (7a)

In this expression, we must carefully distinguish between the
state vector, o, and the desired state trajectory op (t). The former
is an independent variable, which the controller may estimate
based on sensory data. The latter represents an intention, or a
“motor program,” and is an explicit function of time. The term
d (0, 0op (1)) is a stabilizing term. Its output depends upon the
discrepancy between actual and desired state. This component
describes the response of the controller to random perturbations.
In fact, earlier work by Won and Hogan (1995) demonstrated
that arm movements are dynamically stable. In the following
discussion and in the simulations, we will use this simple form
for &:

®(0,0p(t) =K-(q—qp () +B-(g—gp(®) (8

In biological control, this stabilizing term arises from the
biomechanical properties of the neuromuscular system. The two
terms on the right are linearized representations of joint stiffness
and damping, respectively. This representation of movement
control may be consistent with the equilibrium-point theory
(Feldman, 1966, 1986; Bizzi et al., 1984; Mclntyre and Bizzi,
1993; Toffin et al., 2003; Wong et al., 2009), where the stabilizing
effect is not subject to neural feedback delays. However, here
we do not need to make specific assumptions on the form
of ® beyond requiring that it be capable to compensate for
random disturbances of the arm’s motion. Furthermore, we do
not distinguish between the active component of the impedance,
associated with neural control, and the passive component,
associated with intrinsic viscoelastic properties (which are also
modulated by neural activities). We consider motor impedance
as a component of the motion control system because of its
inherent causality: the damping term limits variations of velocity
and the stiffness term limits variations of position. A feedback
stabilizing term can also be introduced in the force controller to
describe the immediate response to random deviations between
actual and measured values of contact force. This could be a
subset of proportional, integral, and derivative terms applied to
the contact force error. However, unlike for Equation (8), there
is no experimental support for such terms in biological control.
Therefore, we omit to include a force stabilizer in the model.

Compatible Force/Motion Pairs

The two singular controllers are competent to generate arbitrary
motions in free space and arbitrary contact forces against rigid
constraints. A broader goal is to generate arbitrary motions or
forces within both singular and non-singular environments. For
example, one may perform a movement trajectory within a field
of perturbing forces. Or, one may need to apply a constant force
against a soft surface rather than a rigid one. In our theory,

the control system operates by the concurrent action of the two
singular controllers. These attempts, independent of each other,
to enforce a pair of trajectories at the interface with their ideal
singular environment: a motion trajectory, xp(t), in free space
and a force trajectory, Fp(t), against a rigid contact. Together,
these trajectories constitute a “target pair,’ {xD(t), FD(t)}, which
may not be compatible with the physical properties of the
system/environment interface.

In adaptive force control, we start from a desired force Fp(f) to
be applied against a rigid constraint. The singular force controller,
(6), is competent to produce this force.

If the rigid constraint is replaced by a non-singular
environment the resulting force differs from the desired force,
F # Fp(t), and the system moves along a state trajectory s(t),
which satisfies identically the coupled equations:

§=Y (s, F)
) — T )
{D(G,U) =ur(q.Fp () —J"(q) - F

Our hypothesis is that the adaptive controller recovers the desired
force trajectory, Fp(t), by adding to the initial force control
policy a singular motion controller, up (o, op(t)), with op (t) =
(gp (t), gp (1)). In this case, op (t) is the desired state trajectory
of the motion controller, with

xp (1) = X (qp(1)) (10)

where the trajectory xp(t) is the (unique) solution of the
environment dynamics “driven” by Fp(t):

=Y (s, F) (11)

With this adapted controller u = uy(o, op (t)) + ur(q, Fp (1)),
the system is reduced to

{ §=Y(, F)
D (0, 6)=D(op(1), 6p(t)) + (0, op(£))—] " (q)(Fp (t)—F)
(12)
which is identically satisfied by
F = Fp(t)
( q=qp(t) (13)

withsp =Y (SD(t), FD(t)).

If the rigid environment is re-established without reverting to
the initial force controller, then one expects to observe an after-
effect in the force trajectory. This is analogous to the after-effect
observed after movement adaptation to a force field, when the
force field is unexpectedly removed. No such after effect would
be observed if the perturbation were compensated by reducing
the contact impedance.

Motor Learning

The derivation above of the motion trajectory that is compatible
with the planned force trajectory assumes prior and complete
knowledge of the environment dynamics (Equation 11).
However, here we assume that there is no such knowledge and
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describe a simple iterative process through which the discovery
of a motion trajectory that is compatible with the planned force
trajectory takes place through repeated trials. The proposed
approach does not require estimating contact force errors but
only the movement following each attempt to produce the
desired contact force. We start from the initial condition, in
which the environment was rigid. In this case, the compatible
pair is

{xD (= constant) , FD(t)} (14)

The control system assumes initially that the interface trajectory
is a constant—the point of contact—and that the corresponding
force is the desired force Fp(t). Therefore, the combined control
system has the initial form

u® = ug (q, Fp () + unm (qo = constant)

= J7(q) - Fp(t) + D (ag’x o, o)) + o ((q, 9, alg°>) (15)
=7"(q) - Fp(t) + ® (a, o};’))

The last term on the right, ®(-), is a compensatory element
that tends to enforce the constant trajectory o (f) = (qp.0)
with xp = X(gp). The superscript in parentheses indicates the
iteration trial. The desired trajectory in each trial is the trajectory
observed on the previous trial. When the environment changes
from stiff to soft, the previous trajectory is the one observed in the
stiff environment i.e., is the contact point with near zero velocity.

