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Perception of natural visual scenes activates several functional areas in the human brain,

including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the

Occipital Place Area (OPA). It is currently unclear what specific scene-related features are

represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA

might represent at least three qualitatively different classes of features: (1) 2D features

related to Fourier power; (2) 3D spatial features such as the distance to objects in a

scene; or (3) abstract features such as the categories of objects in a scene. To determine

which of these hypotheses best describes the visual representation in scene-selective

areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of

1386 images of natural scenes. VM provides an efficient method for testing competing

hypotheses by comparing predictions of brain activity based on encoding models that

instantiate each hypothesis. Here we evaluated three different encoding models that

instantiate each of the three hypotheses listed above. We used linear regression to fit

each encoding model to the fMRI data recorded from each voxel, and we evaluated each

fit model by estimating the amount of variance it predicted in a withheld portion of the data

set. We found that voxel-wise models based on Fourier power or the subjective distance

to objects in each scene predicted much of the variance predicted by a model based on

object categories. Furthermore, the response variance explained by these three models

is largely shared, and the individual models explain little unique variance in responses.

Based on an evaluation of previous studies and the data we present here, we conclude

that there is currently no good basis to favor any one of the three alternative hypotheses

about visual representation in scene-selective areas. We offer suggestions for further

studies that may help resolve this issue.
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INTRODUCTION

fMRI experiments have shown that natural scene perception activates several distinct functional
areas in the human cerebral cortex. These include the Parahippocampal Place Area (PPA),
Retrosplenial Complex (RSC), and the Occipital Place Area (OPA, also known as the Temporal
Occipital Sulcus or TOS) (Aguirre et al., 1998; Epstein and Kanwisher, 1998; Maguire, 2001;
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Nasr et al., 2011; Dilks et al., 2013). Which specific scene-related
features are represented in these areas has been the subject of
substantial debate.

Several qualitatively different scene-related features have been
proposed to be represented in scene-selective areas. Some studies
have suggested that these areas represent simple 2D features
related to the Fourier power spectrum (Rajimehr et al., 2011; Nasr
and Tootell, 2012; Nasr et al., 2014; Watson et al., 2014). Others
have argued that PPA, RSC, and OPA represent features related to
3D spatial structure, such as expanse or openness (Kravitz et al.,
2011; Park et al., 2011), the distance from objects in a scene to an
observer (Amit et al., 2012; Park et al., 2015), or the size of objects
in a scene (Cate et al., 2011; Konkle and Oliva, 2012). A third
position is that scene-selective areas represent information about
the semantic categories of natural scenes or their constituent
objects (Walther et al., 2009, 2011; Huth et al., 2012; Stansbury
et al., 2013).

Previous studies have not resolved which of these hypotheses
provides the best account of the representation of natural scenes
in scene-selective areas. One reason that this has been a difficult
issue to resolve is that almost every previous study of scene-
selective cortical areas has used stimuli that were pre-selected or
manipulated to maximize variation in specific stimulus features
of interest. Consequently, different experiments use different
stimuli, and thereby sample different ranges of variation in
stimulus features. If the brain operated according to purely linear
mechanisms, this would not cause any problems for scientific
interpretation of the results. However, feature tuning in the
human visual system is conferred by nonlinear mechanisms that
operate at all levels of the visual hierarchy (Van Essen et al.,
1992). In such a nonlinear system, responses to a limited range of
stimulus variation cannot necessarily be used to infer responses
to stimulus variation outside that range (Wu et al., 2006; Gallant
et al., 2012). Thus, any experiment that constrains stimulus
variation may fail to characterize nonlinear tuning properties for
stimuli (or stimulus features) that fall outside the experiment’s
pre-selected stimulus set.

The most straightforward way to probe the visual system in an
ecologically valid range is to use a broad distribution of natural
images as stimuli. The human visual system is exquisitely tuned
to the statistical variance and covariance of features in natural
images (Field, 1987; Simoncelli and Olshausen, 2001). Thus, one
efficient way to determine what features are represented in scene-
selective areas is to record brain activity elicited by a wide range
of natural scenes, extract features from the stimulus images that
reflect the various hypotheses, and then determine which features
best account for the measured brain activity (Naselaris et al.,
2009, 2012; Nishimoto et al., 2011; Stansbury et al., 2013).

In this study, we analyzed BOLD fMRI responses to a large
set of natural photographs to determine which features of natural
scenes are represented in PPA, RSC, and OPA. We employed
a voxel-wise modeling (VM) approach in which we directly
compared predictive models based on three different classes
of scene-related features: 2D features derived from the Fourier
power spectrum of each scene, the distance to salient objects in
each scene, and semantic categories of the constituent objects
in each scene. For each class of features, we defined a feature

space to formalize each alternative hypothesis in quantitative
terms.

To estimate the relationship between each feature space and
measured BOLD responses, we used linear regression to fit each
feature space to the fMRI data recorded from each voxel in the
posterior part of the brain (encompassing the visual cortex).
Each feature space and its associated β weights constitute an
encoding model that maps a stimulus onto brain responses. We
evaluated eachmodel based on how accurately it predicted BOLD
responses in a separate validation data set. Finally, we applied
a variance partitioning analysis to determine whether different
models predict unique or shared variance in BOLD responses.

METHODS

The data used for this experiment came from previously
published studies from our laboratory. The four subjects in this
experiment are the same four subjects as in Stansbury et al.
(2013). Data for two of these subjects (subjects 1 and 2) were
originally collected for Naselaris et al. (2012). Here we provide
a brief description of the stimuli, subjects, data collection, and
image response estimation. For full details, see Stansbury et al.
(2013).

fMRI Data Acquisition and Preprocessing
All fMRI data were collected at the UC Berkeley Brain Imaging
Center using a 3 Tesla Siemens Tim Trio MR Scanner (Siemens,
Germany). Data were collected from each of four human subjects
(1 female) while they viewed 1386 natural images. The data
were collected over six or seven scanning sessions for each
subject, and the total scan time per subject was 4 h and 53min.
Voxels were approximately 2.25 × 2.25 × 2.99mm, and the
repetition time (TR) was approximately 2 s. The fMRI scan
protocol used for subject one was slightly different from the
protocol used for the others; see Stansbury et al. (2013) for
full details. Anatomical scans were acquired for each subject
using a T1-weighted magnetization-prepared rapid gradient
echo (MP-RAGE) sequence. All subjects gave their written
informed consent to participate, and the experimental protocol
was approved by the UC Berkeley Committee for the Protection
of Human Subjects.

Freesurfer was used to automatically extract cortical surfaces
from the T1-weighted scans (Dale et al., 1999). These surfaces
were manually edited to improve the match to the anatomical
data. Surface flattening and visualization were performed with
Freesurfer and custom python code (Gao et al., 2015; available
at http://github.com/gallantlab/pycortex).

Functional MRI data were preprocessed using custom Matlab
(R2014a, MathWorks) code and SPM8 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8/). For each subject, data were motion
corrected and coregistered to the first volume collected. The
motion correction and coregistration transformations were
concatenated, and the data were re-sliced only once. Data
were divided into two separate subsets: one used for model
estimation and one used for model validation. The preprocessed
BOLD responses were de-convolved into a unique hemodynamic
response per voxel and a unique response amplitude per image
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per voxel. Response amplitudes for the validation data were
estimated slightly differently from the method in Stansbury et al.
(2013) in order to obtain an estimate of the noise in each voxel
(see Noise Ceiling Estimation section below).

Stimuli
The experimental stimuli consisted of 1386 photographs of
natural scenes. Most of the photographs used in this study were
selected first from a collection of 4000 labeled images curated
by the Lotus Hill Institute (Wuhan, China). The labels provided
by the Lotus Hill Institute were used to re-label all images
as containing (or not containing) each of four non-mutually
exclusive superordinate categories: animal, human, manmade,
and natural. Animals and humans were prioritized because
animacy was a principal feature of interest in Naselaris et al.
(2012). An additional 242 images were downloaded from Google
Images, in order to increase the number of scenes containing
both animals and humans. Finally, 1386 images were randomly
chosen from the full set of 4242 images, such that approximately
the same number of images had the labels animal and human,
and (independently) such that approximately the same number
of images had the labels natural and manmade. Thus, images
were not specifically selected based on the features of interest in
this study. All four subjects saw the same 1386 stimulus images.
Figure S02 shows all 126 validation images shown to all four
subjects.

Images subtended 20◦ × 20◦ of visual angle (500×500 pixels).
Each image presentation consisted of five brief flashes in 1 s,
followed by 3 s of isoluminant gray screen. The 1260 images in
the estimation data set were repeated twice each. The 126 images
in the validation data set were repeated 12 times each. During the
experiment subjects maintained steady fixation on a small (0.2◦ ×
0.2◦) square that changed colors at 3Hz. Subjects were instructed
to try to understand each scene as it was presented, but had no
explicit task besides maintaining fixation. Stimulus presentation
and all statistical analyses were conducted using custom Matlab
(R2014a, MathWorks) and python code.

