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There is a strong emphasis on developing novel neuroscience technologies, in particular
on recording from more neurons. There has thus been increasing discussion about how
to analyze the resulting big datasets. What has received less attention is that over the last
30 years, papers in neuroscience have progressively integrated more approaches, such
as electrophysiology, anatomy, and genetics. As such, there has been little discussion
on how to combine and analyze this multimodal data. Here, we describe the growth
of multimodal approaches, and discuss the needed analysis advancements to make
sense of this data.
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EVOLUTION OF NEUROSCIENCE TECHNOLOGIES AND
QUESTIONS

The development of neuroscience technology has been rapidly advancing (Stevenson and
Kording, 2011; Insel et al., 2013; Kandel et al., 2013; Marblestone et al., 2013) across many
approaches, including those that investigate neural activity (Kording, 2011; Prevedel et al.,
2014; Schwarz et al., 2014; Van Horn and Toga, 2014; Vladimirov et al., 2014; Hamel et al.,
2015; Lemon et al., 2015), neuroanatomy (Zador et al., 2012; Helmstaedter, 2013; Van Essen,
2013; Oh et al., 2014; Glaser et al., 2015), and gene expression and genetics (Cahoy et al.,
2008; Stein et al., 2012; Lee et al., 2014; Medland et al., 2014). Advancing technologies
allow us to answer more complex questions. For instance, with single electrodes, researchers
could only ask about how individual neurons respond to stimuli and relate to behavior
(Hubel and Wiesel, 1959; O’Keefe and Dostrovsky, 1971; Georgopoulos et al., 1982). With
the invention of electrode arrays (Maynard et al., 1997; Schwarz et al., 2014; Siegel et al.,
2015) and large-scale optical recording techniques (Prevedel et al., 2014; Vladimirov et al.,
2014; Hamel et al., 2015), many now ask how neurons interact with each other (Cohen
and Kohn, 2011; Stevenson and Kording, 2011; Cunningham and Yu, 2014). Data analysis
techniques have been extended to make sense of this growing neural data (e.g., Pfau et al.,
2013; Cunningham and Yu, 2014; Freeman et al., 2014; Gao and Ganguli, 2015), which has
led to many important insights about the brain.

Along with developing new technologies and increasing the scalability of existing technologies,
another way to answer more complex questions is to combine multiple approaches (e.g., using
electrophysiology and neuroanatomy together). The brain is a complex system whose function
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depends on the interplay between countless structures and
actions, all spanning different spatial and temporal scales.
Combining multiple approaches is critical for understanding
how different aspects of the brain relate to each other, e.g., how
the morphology of a neuron influences its activity. Moreover,
combining multiple approaches is critical for understanding
how the brain operates at multiple scales, e.g., how the spikes
of individual neurons are related to waves of activity spread
across the brain. Data analysis techniques to make sense of this
‘‘multimodal’’ data will be very important going forward.

GROWTH OF MULTIMODAL APPROACHES

Multimodal approaches have been used for many years. As a
classic example, Hubel and Wiesel (1962) used electrophysiology
and anatomy to determine how the functional properties of
cells were different across different layers of visual cortex. As
a more recent example, researchers have simultaneously used
gene expression techniques and tracing (anatomy) techniques
to determine what cell types are connected to each other
(Sorensen et al., 2015). Similarly, the Allen Brain Institute has
been developing an atlas with integrated connectivity, gene
expression, and neuroanatomical information (Sunkin et al.,
2013). Such approaches allow us to understand how different
modalities relate to each other, and how they together lead to
brain function.

Have the amount of studies that combine technologies from
multiple experimental modalities (Bock et al., 2011; Hofer
et al., 2011; Annese, 2012; Sui et al., 2012; Sunkin et al., 2013;
Marblestone et al., 2014; Uludağ and Roebroeck, 2014; Markram
et al., 2015; Sorensen et al., 2015) been increasing? We looked in
the PubMed database for the number of neuroscience articles that
had anatomy, genetics, and/or electrophysiology (one common
method of collecting activity) as a subject matter. Over time,
the probability of two modalities co-occurring in the same
paper increased, for each combination of the three modalities
(Figure 1). Interestingly, this increase has occurred at different
rates for different combinations of modalities (Figure 1); over
the last 30 years, the relative co-occurrence of electrophysiology
and anatomy has doubled, and the relative co-occurrences of
electrophysiology and genetics, and anatomy and genetics have
quadrupled. The integration of approaches is clearly accelerating.