The iterative adaptation algorithm tracks on trial N the
motion observed in trial, N-1:

™D () = (@D (1), gN-Dp)) (16)

Then, the desired trajectory at the N-th step is obtained from a
convex combination of desired and observed trajectories at the
previous step:

oW =0f "W +1- (VD =ofNw) a7

where 0 < A < 1is a parameter that regulates the learning rate.
With this, the adaptive controller is

u™ = up (q, Fp () + uy (U, UL()N) (t)> =

(18)
77(@) - Fp(t) + D3 (1), 65 (0) + D(a ™, a3 (1))

Thus, the arm dynamics become (see Equation 12):
D (g(m, d(N)) -D (Glgm .o (t))
+ (aW), oV (t)) +-+J"(g) [FD(t) - F(N)(t)] (19)

Observe that together with Equation (18), this is a recurrent
relation for o and op(t).

Therefore, if the trajectories o) () form a Cauchy sequence,
that is if ™M () — ag(t) as N — oo, then FM(¢) i Fp(t)
as N +— oo. At present, we do not have a general proof that
o}y (t) is a Cauchy sequence. However, in all the tested examples,
including those considered here, convergence was reached in a
small number of steps.

Experiment
We investigated how subjects adapt to changes in the
environment’s mechanics while they are attempting to generate
a contact force trajectory. In particular, we considered the task
of applying by the hand a time-varying force in the forward
direction, Fyp, without any lateral component, Fyp, reaching a

peakof IONinT=1s:
{ Fop()=0 N (20)
Fop(t) =50 —cos(wt)) Nwith 0 < t< T

This task only specified a desired force trajectory and made no
requirement about hand motions.

We considered a learning problem, in which, first, a subject’s
ability to produce this force trajectory against a rigid contact was
established. Then, the contact point impedance was suddenly
changed from rigid to soft. We considered how this change in
contact mechanics affected the produced contact force and if and
how the subject learned to re-establish its original desired force
trajectory.

We compared the performance of human subjects with a
simulations of a computational model derived from the theory.

Subjects and Apparatus

Twelve naive, unimpaired, volunteers (age range: 20-34 yr,
gender: 8 male, 4 female) participated in this study after
signing an informed consent approved by the Institutional
Review Board of Northwestern University (IRB protocol number:
STU00026226).

Subjects were comfortably seated on a chair with an
adjustable positioning mechanism and held the handle of a
robot (HapticMaster, FCS Control Systems), with their right
hand. The robot emulated two distinct contact properties: a rigid
surface, and a soft surface. Here, by “rigid” we do not intend an
ideally rigid contact, with infinite stiffness, but merely a contact
with stiffness sufficiently large to prevent significant amounts of
motion under the contact forces that are being considered.

A sling attached to the ceiling supported the upper-arm
against gravity and arm motions were restricted to the horizontal
plane. In the starting position, the elbow and the shoulder joints
were flexed approximately at 70° and 50°. The shoulders and
wrist were restrained by suitable holders.

Environments
The stiffness and the damping of the rigid surface were,
respectively,

—1000 0 —1000 0
Ke:( 0 —1000>N/m Be:( 0 —1000>N5/m

The stiffness and the damping of the soft surface were
—130 —52 —28 —4
Ke_(—SZ _70>N/m Be—<_4 _23>Ns/m

. 40
The contact mass was set in both cases to M = ( 0 4) Kg.

We chose environment parameters compatible with the stability
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requirements for the robot used in the experiment. The
parameters of the rigid environment allowed only minimal
motions (<4mm) of the hand. The eigenvectors of the soft
environment were rotated by 60 degrees with respect to the x-y
axes because we aimed at inducing a directional effect that could
be observed in initial exposures and catch trials.

Visual Display
Subjects were provided with visual feedback of the interaction
force over a 197 LCD computer monitor. The monitor was
placed in front of the subjects, about 1 m away, at eye level. In
isometric force experiments, the goal of generating a desired force
is typically expressed by displaying the force vector produced by
the subject and by presenting a target to be reached. Here, we
were concerned with representing the force control task without
reducing it graphically to a reaching or a tracking task. To this
end, we designed a task in which subjects were to achieve a
condition of static equilibrium characterized by the absence of
motion. They were asked to exert a contact force to preserve the
shape and position of a graphical object on the monitor. The
object was a white disk against a blue background. The disk was
inside an orange ring attached to a bar (Figure 1, right panel).
The ring defined the desired position and shape of the disk.
Subjects were to produce a contact force that matched the target
pattern (Equation 20).

If successful, the disk did not change shape and did not move
along the bar.

The elongation of the disk along the y dimension was a
function of the difference between the forward components of
the measured force and of the desired contact force. Subjects

were to exert a contact force in the forward (y) direction on
the manipulandum to prevent the disk from changing shape.
Moreover, they were not to exert any force in the orthogonal
direction (x): such force component, Fy, caused the disk to
translate along the bar, in the x direction. The following equation
regulated the motion and deformation of the disk:

(x — aFy)? (y— Rb)? B
R? D (21)
Whereb:{ﬂ(Fy_FgD) ifR(l_‘b)>8
-3 otherwise

The formula describes the implicit equation of an ellipse. Fy
and F, are the measured contact forces in the lateral (x) and
forward (y) direction respectively and F,p is the desired contact
force (Equation 20). R (R = 25mm) is the disk radius in the
equilibrium condition (F, = Fyp,), o, B, and ¢ are constants
(7mm/N, 0.14 N~! and & = 0.001 respectively). When the
contact force is equal to the desired force, the equation describes
a circle of radius R. When a force F, is produced in the lateral
direction, the disk translates along the x-axis. When the applied
and desired contact forces in the forward direction don’t match
(Fy # Fyp) the disk changes shape either elongating (F, < F,p),
or squeezing (F;, > Fyp).