Feature Spaces Used for Voxel-wise
Encoding Models
In voxel-wise modeling, a feature space is a quantification of
the features of a stimulus that are hypothesized to be related to
brain responses (Naselaris et al., 2011; Gallant et al., 2012). For
this study we created three different feature spaces: a Fourier
power feature space, subjective distance feature space, and an
object category feature space. Each feature space embodies a
different hypothesis about which features are represented in
scene-selective areas.

Fourier Power Feature Space
To parameterize variation in spatial frequency energy at different
orientations, we created a Fourier power feature space. First,
the color images were converted to Commission Internationale
de l’Éclairage L*A*B* color space, and the luminance layer
was extracted. A 2D Fourier transform was computed for each
luminance image. The amplitude spectrum for each image

was divided into eight bins: one high-frequency and one low-
frequency bin at each of four orientations (0, 45, 90, and 135◦).
The divide between high and low frequency bins was set at five
cycles/degree, as in Rajimehr et al. (2011) and Nasr and Tootell
(2012). A schematic of the Fourier domain bins is shown in
Figure 1C. Fourier power was averaged over each bin for each
image. To reduce correlations between Fourier power bins, each
bin in each image was divided by the L2 norm of all bins for
that image. The L2 norm itself was retained as a separate feature
reflecting the overall spatial frequency energy in each image.
Thus, the final Fourier power feature space consisted of nine
feature channels: one total spatial frequency energy channel (i.e.,
the L2 norm), four low spatial frequency channels, and four high
spatial frequency channels (One can think of each feature channel
as a separate column in a regression design matrix). To match the
range of variation in the Fourier power feature channels to the
range of the z-scored BOLD responses, each feature channel was
z-scored separately across all images.

Subjective Distance Feature Space
To parameterize distance in each scene, we created a subjective
distance feature space based on human distance judgments.
Human raters were instructed to estimate the distance to the
main content (the most salient or subjectively important objects)
in each of the 1386 stimulus images. The determination of the
main content of each image was left to the discretion of each
rater, so these distance ratings were inherently subjective. For
each image, raters chose one of five roughly logarithmically
spaced distance bins: (1) extreme closeup, ∼1–2 ft., (2) arm’s
length,∼3–4 ft., (3) nearby/same room, <20 ft., (4) semi-distant,
<100 ft., or (5) far away, >100 ft. Raters viewed each image
for 300ms before making each rating. These brief durations
approximated the brief image presentation time used in the fMRI
experiment. Raters had the option to repeat an image if they felt
they had not adequately understood it, but repeated viewing was
discouraged. Three different raters provided distance judgments.
Two of them were also subjects in the fMRI experiment.
The ratings produced by the three raters were consistent: the
correlations between the three raters’ distance ratings were
0.845, 0.857, and 0.861. The median distance rating for each
image across all three raters was used to code the features. The
final subjective distance feature space consisted of five mutually
exclusive binary feature channels (one for each distance bin).

Object Category Feature Space
To parameterize semantic variation in our stimulus images,
we used an object category feature space based on human-
assigned labels indicating the presence of objects or other scene
elements (such as land, water, and sky) in each image. This
feature space was originally created for an earlier study (Naselaris
et al., 2012). For a full description of the labeling process, see
the original paper. Briefly, 15 human raters assigned natural
language labels to each object in each image. These labels
were binned into 19 categories: creepy animal (e.g., insects,
snakes, and reptiles), bird, fish, water mammal, land mammal,
many humans, few humans, vehicle, artifact, text, prepared
food, fruit vegetable, other plants, furniture, sky, water, land,
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FIGURE 1 | Overview of the voxel-wise modeling (VM) procedure used in this study. (A) Human subjects were shown 1260 natural images while (B) fMRI data

were recorded. (C–E) These data were modeled as a function of three different feature spaces. Each feature space reflects a different hypothesis about which features

are represented in scene-selective areas. (C) For the Fourier power mode, the feature space was computed by taking the Fourier transform of each stimulus image

and then averaging the amplitude spectrum over the orientation and spatial frequency bins shown at right. (D) For the subjective distance model, the feature space

consisted of ratings from three humans who judged whether the main content of each stimulus scene was (1) <2 ft away, (2) <4 ft away, (3) <20 ft away, (4) <100 ft

away, and (5) >100 ft away. (E) For the semantic category model the feature space consisted of labels from three human raters who labeled the objects in each

stimulus image using 19 semantic labels. (F) Ordinary least squares regression was used to find a set of weights (β) that map the features in each model onto the

BOLD responses in each voxel. Each feature space and its associated β weights constitute a different encoding model. (G) In order to validate the models in an

independent data set, the same subjects were shown a different set of 126 images while (H) fMRI responses were collected. (I) To assess model accuracy, the β

weights estimated from the training data were used to predict responses in this withheld model validation data set. (J) To reveal patterns of tuning in the features

quantified by each different model, pre-specified t contrasts were computed between β weights in each model and projected onto the cortical surface, and β weights

were averaged over voxels in different regions of interest and plotted.

part of building, and edifice. These categories span several
superordinate categories known to be represented in higher-
order visual areas (animate/inanimate, large/small, human/non-
human). Thus, the full object category feature space consisted
of 19 non-exclusive binary feature channels, each indicating the
presence of a different object category in each stimulus image.
In previous work models based on this feature space have been
shown to provide accurate predictions of BOLD responses in
several higher-order visual areas (Naselaris et al., 2012). This
object category model also provides a simple approximation of
the WordNet (Miller, 1995) feature space used to model BOLD
data in Huth et al. (2012).

These three feature spaces were chosen as simple examples of
three broader classes of hypotheses regarding the representation
in scene-selective areas: that scene-selective areas represent
low-level, image-based features, 3D spatial information, and
categorical information about objects and scenes. Many other

implementations of these broad hypotheses are possible, but
an exhaustive comparison of all of the potential models
is impractical at this time. Instead, here we focus on just
three specific feature spaces that each capture qualitatively
different information about visual scenes and that are simple
to implement. We emphasize simplicity here for instructional
purposes, for ease of interpretation, and to simplify the model
fitting procedures and variance partitioning analysis presented
below.

Model Fitting and Evaluation
We used ordinary least squares regression to find a set of weights
(β) that map the feature channels onto the estimated BOLD
responses for the model estimation data (Figure 1H). Separate
β weights were estimated for each feature channel and for each
voxel. Each β weight reflects the strength of the relationship
between variance in a given feature channel and variance in the
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BOLD data. Thus, each β weight also reflects the response that a
particular feature is likely to elicit in a particular voxel. Themodel
β weights as a whole demonstrate the tuning of a voxel or an area
to specific features within the feature space for that model. The
full set of β weights for all feature channels for a voxel constitute
an encoding model for that voxel. Note that many previous fMRI
studies from our laboratory (Nishimoto et al., 2011; Huth et al.,
2012; Stansbury et al., 2013) have used ridge regression or another
regularized regression procedure to produce voxel-wise encoding
models that have the highest possible prediction accuracy.We did
not use regularized regression in the current study because the
use of regularization complicates interpretation of the variance
partitioning analysis described below. Furthermore, the number
of features in each model fit here was small relative to the
amount of data collected, so regularization did not improve
model performance.

Many studies describe the tuning of voxels across the visual
cortex by computing t contrasts between estimated regression
β weights for each voxel (Friston et al., 1994). To facilitate
comparison of our results to the results of several such studies,
we computed three t contrasts between β weights in each of our
three models. Each contrast was computed for all cortical voxels.
Using the β weights in the Fourier power model, we computed
a contrast of cardinal vs. oblique high-frequency orientations
(Nasr and Tootell, 2012). This contrast was specifically (+ high
freq 0◦ + high freq 90◦ – high freq 45◦ – high freq 135◦) (see
Figure 4 for feature naming scheme). Using the β weights in
the subjective distance model, we computed a contrast of far
vs. near distances (+ v. far + distant – near – closeup) (Amit
et al., 2012; Park et al., 2015). Using the β weights in the object
category model, we computed a contrast of people vs. buildings
(+ few people –0.5 edifice –0.5 part of building) (Epstein and
Kanwisher, 1998). Since these contrasts were computed for
every voxel in the brain, the p-values for each t contrast were
adjusted using False Discovery Rate (FDR) with an α level of 0.05
to correct for multiple comparisons (Benjamini and Yekutieli,
2001).

To evaluate the accuracy of each model, we used the model
fit to each voxel to predict BOLD responses of the same voxel
in the validation data set. Prediction accuracy was assessed by
computing Pearson’s product-moment correlation (r) between
the predicted response and the validation response estimated for
each voxel. To convert prediction accuracy to an estimate of the
variance explained, we squared the prediction accuracy (r) for
each model in each voxel value while maintaining its sign (David
and Gallant, 2005).