A sound prompted the subject to start pushing in order to
avoid the changes in the disk’s shape. After 1s a different sound
indicated that the deformation was finished, the disk disappeared,
and the subject could stop applying force. We provided additional
information for motivating subjects to exert the required force:

HapticMaster

/
7 (]

L5

>
C

I

- F,, measured contact force
- Fp desired contact force

FIGURE 1 | Experimental set up and visual display. Subjects held the handle of a high-impedance robot manipulandum (HapticMaster—left panel) and exerted a
contact force to preserve the shape and position of a white disk inside an orange ring attached to a bar (right panel). The ring defined the desired position and shape
of the disk. Subjects were to exert a contact force in the forward -y- direction to prevent the disk from changing shape. (A) The contact force is equal to the desired
force; therefore the display is static with a round white disk inside the orange ring. The disk doesn’t change shape and doesn’t move. (B) The measured contact force
is smaller than the required one, thus the disk elongates. (C) The contact force is bigger than desired, then the disk shrinks. An error in lateral force causes the disk to

translate along the bar.
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the bar and its ring became red if they reached the goal force (10
N) or black, as an alarm, if they overshot the target force by 1/3
of the maximum required (15 N). In the blind trials only the two
sounds and the alarm signal were provided.

Protocol
The entire experimental session lasted about 45min. The
protocol consisted of four phases:

1. Familiarization: 40 trials in the rigid environment
2. Baseline: 60 trials

53 trials in the rigid environment (48 with visual feedback, and 5
without).

7 catch trials in the soft environment (2 with visual feedback,
and 5 without).

3. Training: 180 trials

159 trials in the soft environment (144 with visual feedback, and
15 without).

21 catch trials in the rigid environment (6 with visual
feedback, and 15 without).

4. After Effects: 10 trials in the rigid environment with visual
feedback.

In the familiarization phase, subjects learned how to accomplish
the task against the rigid environment. The trial duration (T in
Equation 20) was initially set to 1.5s for the first 20 trials and
then decreased to 1s.

In the baseline phase, subjects practiced to exert the force
trajectories against the rigid environment until reaching the
required performance in a stable manner. On few random trials,
the manipulandum’s admittance was set to be “softer” and visual
feedback was suppressed.

During the training phase, the contact was of the soft type
with the exception of few random trials (~1/10) where the
manipulandum was programmed to be rigid and visual feedback
was suppressed. These “catch trials” were introduced to test for
after effects during adaptation.

Moreover, we introduced some trials with visual feedback in
the same condition where the trials were mostly blind and vice
versa, as we wanted to test that the adapted performance did not
depend on visual feedback (or lack of).

Finally, the protocol introduced a short target set in the rigid
environment (after effects) in order to evaluate how subjects
recovered the initial performance, after the exposure to the soft
environment.

Data Analysis
Hand position and force trajectories were sampled at 250 Hz. We
computed the following performance measures:

e Maximum Forward Error (MFE): the maximum force error in
the forward direction—i.e., the required force direction.

o Maximum Lateral Error (MLE): the maximum force error in
the lateral direction—i.e., the force component orthogonal to
the required force direction.

e Maximum Forward Displacement (MFD): the maximum
movement displacement in the forward direction.

e Maximum Lateral Displacement (MLD): the maximum
movement displacement in the lateral direction

The force error measures reported changes relative to the average
force profile at the end of the baseline in the rigid environment.

We investigated how these indicators changed during
adaptation to the new environment proprieties. First, we studied
if a learning process took place by looking at both forward
and lateral errors and investigating if these errors decreased
from the onset to the end of training. If the observed reduction
of errors were due to reduction of limb impedance at the
point of contact, we would observe a small or negligible
change of contact force during the catch trials, when the rigid
environment was unexpectedly restored. In contrast, if error
reduction were a consequence of learned feed-forward control,
the unexpected restored rigid environment in the catch trials
would generate force errors opposite to the errors observed when
the perturbation was first unexpectedly introduced.

Statistical Analysis

To test for learning, we compared the force errors (MFE, MLE)
produced in the rigid environment during the baseline with
the forces produced against the soft environment in the initial
and late phases of training. We performed a One-way repeated
measures ANOVA with 3 factors (baseline, initial, and late
response). Significant main effects were followed by post-hoc
analyses (Tukey’s test) to determine whether the errors after
training were significantly different (decrease) than the errors
observed in the initial exposure to the soft environment and were
similar to the errors in the baseline (Table 1, upper panel).

To test for the after effects of adaptation we compared the
force errors in the baseline, in the first three and in the last three
catch trials with the rigid environment. In this case, significant
main effects were followed by post-hoc analyses (Tukey’s test)
to determine whether the errors in the late training were
significantly different (increase) with respect to the early training
and the baseline (Table 1, medium panel).

We established that the data were approximately normally
distributed using the Kolmogorov-Smirnov test and we tested for
sphericity using the Mauchly’s test. We used the Greenhouse-
Geisser procedure to adjust for violation of the sphericity
assumption (STATISTICA 7, Statsoft, Tulsa, OK). Significance
was accepted at p < 0.05.

Understanding the role of vision in force control was beyond
the scope of this study. However, to eliminate from our findings
all possible bias due to visual feedback, we performed a separate
analysis of vision and no vision trials.

The position displacements (MFD, MLD) in the soft
environment were a consequence of the exerted force; however,
we reported significance (paired two tailed t-test) for the changes
in these indicators (Table 1, bottom panel).

Model Simulation

We modeled the typical subjects arm as a simplified 2-joint
planar arm inertia operated by one- and two-joint muscles.
Reasonable values for muscle and limb impedance (stiffness,
viscosity, and inertia) during the generation of movement and
the application of contact forces were derived from the literature
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TABLE 1 | Maximum Force Errors—MFE, MLE —and Movement Displacement—MFD, MLD —in the forward and lateral direction (mean =+ s.d.); clear rows:

trials with visual feedback; shaded rows: trials without visual feedback.

FORCE ERROR INDICATORS

Baseline Initial response Late response Anova Late vs. initial Late vs. baseline
Fie, 22) p p p
MFE [N] 0.39 + 0.86 —6.26+1.14 0.88 +1.83 86.90 <0.0001 0.0001 0.69
MFE [N] 0.48 +£3.33 —7.33+1.36 —-0.283+2.17 43.53 <0.0001 0.0001 0.73
MLE [N] 0.23 +0.26 1.54 +£0.39 —-0.12+1.35 12.87 0.0012 0.0012 0.52
MLE [N] —0.47 £0.71 1.5+07 —1.51+1.36 31.43 <0.0001 0.0002 0.03
CATCH TRIALS
Early training Late training Anova Late vs. early Late vs. baseline
F P P P
MFE [N] - 8.99 + 4.50 F(1, 11) = 46.43" <0.0001
MFE [N] 13.04 £ 5.98 12.22 + 6.63 Fo, 22 = 19.6 <0.0001 0.93 0.0002
MLE [N] - —-3.33+0.87 F.11) = 182.49" <0.0001
MLE [N] —0.5+2.45 —6.29+2.73 Fio, 22) = 23.97 <0.0001 0.0001 0.0001
DISPLACEMENT INDICATORS
Early training Late training t-test
P
MFD [cm] 4.44 +1.03 11.45 +1.43 <0.0001
MFD [cm] 412 £1.06 11.37 £ 1.84 <0.0001
MLD [cm] 0.60 £0.22 —-3.10+0.68 <0.0001
MLD [cm] 0.64 + 0.23 —3.56+0.82 <0.0001

Force error indicators: One-way repeated measures ANOVA with 3 factors (baseline, initial, and late response). Significant main effects were followed by post-hoc analyses to determine
whether the errors after training were significantly different (decrease) with respect to the errors observed in the initial exposure (6th column) to the soft environment and were similar
to the errors baseline (7th column). Catch trials: Force errors in the baseline, in the first three and in the last three catch trials with the rigid environment. Significant main effects of the
repeated measure ANOVA were followed by post-hoc analyses (5-6th columns). *only two factors.

(e.g., Shadmehr and Mussa-Ivaldi, 1994; Gomi and Kawato, 1996;
Criscimagna-Hemminger et al,, 2003; Damm and Mclntyre,
2008) and are equal to the one used by Shadmehr and Mussa-
Ivaldi (1994).

The simulated environment was a two-dimensional Mass-
Damper-Spring system in a horizontal plane, described by three
2 x 2 matrices (M, Be, and Ke). These matrices were set to have
the same values as in the experiment. They were symmetric and
positive-definite, to insure passivity. Therefore, the environment
was described by 9 (3 x 3) independent parameters. The spring
rest-position was always coinciding with the initial position of
the arm, to enforce a gradual and smooth application of elastic
forces.

The simulation was performed in Matlab, with the ode45
function for integrating the differential equations of the model:

Fp
D(o, 7)

= K¢ (r — ro) + Bet + M,¥
u — ]T(q)Fm

(22)

where F,, is the contact force measured at the interaction point
[x y]T, D(:) the arm endpoint dynamics, g the arm
configuration, 0 = (g, q) the state, J the arm Jacobian and u
the controller. The initial contact position r, was set to x = 0,

r =

y = 0.3m from the shoulder joint. For the modular controller,
u was the combination of a motion control uy and a force
control up acting in parallel. This is a particular case of the
more general environment/arm coupled dynamics described in
the theory above.

Results

Simulation Results

We evaluated the learning performance of a hybrid system
that combines by simple summation the outputs of a motion
controller and a force controller. The simulation predicts the
motion of the hand and the contact forces in the same conditions
tested in the experiment. It derives four different sets of
force/motion pairs:

1. Baseline. In this case, the hand is in contact with the rigid
surface and the force controller is competent to produce the
desired force at the desired contact point.

2. Initial response. This is the response of the two proposed
controllers—when the contact mechanics switches from
“rigid” to “soft.”
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3. Adaptation. The control parameters are gradually changed
in the soft contact until the system regains the desired force
profile.

4. After-Effects. This is the response of the adapted controller,
when the contact mechanics switches back from “soft” to
“rigid,” as it was in the baseline.

During baseline, the force controller acts against a rigid
constraint and generates the desired force (Figures 2A-F). Since
the contact surface is not perfectly rigid, but has a stiffness
of 1000 N/m and a damping of 1000 N/m/s, there is a small
residual error (<0.03 N) between desired and actual force, and
a correspondingly small motion of the contact point (<4 mm).
When the soft environment is introduced for the first time, the
force controller used against the rigid surface does not generate
the required force profile as the point of contact moves. In this
modular framework, a motion controller acts in parallel with the
force controller to maintain a stable contact. As a consequence,
when the surface becomes soft, the contact force is reduced by the
motion controller, which, in the attempt to resist a displacement
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FIGURE 2 | Baseline. Contact force profile against a rigid constraint. (A-F)
Parallel control model results. (G-L) Experimental results (mean =+ s.d. over all
subjects) with (darker intervals) and without visual feedback. The force
trajectory follows a smooth temporal profile in the forward direction (A,G),
reaching a peak of 10 N, without a significant component in the lateral
direction (B,H). As expected, the motion in both forward (D,J) and lateral
(E,K) direction is negligible. The panels on the right (C,Fl,L) display the vector
plots of the applied forces and endpoint motions. The force vectors grow
along the y-axis and the hand position remains confined to the origin.