Noise Ceiling Estimation
Noise in the validation data set will nearly always bias prediction
accuracy downward, and the magnitude of this bias may differ
across voxels. This makes raw prediction accuracy difficult to
interpret: for any given voxel, imperfect predictions may be
caused by a flawed model, measurement noise, or both. To
correct this downward bias and to exclude noisy voxels from
further analyses, we used the method of Hsu et al. (Hsu et al.,
2004; Huth et al., 2012) to estimate a noise ceiling (γ ) for
each voxel in our data. The noise ceiling is the amount of

response variance in the validation data that could theoretically
be predicted by the perfect model.

Noise ceiling estimation requires repeated measurement of
responses to the same stimulus (Hsu et al., 2004). Thus, we
estimated 11 different responses to each of our validation stimuli
for each voxel. We split the validation data into 11 partially
overlapping blocks. Each block contained two presentations of
each stimulus image. The first block contained the first and
second presentations of each image, the second block contained
the second and third presentations of each image, and so
on. For each block, the BOLD data were de-convolved into a
unique hemodynamic response per voxel and a unique response
amplitude per image per voxel. This procedure resulted in 11
different estimates of the response to each of our validation
images for each voxel. These 11 validation image response
estimates were used to compute the noise ceiling (γ ) for each
voxel.

γ can be interpreted as a measure of signal repeatability.
If the same stimuli reliably elicit similar responses, γ is high
(near one); if not, it is low (near zero). To give a sense for this
metric, Figure 2 shows estimated responses for three voxels with
noise ceilings (γ -values) that are relatively high, average, and just
above chance. Estimated γ -values were used to select voxels for
all analyses presented in this paper. Voxels with noise ceilings
greater than γ = 0.04 [a value corresponding to bootstrapped
p(γ ) < 0.01 for a single voxel] were retained, and all others
were discarded before further analysis. In auditory cortex, where
the signal should not be strongly related to the stimuli in this
experiment, this threshold retains approximately five percent of
the voxels. Figure S01 shows the absolute number of voxels kept,
the percent of voxels kept, and the mean γ -value for each region
of interest for each subject.

The noise ceiling was also used to normalize prediction
accuracy in order to estimate the proportion of potentially
explainable response variance that is actually explained by
the models. The square root of the noise ceiling (γ 1/2) gives
the theoretical maximum correlation between predicted and
observed responses for each voxel. Following Hsu et al. (2004), all
estimates of prediction accuracy were divided by γ 1/2. Estimates
of variance explained were divided by γ . Note that very low noise
ceilings can result in divergent normalized correlation estimates.
For example, for γ = 0.0001 and r = 0.07, the normalized value
of r would be 0.07/0.00011/2 = 7. Our voxel selection criterion
allows us to avoid such divergent estimates, since all voxels with
low γ -values are discarded.

Model Comparison
To determine which features are most likely to be represented
in each visual area, we compared the predictions of competing
models on a separate validation data set reserved for this purpose.
First, all voxels whose noise ceiling failed to reach significance
[γ > 0.04, p(γ ) > 0.01 uncorrected] were discarded. Next, the
predictions of each model for each voxel were normalized by the
estimated noise ceiling for that voxel. The resulting values were
converted to z scores by the Fisher transformation (Fisher, 1915).
Finally, the scores for each model were averaged separately across
each ROI.
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FIGURE 2 | Response variability in voxels with different noise ceilings. The three plots show responses to all validation images for three different voxels with

noise ceilings that are relatively high, moderate, and just above chance. The far-right plot shows the response variability for a voxel that meets our minimum criterion

for inclusion in further analyses. Black lines show the mean response to each validation image. For each plot, images are sorted left to right by the average estimated

response for that voxel. The 11 gray lines in each plot show 11 separate estimates of response amplitude per image for each voxel. Red dotted lines show random

responses (averages of 11 random Gaussian vectors sorted by the mean of the 11 random vectors). Note that even random responses will deviate slightly from zero

at the high and low ends, due to the bias induced by sorting the responses by their mean.

For each ROI, a permutation analysis was used to determine
the significance of model prediction accuracy (vs. chance),
as well as the significance of differences between prediction
accuracies for differentmodels. For each feature space, the feature
channels were shuffled across images. Then the entire analysis
pipeline was repeated (including fitting β weights, predicting
validation responses, normalizing voxel prediction correlations
by the noise ceiling, Fisher z transforming normalized correlation
estimates, averaging over ROIs, and computing the average
difference in accuracy between each pair of models). This
shuffling and re-analysis procedure was repeated 10,000 times.
This yielded a distribution of 10,000 estimates of prediction
accuracy for each model and for each ROI, under the null
hypothesis that there is no systematic relationship between
model predictions and fMRI responses. Statistical significance
was defined as any prediction that exceeded 95% of all of the
permuted predictions (p = 0.05), calculated separately for each
model and ROI. Note that different numbers of voxels were
included in each ROI, so different ROIs had slightly different
significance cutoff values. Significance levels for differences
in prediction accuracy between models were determined by
taking the 95th percentile of the distribution of differences
in prediction accuracy between randomly permuted models
(p = 0.05).

Variance Partitioning
Estimates of prediction accuracy can determine which of several
models best describes BOLD response variance in a voxel
or area. However, further analysis is required to determine
whether two models each explain unique or shared variance
in BOLD responses. For example, consider two hypothetical
models A and B. Suppose that model A makes slightly more
accurate predictions than does model B for a given voxel.
One possibility is that the variance explained by model B is a
subset of the larger variance explained by model A. Another
possibility is that model B explains a unique and complementary

component of the response variance that is not explained by
model A (For example, even if model B is worse overall it
might make more accurate predictions than model A for a
subset of images). Figure 3B shows two simulated examples in
which competing models explain unique and shared response
variance.

We performed a variance partitioning analysis (Figure 3) to
determine the extent to which the three models in this study
predict unique or shared components of the response variance
in each scene-selective area. First, β weights were fit to each
feature space independently (Figure 1). Then, feature spaces
were concatenated in the features dimension (Figure 3A) for
each possible pair or trio of feature spaces (Fourier power
∪ subjective distance, Fourier power ∪ semantic categories,
subjective distance ∪ semantic categories, and Fourier power
∪ subjective distance ∪ semantic categories). For example,
the feature space matrix resulting from the concatenation
of all three models had 33 feature channels (nine from
the Fourier power model, five from the subjective distance
model, and 19 from the semantic category model). Each
concatenated feature space was fit to the data for each voxel,
and used to predict responses in the validation data for each
voxel. Prediction accuracy was converted to variance explained
by squaring the prediction correlation while maintaining its
sign.

For pairwise variance partitioning, the unique and shared
variance explained by each model or pair of models was
computed according to the equations in Figure 3C. Similarly
straightforward arithmetic was used to perform three-way
variance partitioning to compute each element of the Venn
diagram in Figure 9. For example, the unique variance explained
by the semantic category model was estimated as the difference
between variance explained by the full, 3-part concatenated
model (Fourier power∪ subjective distance∪ semantic category)
and the 2-part concatenation of the Fourier power and subjective
distance models (Fourier power ∪ subjective distance).
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FIGURE 3 | Overview of variance partitioning analysis. Variance partitioning determines what fraction of variance in BOLD responses is shared between two

models. (A) To estimate the amount of shared variance between each pair or trio of feature spaces, all pairs or trios of feature spaces were concatenated (in the

features dimension) and the resulting combined feature spaces were fit to the data and used to compute predictions of the validation data. (B) Two simulated models

that predict (1) independent variance and (2) shared variance. In (1), each model tends to make accurate predictions (o marks) where the other fails (× marks).

Consequently, the combined model (A∪B) performs well. In (2), both models succeed and fail for the same images (that is, the predictions are correlated).

Consequently, the combined model does not perform better than the individual models. The total variance explained by models A and B can be subdivided into the

partitions shown in the Venn diagram in (C). Each partition corresponds to variance explained by: (X) only model A, (Y) only model B, and (Z) both A and B (shared

variance). The variance explained by the combined model (r2A∪B) provides an estimate of the convex hull of the Venn diagram (shown by the orange border). Thus, X,

Y, and Z can be computed as shown. (D) Bar graphs of the values for X, Y, and Z computed for the two cases in (B).

Evaluation of Correlations between
Stimulus Features
One risk associated with the use of natural images as stimuli
is that features in different feature spaces may be correlated. If
some of the features in different feature spaces are correlated,
then models based on those feature spaces are more likely
to generate correlated predictions. And if model predictions
are correlated, the variance explained by the models will be
shared (see Figure 3). To explore the consequences of correlated
features, we computed the Pearson correlation (r) between all
features in the Fourier power, subjective distance, and object
category feature spaces. To determine whether the correlations
between features that we measure in our stimulus set are general
to many stimulus sets, we also explored feature correlations in
two other stimulus sets (from Kravitz et al., 2011 and Park et al.,
2015—see Supplementary Methods).