of the contact point, effectively adds a force contribution opposite
to the desired contact force. This leads to errors both in the
forward (Figure 3A) and in the lateral (Figure 3B) directions. In
the absence of the motion controller, there would also be a slight
reduction of the contact force caused by the motion of the contact
point (Figures 3A-C, gray lines). However, this effect would be
markedly smaller than the effect associated with the combined
systems. In this environment, indeed, the ideal force controller
would be almost competent to enforce a desired contact force by
canceling the limb’s impedance at the point of contact. Therefore,
the motion controller with its stabilizing term determines the
error in the first interaction with the environment. However,
as the environment remains coupled with the body across
multiple iterations, the motion controller attempts to compensate
the arm/environment dynamics by attracting the arm toward
the previously experienced trajectory. This learning procedure
gradually corrects the input torque until the desired force is
produced within an acceptable error bound (Figures 4A-F).
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FIGURE 3 | Initial response. Contact force profile against the unexpected
softer environment. (A-F) Black lines: Parallel control model results. Gray lines:
the effect of initial exposure to the compliant environment that would result
from the force term alone, i.e., without the position control term. It is an ideal
force controller that reduces to zero the limb’s impedance at the point of
contact. (G-L) Experimental results (mean + s.d. over all subjects) with (darker
intervals) and without visual feedback. Subjects undershot the target force in
the required forward (G) direction and an erroneous component on the lateral
(H) direction as predicted by the model. The results are confirmed by the
motion trajectory (D-F,J-L). The panels on the right (C,F,l,L) display the vector
plots of the applied forces and endpoint motions.
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FIGURE 4 | Adapted response. Contact force profile against the softer
environment. (A-F) Parallel control model results. (G-L) Experimental results
(mean =+ s.d. over all subjects) in vision (darker intervals) and no vision
condition. The model controller is able to recover the desired force profile
(A-C) and the corresponding motion trajectory (D-F). The experimental data
indicate that subjects, with respect to the initial response phase, were able to
generate the required forward force (G-l) and the corresponding motion
trajectory (J-L). The panels on the right (C,F,L) display the vector plots of the
applied forces and endpoint motions.

After-effect of Adaptation

When the rigid environment is suddenly restored, there is an after
effect due to the adapted controller that is now unable to induce
the previous motion trajectory (Figures 5A-C, black lines).
The motion allowed in this environment is smaller than the
previously experienced motion (Figures 5J-L). This causes an
increase of the output force. Once again, the main contribution
to the observed forces comes from the motion controller, which
attracts the contact point toward the previous trajectory. The
model predicts that after 0.5s the contact force is twice the
desired force of 5N. There is also a lateral error, which is nearly
mirror-symmetric to the error experienced in the initial exposure
to the soft environment. This is qualitatively similar to the pattern
of after effects observed in movement adaptation to force fields
(Shadmehr and Mussa-Ivaldi, 1994). The ideal force controller,
having negligible contact impedance would not need to adapt
to the soft environment, as described above. Therefore, this
controller, not having changed, would not predict observing an
after-effect (Figures 5A-C, gray lines).
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FIGURE 5 | Catch trials. Contact force profile against the rigid surface
unexpectedly restored. (A=F) Black lines: Parallel control model results. Gray
lines: the after effects that would result from the same ideal force controller of
Figure 3. (G-L): Experimental results (mean =+ s.d. over all subjects) in vision
(darker intervals) and no vision condition. Subjects operated in the same
condition as in baseline, but the achieved performances were different. The
force trajectories showed remarkable after effects: subjects overshoot the
target force in the desired forward direction (G). In the lateral direction (H) they
made errors opposite to the error in the initial response to the softer
environment. These data are consistent with the predictions of the model
(A-C). The motion is negligible in both experiment and model data (D-F,J-L).
The panels on the right (C,F1,L) display the vector plots of the applied forces
and endpoint motions.

Time Course of Learning

In the learning model (Equations 14-20) a single parameter,
A (Equation 17), established the extent to which the motion
observed in the previous trial contributes to the desired motion
in the current trial. Figures 6A,B shows the learning curves
corresponding to different values of A (0.1, 0.3, 0.5, 0.7, 0.9). With
A = 0 there would be no learning at all as the desired motion
would not be modified from trial to trial. We fitted to each curve
a single exponential to determine the learning rate corresponding
to each value of A (Figure 6C). As expected, the learning rates
for all error variables increase monotonically with k. With the
soft contact and in the catch trials, the rates for the forward
direction (y) are always greater than the rates in the orthogonal
direction (x). However the rates for the catch trials, both in the
forward and lateral components, are higher than the rates in the
soft environments, with the rate for the lateral component in
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the catch trials being similar to the rate for the y component in
the soft environment. As we show below, these observations are
consistent with the experimentally observed learning curves.

Experimental Results

During the baseline, after familiarizing with the task, subjects
were required to generate a smooth trajectory of the force in
the forward direction, without any lateral force component,
reaching a peak of 10 N in 1 second. They learned initially to
produce the contact force trajectory against the rigid surface
(Figures 2G-I). Then, they practiced reproducing the same
force trajectory against the softer surface. We evaluated if
subjects were able to recover the desired force profile, by
compensating for the motion caused by the force applied to the
soft surface.

When the unexpected compliance of the contact point
switched to soft, allowing motion to take place, subjects initially
undershot the target force and made errors in the lateral—x-
direction (Figures 3G-I). With practice, they gradually recovered
the desired force profile (Figures 4G-1I): with respect to the initial
response phase, the force in the required direction increased (y)
and the lateral (x) component shrunk. At the end of the training
session, some residual force errors were still present, but it was
evident that an adaptive process had taken place.

After-effect of Adaptation

In the analysis of movement adaptation (Flash and Gurevich,
1992; Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi,
1994; Gandolfo et al., 1996; Conditt et al., 1997; Thoroughman
and Shadmehr, 2000; Scheidt et al., 2001) random “catch trials”
were introduced by suddenly replacing the force perturbation
with a null-field (ie., by free space). In contrast, here for
the analysis of force-control adaptation we introduced random
catch trials by suddenly substituting the soft contact with the
rigid contact. In both cases, the catch trials enabled us to
establish if the reduction of errors after a period of practice
in the softer environment was due to an enhanced force-
feedback control mechanism or to an adaptive change in the
feedforward command. If the variations of force caused by
the change in contact position were reduced by online force-
feedback compensation, one would observe a decrease of contact
impedance. This would be equivalent, but dual, to the expected

increase of impedance if motion perturbations were compensated
by a position and/or velocity feedback mechanism. Alternatively,
a deterministic movement perturbation to the contact force can
be compensated by a change in the feedforward command,
resulting in an after-effect when the initial, unperturbed
condition is re-established. This latter outcome was evident when
the rigid environment was unexpectedly restored at the end of
training (Figures 5G-I). Then, subjects overshot the target force
in the desired forward (y) direction, and generated an error in the
lateral (x) direction. In the catch trials, subjects operated in the
same condition as in the baseline, but their performances were
clearly different. The force profiles showed strong after-effects of
adaptation. In these catch trials, the force errors had opposite
sign with respect to the force errors in the initial response to the
softer environment. The very existence and size of these after-
effects in the experimental data demonstrates that subjects did
not decrease their limb impedance, as implied by online force-
feedback control. Instead, the after-effects were consistent with
the hypothesis of a motion controller acting in parallel with
the force controller. The motion trajectories confirmed these
observations.

Hand Motions

When interacting with the rigid constraint, subjects produced a
contact force in a quasi-static condition: the hand motion was
only about 4 mm (Figures 2J-L). As the experiment switched to
the softer environment, the resulting hand motion was about
5cm, i.e., one order of magnitude bigger than the motion in the
rigid environment (Figures 3J-L). During adaptation to the soft
contact, the motion trajectories changed length and orientation,
gradually converging to a final trajectory—longer than 10 cm—
compatible with the desired force (Figures 4J-L).

Time Course of Learning

To quantify these observations, we computed, for each trial and
for each subject, the maximum force error and the maximum
displacement in the forward (MFE) and lateral (MLE) directions
with respect to the subject’s reference frame (Figure 7, Table 1).
As expected, both force errors (Figure 7, top panels) increased
in size when the environment became suddenly softer. While the
unknown environment remained coupled with the body, subjects
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adapted to the new properties of the point of contact. Thus,
the force error decreased. The displacement (Figure 7, bottom
panels) increased significantly during the adaptation phase and at
the end of the adaptation subjects converged toward the motion
trajectory compatible with the desired contact force profile.

During catch trials, when the rigid environment was suddenly
restored, the forward and lateral force components were
significantly different from the baseline. The errors in both
directions had opposite sign with respect to those observed in
the initial response to the soft environment. While the forward
error was immediately large, without relevant changes during the
adaptation phase, the lateral error increased significantly with
practice. The subjects received an alarm signal when the force
exceeded 15 N. This was likely the cause of the rapid error
saturation in the forward direction for the catch trials (Figure 7,
top-left dotted line).

The learning model of Equations (17-19) was adequate to
capture the trends in the force errors and the displacement
variables with A = 0.15, corresponding to 15% update of the
desired displacement at each iteration (Figure 7, blue curves).
We should stress that this is not intended to be an accurate
fitting of the data, but a qualitative account of the learning

trends based on a simple learning model with a single free
parameter. Experiments on force field adaptation (Donchin
et al, 2003; Smith et al., 2006; Scheidt and Stoeckmann,
2007; Judkins and Scheidt, 2014) have revealed a rather large
range of learning factors, depending on the environment and
the task requirements. However, in our case the learning
factor characterizes a process of adaptation that is not quite
symmetric to the adaptation of movements to external force
fields. While models of the force field adaptation generate
changes in movement controllers based on errors in the predicted
interaction forces, here we consider changes in the motion
control based on errors between commanded and observed
movements. In the dual control model the force controller is
not updated, but keeps issuing the same feedforward force-
command. All the updates are performed by the motion control
system that modifies the desired trajectory.

During adaptation, the MFE decreased more rapidly than the
MLE and this trend was consistent with a faster increase of the
MFE in the catch trials, when the rigid contact was unexpectedly
restored. The simulation of the adaptive learning captured this
asymmetry. Importantly, the parameter determines different
rates of adaptation for the forward and lateral component of the
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force and predicts a faster increases of the MFE and MLE in catch
trials compared to trials in the soft environment (Figure 6C).
However, our model cannot reproduce accurately the data in the
catch trials because it could not include the effects of the alarm at
15N.

Taken together, these observations support the hypothesis
that adaptation was determined not by decreasing the hand
stiffness, but by a motion controller acting in parallel to the force
controller. These results were further supported by the separate
analysis of the trials without visual feedback, where the adaptive
process clearly took place, although there were some residual
errors at the end of the training.

Learning occurred for all subjects and was fast: after less than
50 trials both errors were strongly reduced. During the wash out
phase subjects recovered rapidly the baseline performance. The
after effects decay was faster than the learning time constant,
as observed also with adaptation of reaching movements to
perturbing force fields (Shadmehr and Mussa-Ivaldi, 1994).

Discussion

While most studies of motor control deal with the production of
movements, here we considered the less explored domain of force
control. Force is a classical concept of mechanics, with a rather
abstract nature. Unlike motion, force is never directly observed.
Instead, force is inferred indirectly from the observation of
movement—e.g., the displacement of a strain gage - or of the
lack of movement—e.g., the static equilibrium of a balance weight
scale. Nevertheless, since Newton the concept of force has proven
to be essential for understanding dynamical behaviors. But, is
force also an entity represented in the brain? Our results, among
others (Lacquaniti and Maioli, 1994; Morris et al., 2007; Chib
etal., 2009; Melendez-Calderon et al., 2011), suggest that this may
indeed be the case. We have presented experimental evidence and
theoretical arguments supporting the hypothesis that to control
the interactions of the arm with the environment, the neural
system combines the operation of two independent modules:
one enforcing desired hand movements in free space and the
other controlling the application of desired contact forces against
rigid surfaces. The theoretical analysis demonstrates that the
concurrent action of these two modules is competent to generate
a repertoire of movements and forces in tasks where the hand is
in continuous and direct contact with the environment and the
CNS corrects for state-dependent deterministic changes of the
environment’s dynamics.