Non-zero correlations between a subset of the features in
different feature spaces may or may not give rise to models that
share variance. Two partially correlated feature spaces are most
likely to lead to models that share variance if the feature channels
that are correlated are also correlated with brain activity.

For example, imagine two simple feature spaces A and B, each
consisting of three feature channels. A and B are used to model
some brain activity, Y. Suppose that the first feature channel in
A (A1) is correlated with the first feature channel in B (B1) at
r = 0.5, and that the other feature channels (A2, A3, B2, and B3)
are not correlated with each other or with Y at all. If A1 and B1

are both correlated with Y, then a linear regression that fits A and
B to Y will assign relatively high β weights to A1 and B1 in the fit
models (call the fit models MA and MB). This, in turn, will make
the predictions of MA and MB more likely to be correlated. Thus,
MA and MB will be more likely to share variance.

Now, imagine a second case. Suppose instead that A1 and
B1 are correlated with one another but neither A1 nor B1 is
correlated with Y. Suppose that the other feature channels in A
and B are correlated with Y to varying degrees. In this case, A1

and B1 will be assigned small β weights when A and B are fit to
Y. The small β weights on A1 and B1 will mean that those two
channels (the correlated channels) will not substantially affect the
predictions of MA and MB. Thus, in this case, the predictions of
MA and MB will not be correlated, and MA and MB will each
explain unique variance. These two simple thought experiments
illustrate how the emergence of shared variance depends on
correlations between feature channels and the β weights on those
feature channels.

To illustrate how the correlations between features in this
specific study interact with the voxel-wise β weights for each
feature to produce shared variance across models, we conducted
a simulation analysis. In brief, we simulated voxel responses
based on the real feature values and two sets of β weights and
performed variance partitioning on the resulting data. First, we
used the concatenated stimulus feature spaces (X) and a set
of semi-random weights (β) to generate simulated voxel data,
according to the regression equation:
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Ysim = Xβ + ε (1)

ε is Gaussian noise ∼N(0,1). To assure that the simulated
data had approximately the same signal-to-noise ratio as the
fMRI data in our experiment, we modified the basic regression
equation to scale the noise according to a distribution of expected
correlations (ρ), thus:

Ysim = ρXβ + (1− ρ2)1/2ε (2)

We simulated the same number of voxels that we measured in all
the scene-selective areas in all four subjects (761 voxels). We used
the following procedure to assure that the simulation β weights
were plausible given the covariance structure of the different
feature spaces. First, we generated 761 different sequences of
Gaussian random noise. Then we used ordinary least squares
regression to fit β weights for each feature channel to the noise
sequences. This resulted in 761 sets of β weights that map the
feature spaces onto random data. Since ordinary least squares
regression uses the feature covariance matrix to estimate β

weights, the βweights generated by this procedure are guaranteed
to be plausible given the covariance of the feature channels.
Each set of semi-random β weights was then used to generate a
simulated voxel timecourse according to Equation (2) above. We
also created a second set of simulated data, based on the actual β
weights we estimated for each of the 761 voxels in the experiment.

To illustrate how the specific β weights (the real β weights
or the semi-random β weights) affected estimates of shared
variance, we applied the same variance partitioning analysis that
we applied to the fMRI data to both sets of simulated data. Note
that the results of the variance partitioning of the simulated
data based on the real β weights should match the results of
the variance partitioning of the BOLD data. We include these
results to show that our simulation procedure is operating as
expected, and to demonstrate that any difference between the
two simulations is a result of differences in the weights, and not
anything to do with the simulation procedure.

Functional Area Localizers
Visual areas in retinotopic visual cortex as well as functionally
defined category-selective visual areas were identified in separate
scan sessions using conventional methods (Spiridon et al., 2006;
Hansen et al., 2007). Scene-selective areas PPA, RSC, and OPA
were all defined by a contrast of places vs. objects. The Fusiform
Face Area (FFA) was defined by a contrast of faces vs. objects. The
boundaries of each area were hand drawn on the cortical surface
at the locations at which the t statistic for the contrast of places
vs. objects changed most rapidly.

RESULTS

To investigate how natural scenes are represented in scene-
selective areas in the human brain, we analyzed BOLD fMRI
signals evoked by a large set of natural images (These data were
collected for two studies from our laboratory that were published
previously: Naselaris et al., 2012 and Stansbury et al., 2013). We
tested three specific hypotheses about scene representation in

these areas that have been proposed in previous studies: that
scene selective areas represent Fourier power, subjective distance,
and object categories. To formalize each of these hypotheses,
we defined three feature spaces that quantified three classes of
features: Fourier power at different frequencies and orientations,
distance to the salient objects in each scene, and the semantic
categories of objects and other components of each scene. To
determine the relationship between each feature space and brain
activity, we used ordinary least squares regression to estimate sets
of β weights that map each feature space onto the BOLD fMRI
responses in the model estimation data set.

We present our results in four sections. First, we examine the
tuning revealed by the estimated model β weights in V1, the FFA,
the PPA, RSC, and the OPA. Second, we estimate the importance
of each feature space by predicting responses in a withheld data
set. Third, we evaluate whether each of these feature spaces
predicts unique or shared response variance in the fMRI data.
Finally, we investigate the correlations between features in the
Fourier power, subjective distance, and object category feature
spaces.

Voxel-wise Model β Weights Replicate
Tuning Patterns described in Previous
Studies
The voxel-wise model βweights for the features in eachmodel are
shown in Figures 4, 5. For each area, all voxels for each subject
that met our voxel selection criterion [γ > 0.04, p(γ )< 0.01—see
Methods] are shown. Overall, the tuning profiles revealed by the
βweights in each area appear to be broadly consistent with tuning
revealed by previous studies. We first describe the β weights in
two comparably well-understood areas (V1 and FFA), and then
describe the β weights for each model for all three scene-selective
areas.

In V1, the β weights for the Fourier power model
(Figures 4A–C) show that images containing high Fourier power
tend to elicit responses above the mean. This is consistent with
many studies showing that V1 responses increase with increasing
image contrast (Albrecht and Hamilton, 1982; Gardner et al.,
2005). The β weights for the subjective distance model show that
very distant scenes elicit responses below the mean in most V1
voxels. This is likely because the most distant scenes (such as
the image of the ocean in Figure 1A) have low overall Fourier
power. The β weights for the object category model show that
the images with labels for fruit and vegetable, prepared food,
and creepy animal all elicit responses above the mean. These
are also likely be related to different levels of Fourier power.
We analyze the correlations between Fourier power and specific
object categories, as well as other correlations between feature
channels in different models, in detail below.

In FFA, the β weights for the Fourier power model
(Figures 4D–F) show that images with high frequency energy
at 135◦ tended to elicit BOLD responses above the mean,
while high frequency energy at vertical and horizontal (90◦

and 0◦) orientations elicit responses below the mean. Several
previous studies have rigorously argued that FFA responds
to faces rather than low-level image features (Kanwisher and
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FIGURE 4 | Voxel-wise model β weights for all models for all voxels in V1 and FFA. (A) Model β weights for the Fourier power model for V1. The image in the

lower part of the panel shows the weight for every voxel in V1 that met our selection criterion [γ > 0.04, p(γ ) < 0.01, see Methods]. Voxels are separated by subject

(s1–s4), and the relative size of each subject’s section indicates the relative number of voxels selected in V1 for that subject. † marks indicate specific ROIs in specific

subjects with low signal quality (and thus few voxels selected for analysis). See Figure S01 for evaluation of signal across subjects. Each horizontal stripe through the

image shows the weights for a different voxel. Voxels are sorted within each subject by normalized prediction accuracy for the Fourier power model. Weights from the

model that produced the most accurate predictions in V1 are at the top. The solid white line across the image for each subject shows the chance threshold for

prediction accuracy (p < 0.05, FDR corrected). The bar graph at the top of the panel shows the mean β weights for all V1 voxels for all subjects. Each text label

corresponds to both the bar above it and the column of weights below it. Error bars are 99% confidence intervals across all voxels. These tuning patterns are

consistent with known response properties of V1, where voxel responses are related to the amount of Fourier power in each image. (B) Same plots as (A), for the

subjective distance model in V1. Voxels are sorted by normalized prediction accuracy for the subjective distance model. (C) Same plots as (A), for the object category

model in V1. Voxels are sorted by normalized prediction accuracy for the object category model. (D–F) Same plots as (A–C), but for FFA. These tuning patterns are

consistent with known response properties of FFA, where voxel responses are related to object categories associated with animate entities.

Yovel, 2006). Thus, the tuning for specific frequencies and
orientations is likely to reflect natural correlations between the
presence of humans or other animate entities and particular
spatial frequency patterns. The β weights for the subjective
distance model show that relatively nearby objects elicit BOLD
responses above the mean in FFA, while distant objects elicit
responses below the mean, and the nearest objects do not affect
responses in either direction. This is consistent with at least
one study that showed parametrically increasing responses in
FFA to scenes with increasingly nearby objects (Park et al.,
2015). Finally, the β weights for the object category model show
that images containing object categories relating to humans and
animals elicited BOLD responses above the mean, while images

containing categories related to structural features of scenes
(water, land, edifice, etc.) elicit BOLD responses below the mean.
These results replicate well-established tuning properties of FFA
(Kanwisher et al., 1997; Kanwisher and Yovel, 2006; Huth et al.,
2012; Naselaris et al., 2012), and are consistent across subjects
in voxels that have sufficient signal to model (See Figure S01 for
assessment of signal quality by subject and ROI).

Figure 5 shows the model β weights for all models and all
voxels in PPA, RSC, and OPA. Since the β weights in each of the
three models show similar tuning in all three areas, we describe
the tuning model by model in all three areas.

The β weights for the Fourier power model (Figures 5A,D,G)
show a somewhat variable pattern across subjects. In general,
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FIGURE 5 | Voxel-wise model β weights for all models for all voxels in PPA, RSC, and OPA. (A–C) Same plots as Figures 4A–C but for PPA, with

conventions as in Figure 4. (D–F) Same plots as Figures 4A–C but for RSC. (G–I) Same plots as Figures 4A–C but for OPA. † marks indicate specific ROIs in

specific subjects with low signal quality (and thus few voxels selected for analysis). See Figure S01 for evaluation of signal across subjects. For the Fourier power

model, the voxel-wise β weights are generally large for high frequency cardinal (vertical and horizontal) orientations, though this varies across subjects. For the

subjective distance model, voxel-wise β weights are large for distant objects and small for nearby objects across all subjects. For the object category model,

voxel-wise β weights were large for object categories related to the scene structure (e.g., edifice, land, and sky) and small for object categories associated with

animate entities (e.g., few people, land mammal, and water mammal). This pattern of β weights in the object category model was consistent across subjects and ROIs

with good signal. All these results are generally consistent with previous reports.

Fourier power at cardinal orientations tends to elicit BOLD
responses above the mean in voxels in PPA, RSC, and OPA, while
Fourier power at oblique orientations elicits BOLD responses

that are small or below the mean. This result is obvious in subject
1, but weaker in the other subjects. In subject 1, the β weights
are large for high frequency Fourier power and small for low
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frequency Fourier power, but this pattern also is weak in the other
subjects. We note that subject 1 had substantially better signal (a
higher average noise ceiling and more voxels retained) than the
other subjects (Figure S01). Thus, the slightly inconsistent tuning
across subjects may have been a result of differences in signal
quality. The pattern of responses we observe in subject 1 and
in the highest-signal voxels in the other subjects are qualitatively
consistent with the results of Nasr and Tootell (2012), who found
reliably larger responses to cardinal orientations vs. oblique
orientations in PPA (Note that in the Nasr and Tootell study,
some of the individual voxels within RSC and OPA also showed a
cardinal > oblique orientation effect, even though the ROIs as a
whole did not).

The β weights for the subjective distance model
(Figures 5B,E,H) show that images with distant salient objects
elicited BOLD responses above the mean in most voxels in PPA,
RSC, and OPA. Images that contain nearby salient objects elicit
BOLD responses below the mean in these same areas. These
results were consistent across subjects. Several other studies
have also found increased responses to distant scenes (vs. nearby
scenes) in scene-selective areas (Amit et al., 2012; Park et al.,
2015).

The β weights for the object category model (Figures 5C,F,I)
show that images containing buildings or vistas (i.e., images with
edifice,water, and/or land labels) elicit BOLD responses above the
mean in PPA, RSC, and OPA. Some voxels also respond above
the mean to images with sky and furniture labels. In contrast,
images labeled with animate categories (e.g., land mammal, water
mammal, and few humans) elicited BOLD responses below the
mean. These results were consistent across subjects. The low
weight for the fruit and vegetable category is likely due to a
bias in stimulus sampling. The stimulus set contained numerous
close-up images of fruits and vegetables, such as the top image
in Figure 1A. The overall pattern of responses in all three
areas is consistent with numerous previous studies that have
demonstrated increased responses to landscapes, buildings, and
other large, inanimate objects in scene-selective areas (Epstein
and Kanwisher, 1998; Huth et al., 2012; Naselaris et al., 2012).

To visualize the cortical extent of each of these patterns of
tuning independent of ROIs, we computed three different t
contrasts between the β weights in each of the models for each
voxel in the cortex.We used the βweights from the Fourier power
model, the subjective distance model, and the object category
model, respectively, to compute contrasts of cardinal vs. oblique,
far vs. near, and humans vs. buildings. Each of these contrasts
has been emphasized in previous work. Thus, we provide them
here for purposes of comparison with other studies that have
computed similar maps. However, note that these contrasts are
simplifications of the full tuning profile revealed by the weights,
particularly for the object category model, which contains many
categories besides humans and buildings.

Figures 6A–C show each of these contrasts for one subject,
projected onto that subject’s cortical surface. Figures S04–S06
show the same maps for the other three subjects. For all three
contrasts, many voxels with reliably large (p < 0.05, FDR
corrected) positive t-values are located in PPA, RSC, and OPA.
Relatively few voxels outside scene-selective areas have large

positive t-values (Some voxels in the posterior medial parietal
lobe also show large t-values in some subjects, particularly for
the near vs. far contrast). These contrasts are broadly consistent
with contrast maps reported in other studies (Rajimehr et al.,
2011; Amit et al., 2012; Nasr and Tootell, 2012; Park et al., 2015).
However, as in Figure 5, there is variability across subjects in
the weights in the Fourier power model. Thus, our replication of
tuning for cardinal orientations (as observed by Nasr and Tootell,
2012) is weaker than our replication of tuning for far distances
and categories associated with scene structure.

In summary, the voxel-wise models of Fourier power,
subjective distance, and object categories reveal three
qualitatively different patterns of tuning that are common
to all three scene-selective areas: (somewhat) stronger responses
to cardinal than to oblique orientations, stronger responses to
distant than to nearby objects, and stronger responses to object
categories associated with buildings and landscapes than to
categories associated with animate objects. However, the tuning
revealed by the voxel-wise model β weights does not reveal
which of the three models provides the best overall account of
the responses in each area. Furthermore, some of the tuning
results in V1 and FFA suggest that correlations between features
in different models may have affected the estimated tuning
for each model (For example, it seems unlikely that V1 truly
represents fruits and vegetables, as Figure 4 seems to indicate).
We address both of these issues below.

The Object Category Model Makes the
Best Predictions in Scene-selective Areas
To determine which model provides the best description of
BOLD responses in each area, we used each fit model to predict
responses in a separate validation data set (Figure 1). We then
computed the correlation between the predictions of each model
and the estimated BOLD responses in the validation data.
Correlations were normalized by the estimated noise ceiling for
each voxel.

Figures 6D–F show estimates of prediction accuracy for all
three models for one subject projected onto that subject’s cortical
surface. Figures S04–S06 show similar maps for the other three
subjects. All three models accurately predict brain activity in
PPA, RSC, and OPA. The object category model also makes good
predictions in the FFA, the Occipital Face Area (OFA), and the
Extrastriate Body Area (EBA), as reported previously (Naselaris
et al., 2012). This is likely because the object model contains labels
for the presence of humans and other animate categories.

Figure 7 shows estimates of prediction accuracy for all three
models, averaged across voxels in all four subjects within each of
several different ROIs. Figure S07 shows the same result for each
individual subject.

In area V1 the Fourier power model provides the best
predictions of brain activity (bootstrap p < 0.05). This suggests
that tuning in the Fourier power model (Figure 4A) is more
important than tuning in the subjective distance and object
categorymodels in V1 (Figures 4B,C). In FFA the object category
model provides the best predictions (all bootstrap p < 0.05). This
suggests that tuning in the object category model (Figure 4F) is
more important than tuning in the Fourier power or subjective
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FIGURE 6 | Maps of voxel-wise t contrasts and normalized prediction accuracy for subject 1. Figures S04–S06 show the same maps for the other three

subjects. For all maps, dashed lines indicate the horizontal meridian in the visual field, solid lines indicate the vertical meridian, and dotted lines indicate the boundaries

of regions of interest defined by functional contrasts. (A) t contrast computed for β weights within the Fourier power model (cardinal vs. oblique). t-values are scaled

from -7 to 7, black voxels indicate t-values below the chance threshold (t < 3.36, FDR-corrected p > 0.05) despite good signal [γ > 0.04, p(γ ) < 0.01]. Gray voxels

indicate poor signal [γ < 0.04, p(γ ) > 0.01] and thus no basis for comparing models. (B) t contrast for β weights within the subjective distance model (far vs. near). (C)

t contrast computed for β weights within the object category model (buildings vs. people). Voxels with significant t contrasts for each of the three models are located in

the same regions of the cortex. (D) Prediction accuracy for the Fourier power model. Prediction accuracy has been normalized by the noise ceiling. Black voxels

indicate correlations that are below the chance threshold (r < 0.21, FDR-corrected p > 0.05) despite good signal [γ > 0.04, p(γ ) < 0.01]. Gray voxels indicate poor

signal [γ < 0.04, p(γ ) > 0.01], and thus no potential to test predictions. (E) Prediction accuracy for the subjective distance model. (F) Prediction accuracy for the

object category model. All three models make accurate predictions in similar locations across the cortex, though the object category model makes more accurate

predictions in FFA, OFA, and EBA. Combined with the t contrast maps, this suggests that the three different models may each describe the same response variance in

scene-selective areas in a different way.

distance models in FFA (Figures 4D,E). Thus, in both V1 and
FFA, choosing the bestmodel based on prediction accuracy favors
themodels that aremost consistent with previous results for these
areas (Jones and Palmer, 1987; Kanwisher and Yovel, 2006; Kay
et al., 2008; Naselaris et al., 2009). These examples demonstrate
how assessing prediction accuracy can (and should) affect the
interpretation of tuning revealed by β weights.