We investigated the adaptation of force control in an
experimental paradigm analogous to the study of movement
adaptation within perturbing force fields (Flash and Gurevich,
1992; Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi,
1994; Gandolfo et al., 1996; Conditt et al., 1997; Thoroughman
and Shadmehr, 2000; Scheidt et al., 2001). We asked subjects to
exert a specified force profile against a rigid contact point. As
the contact became unexpectedly mobile and compliant, an error
appeared in the contact force. After repeated practice, subjects
were able to consistently reduce this error. As in the study of
movement adaptation to force fields (Shadmehr and Mussa-
Ivaldi, 1994), here too the observation of after-effects suggests

that adaptive learning was contingent upon the subjects forming
a predictive representation of the causal connection between
applied forces and resulting motions. This leads to issuing a
feedforward command that is maintained when the rigid contact
is unexpectedly restored.

The existence of neural representations of contact forces is
supported by observations by Kurtzer and coworkers of neural
activities in motor areas of non-human primates engaged in
maintaining the hand at equilibrium against a load (Kurtzer et al.,
2005). They found neurons that express load-related activity
either only during the maintenance of arm posture or only during
movement.

Venkadesan and Valero-Cuevas (2008) provided further
evidence in human subjects for separate neural control of
movement and contact force. They demonstrated that during
the execution of a tapping task, patterns of muscle synergies
switched immediately before a transition from movement in free
space to contact with a hard surface. Chib et al. (2009) observed
selective disruption of movement control, but not of force
control, by transcranial magnetic stimulation (TMS) of posterior
parietal regions. This is consistent with earlier studies of posterior
parietal cortex, where TMS disrupted oculo-manual interactions
(Van Donkelaar et al., 2000). Mugge et al. (2009) studied how
our proprioceptive sensory system weights force and position
feedback in an environment with known stiffness. They found
that position feedback has dominant influence when interacting
with soft objects. In contrast, force feedback becomes prevalent
with increasing object stiffness. The same group (Mugge et al.,
2010) developed a rigorous model of reflex function indicating
that position and force feedback are flexibly tuned to position and
force tasks.

As neural representations of forces and motions are
both expressed by cortical activities, the laws of mechanics
establish that arbitrary motions and forces cannot be enforced
simultaneously (Spong and Vidyasagar, 1989). Approaches to
hybrid control in robotics (Raibert and Craig, 1981; Yoshikawa,
1990) deal with this fact by partitioning the operational space
in orthogonal subspaces that allow either motion freedom or
force freedom. In this case, two distinct controllers—one for
the desired motion and the other for the desired force—are
applied independently over orthogonal directions. This approach
is applied to tasks such as scraping a rigid surface, where
the main computational challenge is to orient appropriately
the directions of action for the force and motion controllers.
However, in the most common manipulation tasks one interacts
with environments that are neither infinitely compliant nor
infinitely stiff. When our hand comes in contact with a non-
rigid environment, given a trajectory of the contact point
there is one and only one trajectory of the contact force,
which is compatible (Maluf et al., 2007) with the coupled
hand/environment dynamics. Vice-versa, given a trajectory of
the contact force there is one and only one compatible motion
trajectory. This simple yet fundamental causality principle
provides us with the basis for the analysis of adaptive behaviors.
Here, we applied this principle to recast the problem of motor
learning within a predictable mechanical environment as a search
for mutually compatible motion and force trajectories.
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Other studies have demonstrated the ability of subjects to
learn, memorize, and reproduce patterns of contact forces against
a rigid environment (Morris et al., 2007). However, we are not
aware of any earlier work in which subjects learn to control and
maintain forces against a soft contact point. In this case, the
contact point moves so that the motion and force form a unique
compatible pair. Melendez-Calderon et al. (2011) performed an
experiment, whose results are consistent with the representation
of learning as the discovery of compatible forces and motions.
In their case, subjects were required to execute hand movements
along a simulated “mechanical channel.” This was a typical
control framework (Raibert and Craig, 1981; Yoshikawa, 1990),
where contact forces were generated perpendicular to the channel
walls, which were rigid, and free motions were parallel to the
walls. Subjects were presented with a cursor, whose motion was
determined in part by the forces detected on the walls of the
channel. A dynamic model was used to translate the sensed
forces into a movement perturbation that was combined with the
hand motion along the channel. Therefore, Melendez’s paradigm
created a virtual compatible pair of force and motion trajectories
and their findings demonstrated that subjects learned through
practice to generate such compatible pair. In their case, as in
other studies of force control, the force was applied to a rigid
constraint and the compatible motion that was displayed to
the subject did not correspond to the physical motion of the
hand. Instead, it was derived computationally by simulating a
dynamic interaction where the same forces would be observed
in a non-rigid environment. Thus, their task was not an actual
force control task. In contrast, in our study, the compatible pair
was physical in that the actual contact impedance established
the force/motion correspondence and, unlike with the virtual
channel, the direction of the applied forces was not restricted to
be orthogonal to the direction of motion.