In PPA, the object category model provides the best
predictions of brain activity (all bootstrap p < 0.05). This
suggests that tuning in the object category model is more
important than tuning in the Fourier power or subjective distance
models in PPA. In RSC, the object category model provides more
accurate predictions than those provided by the Fourier power
model (bootstrap p < 0.05), but the predictions of the object
category model are not significantly different from those of the

subjective distance model (bootstrap p = 0.14). This suggests
that tuning in the object category model is more important than
tuning in the Fourier power model, but it is unclear whether
the tuning in the subjective distance model or the tuning in the
object category model is more important. In OPA, the object
category model provides the best predictions of brain activity
(all bootstrap p < 0.05). Thus, as in PPA, tuning in the object
category model is more important than tuning in the Fourier
power or subjective distance models in OPA.

Among the options tested here, the representation in two of
three scene-selective areas (PPA and OPA) is best described in
terms of tuning for object categories. In RSC, tuning for object
categories is more important than tuning for Fourier power.
Thus, the object category model seems to be a good model for all
three areas. However, this conclusion is weakened by variability
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FIGURE 7 | Prediction accuracy (Pearson’s r) averaged across all

voxels and all subjects within several different regions of interest.

Predictions are normalized by the noise ceiling and only voxels with reliable

stimulus-evoked responses are included. Error bars are 99% confidence

intervals, asterisks indicate significant differences between models

(bootstrapped p < 0.05), and the dotted lines across the bottom indicate the

chance threshold (bootstrapped p = 0.05) for the mean correlation for each

ROI (Thresholds differ slightly across ROIs because of the differing number of

voxels in each ROI). The Fourier power model makes the best predictions in

V1, and the semantic category model makes the best predictions in all other

ROIs (except in RSC, where the subjective distance model and the semantic

category model are not reliably distinguishable). We note, however, that the

object category model was not reliably better than the Fourier power and

subjective distance models in all three scene-selective areas in all subjects

(see Figure S07 for individual subject results).

in relative prediction accuracy across individual subjects (Figure
S07). Furthermore, the fact that all three models make quite
accurate predictions in all three areas (across all subjects with
good signal) suggests that eachmodel may each describe the same
underlying representation in different ways.

The Fourier Power, Subjective Distance,
and Object Category Models All Explain
the Same Response Variance
The Fourier power, subjective distance and object category
models all provide accurate predictions of BOLD responses in
scene-selective visual areas. Given this result, an obvious question
arises: do the Fourier power and subjective distance models
explain the same BOLD response variance as is explained by the
object category model? That is, can tuning for Fourier power
and/or subjective distance almost fully account for category
tuning? This question cannot be answered by merely examining
prediction accuracy, because two models that make comparably
accurate predictions could describe either unique or shared
components of response variance (see example in Figure 3B).We
performed a variance partitioning analysis to determine whether
the three models explain unique or shared response variance in
the ROIs of interest here. Variance partitioning allocates variance
to each model based on whether twomodels can be combined for
a gain in variance explained. If they can, then eachmodel explains
unique response variance; if not, the variance explained by the
models is shared (see Figure 3 and Methods for an overview).

Figures 8, 9 show the results of the variance partitioning
analysis. In V1, only the Fourier power model explains any
unique variance that cannot be explained by the other two
models. All three models also share a small amount of variance

FIGURE 8 | Two-way variance partitioning analyses. All plots are based

on concatenated data for all four subjects. (A) Independent and shared

variance explained by Fourier power and subjective distance models. Dotted

lines at the bottom of the graph indicate chance levels (bootstrapped

p = 0.05) of variance explained, and asterisks indicate significant differences in

variance explained (bootstrapped p < 0.05). Error bars are 99% confidence

intervals across all voxels in a region. (B) Independent and shared variance

explained by Fourier power and object category models. (C) Independent and

shared variance explained by subjective distance and object category models.

In PPA, RSC, and OPA, all pairs of models share a substantial amount of

variance. Compared to the object category model, neither the Fourier power

model nor the subjective distance model explains any unique variance.

in V1. The shared variance is likely due to natural correlations
between specific features that affect responses in V1 and other
features. For example, images with distant objects often have low
overall contrast (and thus low Fourier power, as the image of the
ocean in Figure 1A); thus distance and Fourier power are likely
to be correlated (We analyze correlations between all features
in detail below). Since total Fourier power affects responses in
V1 (Figure 4A), this correlation could lead to the subjective
distance model and the Fourier power model providing similar
predictions (and thus explaining shared variance). Thus, it is
likely that the subjective distance and object categorymodels only
explain any variance in V1 (Figure 7) because of the variance that
they share with the Fourier power model.

In FFA, only the object category model explains any unique
variance. All three models also share a significant amount of
variance, and the subjective distance model and the object
category model share a significant amount of variance that is
independent of the Fourier power model. The unique variance
explained by the object category model is in keeping with
known response properties of FFA (Kanwisher and Yovel, 2006;
Huth et al., 2012; Naselaris et al., 2012). As in V1, the shared
variance between the object category model and the subjective
distance model may be due to natural correlations between
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FIGURE 9 | Three-way variance partitioning analysis. (A) Venn diagram

representing hypothetical relationships between the variance explained by the

three models, such that each explains a unique component of the variance.

(B) A different hypothetical relationship in which the semantic category model

explains a large fraction amount of independent variance, but the three models

all share small amounts of variance. (C) A third possible relationship in which

all three models explain shared variance, and the Fourier power and subjective

distance models account for most of the variance explained by the object

category model. (D) Three-way variance partitioning results obtained in our

experiment. This plot is based on concatenated data for all four subjects;

results for individual subjects are shown in Figure S08. Dotted lines at the

bottom of the graph indicate chance thresholds (bootstrapped p = 0.05) for

the amount of variance explained. Chance thresholds differ depending on the

number of voxels per ROI and the number of subtractions between fit models

necessary to compute each component of the variance. Error bars are 99%

confidence intervals across all voxels in a region. The pattern of results is most

consistent with the Venn diagram in (C).

features. For example, people and other animate categories
are more likely to be present at specific distances (in this
particular stimulus set, and also potentially in natural visual
experience in general). Interestingly, at least one other study
has found similar tuning for distance in FFA (Park et al., 2015).
However, this study may be subject to the same stimulus feature
correlations.

In scene-selective areas PPA, RSC and OPA, most of the
variance explained by the Fourier power, subjective distance,
and object category models is shared among all three models
(Figure 9). That is, most of the variance explained by any
one of the three models is explained by all three models.
Only the object category model explains any unique variance
in PPA, RSC, or OPA that cannot be explained by the other
two models (Figure 9). Thus, the Fourier power and subjective
distance models provide partial (but not complete) explanations
of variance explained by the object category model in scene-
selective areas.

The Fourier power and subjective distance models could
be favored on grounds of parsimony, since both models have
fewer feature channels than the object category model, and both
Fourier power and distance are presumably less complex to
compute than abstract category labels. However, neither simpler
model provides a more accurate description of BOLD responses
in scene-selective areas than that provided by the object category
model, and neither model predicts any variance that is not
already accounted for by the object category model.

Fourier Power, Subjective Distance, and
Object Category Labels are Highly
Correlated in Natural Images
The shared variance among the three models in PPA, RSC, and
OPA is likely due to correlations between features in the feature
spaces underlying the models. To investigate this possibility
we computed the correlations between all features in the
Fourier power, subjective distance, and object category feature
spaces. Figure 10 shows the resulting correlations. The highest
correlations are between the features within the Fourier power
feature space. This was expected, since correlations between
different spatial frequency bands are a well-known property of
natural images (Field, 1987). The average correlation magnitude
for features in different feature spaces is r = 0.11.

We found reliable relationships between several Fourier
power and subjective distance channels. For example, Figure 10B
shows that horizontal high frequency Fourier power is positively
correlated with far distances and negatively correlated with near
distances. These correlations may be a result of thin horizontal
horizon lines in distant images. Conversely, two low frequency
Fourier power channels (Low freq 45◦ and Low freq 135◦)
are positively correlated with near and medium distances and
negatively correlated with far distances. Vertical low frequency
Fourier power is also positively correlated with intermediate
distances and negatively correlated with far distances. The
correlations between most low frequency channels and near
distances could be a result of perspective projection: nearby
objects will fill more of the visual field, and thereby increase
low frequency Fourier power. Low frequency horizontal Fourier
power may not follow the same trend as other low frequency
orientations because the land/sky boundaries will increase both
high and low horizontal Fourier power in distant scenes.

To determine whether the relationships between Fourier
power and distance that we observe are general to other stimulus
sets as well, we computed the same Fourier power feature space
for the stimuli used in two previous fMRI studies of distance
representation (Kravitz et al., 2011; Park et al., 2015). In both
stimulus sets, we found the same relationships between Fourier
power and distance as in our stimuli (Figure 11; See Figures S09,
S10 for further analysis of these two data sets).

We also note that many of the features that elicit large
responses in scene-selective areas (Figure 5) have relatively high
correlations with each other. For example, the category label sky
is correlated with the subjective distance label Distant (<100′)
(r = 0.39), and horizontal high-frequency Fourier power
(Fourier power channel High freq, 0◦) is correlated with the
semantic labels vehicle, sky, and water (r = 0.19, 0.27, and
0.27, respectively). Each of these labels is fairly common in
the stimulus set (each occurs in at least 230/1326 images—see
Figure S03 for frequencies of all object category and distance
labels). Thus, the correlations between Fourier power feature
channels and the category labels vehicle, sky, and water are
reasonably likely to be representative of natural relationships
between features in the real world.

Other correlations between less common labels may reflect
sampling biases in this particular set of images. For example, the
correlation between the nearest distance label [Closeup (<2′)]
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FIGURE 10 | Correlations between all features in the Fourier power, subjective distance, and object category feature spaces. (A) Full correlation matrix.

White lines demarcate boundaries between feature spaces. Features that elicit responses above the mean in scene-selective areas [the Fourier power features labeled

High freq, 0◦ and High freq, 90◦; the subjective distance features labeled Distant (<100′) and V. far (>100′); and the semantic category labels Edifice, Part of building,

Water, Land, and Sky] tend to have high correlations between them. Panels (B,C) provide zoomed in views of the correlation values for the rows marked (B,C) in the

correlation matrix. (B) Bar graph of the correlations between the Fourier power channel High freq, 0◦ and all subjective distance features. High frequency horizontal

Fourier power is positively correlated with large subjective distances, potentially due to the presence of a thin horizon line and tiny objects in faraway scenes. (C) Bar

graph of the correlations between the subjective distance channel Distant (<100′) and all object category features. Distant scenes are tend to have the labels Vehicle,

Sky, Part of building, and Edifice. The high correlations between features with high β weights in scene-selective areas could be a consequence of all three models

attempting to parameterize the space of scene features.

and the object label Fruit/vegetable is 0.39. Fruit/vegetable only
occurs in 62 images, of which 32 are rated as Closeup (<2′).
The relative rarity of the Fruit/vegetable labels, combined with
the observation that fruits do not usually appear less than two
feet from one’s face, suggest that this correlation is potentially
spurious.

Whether feature correlations are due to natural statistics or
sampling biases, there is a risk that they will lead to biases in
estimation of weights, and thereby to models that spuriously
share variance. However, it is unclear whether correlations of the

magnitude that we observe will necessarily give rise to models
that share variance.

A Combination of Correlations between
Features and Voxel Tuning Produce Shared
Variance
We performed a simulation to illustrate how the feature
correlations and voxel-wise β weights in our experiment give
rise to models that explain the same variance. We generated
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FIGURE 11 | Correlations between distance and two Fourier power

channels in stimulus sets from other studies. (A) Mean low frequency

vertical and high frequency horizontal Fourier power for each distance bin for

images used in Experiment 2 of Park et al. (2015). Fourier power channels

were z-scored across all images in the stimulus set before averaging across

bins. Error bars are standard errors of the mean. (B) Low frequency vertical

and high frequency horizontal Fourier power for each image in Kravitz et al.

(2011), plotted against the behavioral distance ratings for each image obtained

in that study. In both stimulus sets, as in our stimulus set, low frequency

vertical (90◦) Fourier power is reliably associated with nearer scenes, and high

frequency horizontal (0◦) Fourier power is reliably associated with far-away

scenes.

two simulated data sets. The first was based on the stimulus
feature spaces and the β weights estimated from the fMRI data
for voxels in scene-selective areas, and the other was based on
the same feature spaces and a set of semi-random β weights
(see Methods for details). The two sets of β weights differed in
whether the features that were correlated across feature spaces
had relatively high β weights or not (the real weights did, but the
randomweights generally did not).We applied the same variance
partitioning analysis that we previously applied to the fMRI data
to both sets of simulated data.

Figure 12 shows the results of the simulation. When semi-
random β weights were used to generate the simulated data, the
variance partitioning still detected unique variance explained by
each model despite the correlations between some of the features
in the feature spaces. However, when the real β weights were
used to generate the simulated data, the variance partitioning
analysis found a large fraction of shared variance between all
three models. Thus, the simulation makes it clear that correlated
features in different feature spaces only lead to shared variance
if the correlated features also have relatively high β weights.

FIGURE 12 | Simulated variance partitioning. (A) Variance partitioning

conducted on simulated data generated based on the feature spaces for all

three models and a set of semi-random β weights (see Methods for details).

This shows that, despite the correlations between feature spaces, there are

many patterns of tuning that could result in estimates of unique variance

explained for each model. (B) Variance partitioning conducted on simulated

data generated based on the feature spaces for all three models and actual β

weights from voxels in scene-selective areas. This shows that the specific

pattern of tuning that we observed (with high weights on the most correlated

features) is likely to result in shared variance across these three models.

The β weights, which reflect the specific response properties of
PPA, RSC, andOPA, can selectivelymagnify correlations between
particular correlated features when predictions are computed,
which can lead to shared variance between the different models.

This suggests that new models of scene-selective areas are
more likely to explain unique variance to the extent that the
features they parameterize are not correlated with other features
known to be associated with responses in scene-selective areas.

DISCUSSION

Several areas in the human brain respond to visual scenes, but
which specific scene-related features are represented in these
areas remains unclear. We investigated three hypotheses that
have been proposed to account for responses in scene-selective
areas such as PPA, RSC, and OPA. Specifically, we investigated
whether these areas represent (1) information about the Fourier
power of scenes, (2) the subjective distance to salient objects in
scenes, or (3) semantic categories of scenes and their constituent
objects. We evaluated these three hypotheses by applying voxel-
wise modeling to a data set consisting of BOLD fMRI responses
elicited by a large set of natural images.We created and compared
the prediction performance of three voxel-wise encoding models,
one reflecting each of these alternative hypotheses.

We found that a voxel-wise model based on semantic
categories makes slightly more accurate predictions than a model
based on Fourier power (in PPA, RSC, and OPA) or subjective
distance (in PPA and OPA). However, a variance partitioning
analysis revealed that, in all three areas, the variance predicted by
these three models is mostly shared. The shared variance is likely
a result of a combination of the response patterns of voxels in
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scene-selective areas and high natural correlations between the
stimulus features in the feature spaces underlying each of the
models. We therefore conclude that any or all of these models
can provide a plausible account of visual representation in PPA,
RSC, and OPA.

Previous Studies Have Not Resolved which
Model Best describes Scene-selective
Areas
Several previous studies of PPA, RSC, and/or OPA have argued in
favor of each of the hypotheses tested here, or in favor of closely
related hypotheses (Walther et al., 2009; Kravitz et al., 2011; Park
et al., 2011, 2015; Rajimehr et al., 2011; Nasr and Tootell, 2012;
Watson et al., 2014). However, none have completely resolved
which features are most likely to be represented in scene-selective
areas. We briefly review three representative and well-designed
studies of scene-selective areas here, and assess their conclusions
in light of our results.

Nasr and Tootell argued that PPA represents Fourier power
(Nasr and Tootell, 2012). Specifically, they showed that filtered
natural images with Fourier power at cardinal orientations elicit
larger responses in PPA than do filtered images with Fourier
power at oblique orientations. In two control experiments,
they measured fMRI responses to stimuli consisting of only
simple shapes, and found the same pattern of responses. Thus,
their results suggest that Fourier power at cardinal orientations
influences responses in PPA independent of subjective distance
or semantic categories. This in turn suggests that the Fourier
power model in our experiment should predict some unique
response variance that is independent of the subjective distance
and semantic category models. We did find that the Fourier
power model gave accurate predictions in scene-selective areas.
However, we did not find any unique variance explained by the
Fourier powermodel. There are at least two possible explanations
for this discrepancy. First, the Fourier power model may explain
some unique variance, but we may have mischaracterized it as
shared variance because of stimulus correlations. Second, the
results of Nasr and Tootell’s study, which relied on filtered and
artificial stimuli, simply may not generalize to explain responses
to natural images. This is a known pitfall of using artificial or
manipulated stimuli (Talebi and Baker, 2012). In any case, the
data from the Nasr and Tootell study provide no information
about the strength of the relationship between Fourier power and
BOLD responses in scene-selective areas relative to the effects
of other features. Thus, their study cannot resolve the question
of which model is best, nor the question of how Fourier power
features are related to other features.