Adaptation of force control by predictive compensation of
the contact mechanics was not the only plausible outcome in
our experiments as in force field adaptation. In principle, an
alternative response could have been obtained by a force control
system reducing the limb’s impedance at the point of contact.
This would limit the variations of contact force caused by
motions of the hand and would not require any computational
representation. Instead, this would require the ability to reduce
the passive dynamical properties of the arm by effectively
lowering the contact impedance through direct feedback of force
errors. In our force control task, the presence of after-effects rules
out this hypothesis. A controller that minimizes impedance at the
point of contact would result in zero or negligible after-effects.
When the environment is not predictable, the neural controller
can use feedback to modulate motor impedance (Schoner et al.,
1992; Franklin et al., 2007; Selen et al., 2009). However, the
efficacy of biological feedback is limited by noise and long neural
delays (Hogan et al., 1987). Impedance control (Hogan, 1985b;
Schoner et al., 1992; Franklin et al., 2003; Damm and MclIntyre,
2008) allows for instantaneous responses, but has some well-
defined range limitations. On one hand the muscles can only
achieve a moderate amount of rigidity and at high metabolic cost
(Foley and Meyer, 1993; Hogan et al., 1998; Sih and Stuhmiller,
2003; Franklin et al., 2004). On the other hand the impedance

cannot be lowered beyond limits established by the passive
mechanics of the musculoskeletal apparatus.

Furthermore, in the biological system, the generation of
muscle forces is normally associated with increased stiffness
(Hofter and Andreassen, 1981; Mussa-Ivaldi et al., 1985; Kirsch
et al.,, 1994; Gomi and Osu, 1998; Perreault et al., 2004) and this is
likely to further limit the ability of the motor system to operate as
an ideal force controller. A possible remedy could be provided by
an adaptive force controller acting in conjunction with a motor
impedance. But motor impedance is effectively a movement
controller that responds with a restoring force to a change in the
state of motion. In this case the force controller and the motion
controller would act in opposition. The force controller would
modify the nominal force based on the experienced force error
with respect to the desired force, while the motion controller—
the impedance—would attempt to maintain the nominal contact
at rest. This approach would eventually lead to recovering the
desired contact force and would generate after-effects compatible
with those observed in our experiment.

In our model, the path to adaptation is different. The force
controller maintains the nominal force at its desired value. It
keeps operating as if acting against a rigid environment, while
the motion controller updates its nominal position so as to track
the motion observed in previous trials. This accomplishes two
key results. First, it adjusts the contact force without requiring
an accurate estimate of the contact force error that is unlikely
available to the biological systems (Jones and Hunter, 1982;
Jones, 1986; Toffin et al., 2003). Here, all feedback control is
assumed by the motion control system, based on a combination
of proprioception and biomechanical impedance. The second,
and perhaps most important result from a computational
perspective, is the formation of an explicit representation of
compatible force/motion pairs given the contact impedance of
the environment. In our case the force trajectory is simply the
desired trajectory and the compatible motion trajectory is the
nominal trajectory of the motion controller. These data, together,
constitute the basis for forming a local representation of the
environment mechanics.

This approach is similar to the biomimetic controllers
proposed by Ganesh et al. (Burdet et al., 2010; Ganesh et al,
2010, 2012) for simultaneous adaptation of force, impedance,
and trajectory in interaction tasks. While the implementations of
their and our models have significant differences, we share the
idea that adapting a reference trajectory can solve these tasks.
Their last implementation (Ganesh et al., 2012) suggests moving
the reference point of the motion trajectory toward the actual
hand position, while simultaneously maintaining the contact
force near the specified value attainable with minimum limb
impedance.

To investigate motor adaptation, one needs to devise
experimental frameworks in which subjects carry out constrained
tasks where the goals are given unambiguously, either in terms
of desired movement or desired force. This, of course, is quite
different from what one encounters in normal circumstances.
Manipulation skills generally involve a combination of force and
movement goals and we are often uncertain about the mechanical
constraints upon which we operate. Consider for example the
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simple task of turning a crank. In this case, the motion is
constrained to a circular trajectory. In a hybrid control scheme
one partitions the space in a motion freedom (along the circle)
and a force freedom (along the crank). However, the constraint
parameters (the center and radius of the crank) may be poorly
known or, if one is in the dark, they may be unknown altogether.
Then, it is plausible to suggest that, through practice, one learns
to remove the contact forces until one learns to perform circular
motions by planning to move along the circular path of the crank
while maintaining the contact forces at a minimum. However,
existing data suggest otherwise. According to observations by
Russell and Hogan (1989) subjects learn to maintain a relatively
stable pattern of movements and interaction forces along the
crank axis, as they keep turning the crank. This is an example
of how, given a simple manipulation task, learning may guide
toward the discovery of a compatible pair of movement and
force trajectories that satisfy the requirements of the task (turning
the crank) while producing comfortable and repeatable motor
patterns. Srimathveeravalli and Thenkurussi (2005) adopted a
similar viewpoint for the representation of handwriting. They
suggested that writing styles result from the “haptic profile”
of each individual, which is consistent with the generation of
specific force/motion trajectories as learned within a particular
mechanical environment (e.g., with a particular pen and writing
surface) and then exported to other environments.

More broadly, in manipulation tasks, when it comes
to deciding whether setting a movement or force goal,
one may remain relatively “agnostic” and allow the
controller/environment interaction to find the best compromise
for satisfying collateral requirements, such as optimality and
comfort.

Considerations on Stability

Stability is often related to the maintenance of a controlled
variable against random, unpredictable perturbations. In this
work, we are addressing an issue of adaptation to predictable,
deterministic perturbations, in a way that is analogous but dual
to the adaptation of movements to force fields.

We consider two independent controllers, concurrently acting
on state and contact force. There are therefore two types of
stability to be considered: state stability and force stability. Each
form of stability is related to keeping the key variable (force
or state) within a bounded neighborhood of a nominal, desired
value. Because of the dual character of forces and motions, it
is not possible to enforce both forms of stability at the same
time. For example, stable position control consists of maintaining
position at a particular value or within a bounded region, despite
unpredictable force perturbations. State stability in this case is
supported by maintaining a sufficient level of impedance, both in
its elastic (stiffness) and dissipative (damping) terms. In the case
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