Park et al. (2015) argued that PPA and RSC represent scene
size. Their metric for scene size was based on human judgments,
and so is closely related to the subjective distance model that
we tested here. They measured BOLD responses to a large and
carefully chosen set of photographs of natural scenes, and found
that responses in PPA and RSC increased parametrically with
scene size. However, we found a strong relationship between
scene size and Fourier power in the images used in the Park
et al. study (Figure 11A, Figure S10). To try to avoid just

such confounds, Park and colleagues created a control stimulus
set in which high-frequency Fourier power was approximately
equalized across different scene sizes. We did not test this
control stimulus set directly, but since the differences in Fourier
power that we observed were specific to particular orientations,
it is unlikely that their control removed all Fourier power
differences between scenes. This suggests that differences in
particular Fourier power channels between different scene sizes
might account for the results reported in the Park study, just as
both the Fourier power and subjective distance models provide
equivalent descriptions of scene-selective regions in our data.
Finally, Park and colleagues did not assess whether the specific
semantic categories of objects in each of their scenes might have
affected BOLD responses. Without this comparison, it is unclear
whether the presence of different object categories in their scenes
may have also affected their results. For all these reasons, the
results reported by Park and colleagues cannot provide a basis
for choosing between the three models of scene-selective areas
that we consider.

Kravitz et al. (2011) argue that PPA and OPA represent
scene expanse (defined as the difference between open and
closed scenes) and relative distance (defined as the difference
between near and far scenes). They find that voxel patterns
in PPA and OPA distinguish both open scenes from closed
scenes and near scenes from far scenes better than the same
voxels distinguish natural from manmade scenes. However,
variation in Fourier power across their experimental conditions
complicates the interpretation of their results. They acknowledge
that the open and closed scenes in their stimulus set have
visibly different Fourier power spectra. When we processed their
stimuli with our Fourier power model, we found significant
differences between their open and closed scenes in several
Fourier power channels (Figure S09A). This suggests that the
different patterns of responses they observed to open and closed
scenes could be equally well explained by differences in Fourier
power between open and closed scenes. Kravitz et al. do not
report any differences between the Fourier spectra of the near and
far scenes in their stimulus set. Our analysis of their stimuli also
does not find any reliable difference in any Fourier power channel
between their near and far scenes (Figure S09B). However, their
Near and Far condition labels were based on relative distance
within each scene category, which means that the scenes in the
Near condition were not necessarily all the subjectively nearest
scenes. For example, half their images of beaches were labeled
as Near and half their images of hallways were labeled as Far,
regardless of whether the beaches were subjectively nearer than
the hallways. They did, however, obtain a measure of the relative
subjective distance of each scene.When we compared the Fourier
power features for each image to these distance ratings (instead
of to the near/far condition labels), we found reliable correlations
between Fourier power and relative subjective distance in their
stimulus set (Figure 11B and Figure S09C), just as in our stimuli
and in the Park et al. (2015) stimuli. Thus, the correlation
between subjective distance ratings and fMRI-based distance
scores reported in Kravitz et al. (2011) might be explained by
variation in Fourier power—specifically, by the presence of high
frequency horizontal Fourier power in distant scenes. In sum,
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our reanalysis of the stimuli from Kravitz et al. (2011) suggest
that their results cannot provide a basis for choosing between the
three models of scene-selective areas that we consider here.

Other Hypotheses Regarding
Scene-selective Areas
The Fourier power, subjective distance, and object category
feature spaces that we investigated broadly sample the space of
hypotheses regarding the representation in scene-selective areas.
However, three specific feature spaces obviously do not constitute
a comprehensive test of every hypothesis in the literature.

Several other feature spaces have been proposed that
parameterize variation in the same three broad domains that
our models do (low-level image features, 3D spatial layout,
and categorical or semantic information), but with different
parameters. For example, low-level image variation can be
parameterized using Gabor wavelets (Jones and Palmer, 1987;
Kay et al., 2008), scene gist (Oliva and Torralba, 2001; Watson
et al., 2014), or extended contours (Walther et al., 2011).
3D spatial variation can be parameterized according to scene
expanse (Kravitz et al., 2011; Park et al., 2011) or local scene
structure (Epstein and Kanwisher, 1998; Kornblith et al., 2013).
And categorical information about scenes can be parameterized
using hierarchical object labels (Huth et al., 2012) or labels for
categories of scenes rather than objects, including distinctions
between natural and man-made scenes (Naselaris et al., 2009;
Walther et al., 2009; Stansbury et al., 2013).

Previous studies have also proposed that scene-selective areas
may represent scene familiarity (Epstein et al., 2007), landmarks
(Janzen and van Turennout, 2004; Auger et al., 2012), or other
scene features relevant for navigation (Epstein, 2008; Morgan
et al., 2011). None of these hypotheses are obviously related to
the feature spaces we investigated.

Any of these feature spaces, if they were formalized and tested
in the voxel-wise modeling framework, could potentially yield
better or more unique models of BOLD responses than those we
tested. However, all these other feature spaces—particularly those
in the same broad categories of hypotheses as our models—may
be strongly related to each other in the same way that the feature
spaces we tested are. Our work provides a blueprint for how to
address the correlations between feature spaces in a quantitative
and principled way, and to assess which models explain unique
or shared variance.

Suggestions for Further Studies on
Representation in Scene-selective Areas
Our study suggests that the data available currently are not
sufficient to discriminate between the alternative hypotheses that
scene-selective areas represent information about Fourier power,
subjective distance, or object categories. It could be the case
that scene-selective areas represent all of these distinct feature
classes. Alternatively, it could be the case that scene-selective
areas represent only one of these three distinct classes of features,
but that the presence of stimulus correlations in our study and
missing controls and analyses in previous studies have precluded
identification of the most appropriate feature space. Is there any
way to resolve this issue?

The only way forward is to test the same models (and/or
related models) on different stimulus sets, and to search for
stimuli for which some models fail to make accurate predictions
of brain responses and other models succeed. However, new
stimuli must be chosen carefully to reduce the correlations
between stimulus features in different alternative models. Simply
removing problematic features (e.g., by Fourier bandpass filtering
the stimuli) is not a good solution because the visual system
is highly nonlinear (Carandini et al., 2005; Wu et al., 2006).
Spatial frequencies that are filtered out of a stimulus may be
reintroduced within the visual system by nonlinear processes
operating at any level. An analogous process occurs in themissing
fundamental phenomenon, which is well known in audition
(Wightman, 1973a,b).

Restricting feature variation in experimental stimuli to avoid
correlations between features is also not a good solution. This
approach might produce satisfying results within the range of
stimuli tested in an experiment, but the resulting model will be
unlikely to generalize to the larger range of stimuli encountered
in the natural world (Talebi and Baker, 2012). This is a lesson that
has been well learned in the visual neurophysiology community
over the past 20 years: if models are developed using filtered,
constrained or highly artificial stimuli, they tend to perform
poorly when tested on natural images (David et al., 2004; Talebi
and Baker, 2012).

We suggest that one useful way forward would be to create
natural stimulus sets that reduce the covariance of stimulus
features while maintaining a natural range of variance in as
many features as possible. It might be possible to generate
stimuli that satisfy these constraints parametrically. Alternatively,
it might be possible to develop an appropriate stimulus set
by sampling images from an extremely large online database
such as ImageNet (http://www.image-net.org/) or the Flickr
image database (https://www.flickr.com/creativecommons/). A
stimulus set that is designed specifically to minimize covariance
between features while maintaining natural variability will reduce
the amount of shared variance between models, and lead
to clearer conclusions as to which model is best for each
area.

Our suggestion that new stimulus sets should be developed
is not completely novel. The imperative to include a reasonable
amount of natural variation in a stimulus set seems to be an
implicit guiding principle in many studies (e.g., Kravitz et al.,
2011; Park et al., 2015). However, such implicit guiding principles
are imprecise and likely to vary across experiments. Thus, we
suggest that more effort should be devoted to defining stimulus
features quantitatively rather than operationally. Quantitative
definitions of features improve the ability to measure and
control feature coverage and feature covariance. One substantial
advantage of the voxel-wise modeling approach used here is
that it provides a very clear and quantitative picture of what
is known and what is not known. Stimulus properties can be
quantified and modeled directly. Correlations between features
within models and across models can also be quantified and
assessed. This approach provides an unambiguous view of where
the field is today, and it leads to clear recommendations for future
studies.
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