GATHERING MULTIMODAL DATA TO
UNDERSTAND NEURAL ACTIVITY

For the remainder of the paper, we focus on how multimodal
approaches can help us understand neural activity, at the level
of neurons (electrophysiology or calcium imaging, as opposed to
neuroimaging). Prior to discussing how to analyze this data, it’s
important to elaborate upon how this multimodal data can be
acquired.

First of all, in many cases, we can gather information about
additional modalities with standard activity (electrophysiology
or calcium imaging) experiments. Trivially, activity recordings
come with approximate neuroanatomy information. That is, we
generally know what area of the brain is being recorded from.

FIGURE 1 | Increase of multimodal papers over time. We track how often
different modalities of technology are used together over 5 year intervals. We
do this by searching the PubMed database for papers with subjects
representing the modalities. A relative co-occurrence (y-axis; plotted on a
log-scale) of one means that occurrence of the two modalities in a paper is
independent. A value greater than one means they are more likely to appear
together, and a value less than one means they are more likely to appear
apart.1

Additionally, we can get approximate information about cell type
(inhibitory vs. excitatory) from electrophysiological waveforms
(Mitchell et al., 2007). We can even get approximate estimates of
structural connectivity using neural activity (Keshri et al., 2013;
Fletcher and Rangan, 2014; Veeriah et al., 2015). Thus, truly
multimodal experiments may not always be necessary to gather
some forms of multimodal data.

Next, information about multiple modalities can be acquired
via more complex experiments. For example, researchers have
used calcium imaging followed by electron microscopy in
order to determine the relation between neuroanatomy (e.g.,
connectivity) and neural activity (Bock et al., 2011). As another
example, researchers have utilized modern genetic techniques to
define cell types via gene expression, and then determine how
neural activity differs between those cell types (e.g., Pinto and
Dan, 2015). These experiments directly provide rich data from
multiple modalities, and are critical for providing a ground truth
about how modalities interact.

1More details on how we generated Figure 1 are as follows. We tracked
how often different modalities of technology were used together over 5
year intervals. We did this by searching the PubMed database for papers
with subjects (‘‘MeSH Terms’’ in the database) representing the modalities.
Note that we searched for the terms ‘‘genetics’’ and ‘‘gene’’ for the genetics
modality. We find the probability that, out of the neuroscience articles (those
appearing when searching for ‘‘neuron’’, ‘‘neural’’, or ‘‘brain’’), the subject
matter contains one or two of the modalities. Let P(M1) be the probability
of M1 being a subject of a paper, and P(M1, M2) be the probability of both
M1 and M2 being subjects of a paper. The relative co-occurrence (y-axis) is
P(M1,M2)/(P(M1) × P(M2)).
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Lastly, it may be possible to combine information from
multiple experiments from different subjects. While we generally
cannot match specific neurons across subjects2, we can utilize
statistical information from previous experiments. For example,
we can use information about the likelihood of neurons being
connected as a prior in a model that aims to explain neural
activity (Rigat et al., 2006; Mishchenko et al., 2011). Additionally,
previous information about the relationship between activity
and another modality can be used. For example, suppose that
cell types can be determined by looking at neural activity in
response to varying stimuli (Farrow and Masland, 2011). Future
experiments could first determine the cell type based on this
previous knowledge, and then see how cell type relates to
activity under novel experimental conditions. Utilizing data or
knowledge from previous experiments can lead to important
multimodal findings.

ANALYZING MULTIMODAL DATA

Neural recording is scaling up, and multimodal approaches are
increasing. There has been much discussion about how to analyze
and build models from large neural activity datasets (Eliasmith
and Trujillo, 2014; Gao and Ganguli, 2015; O’Leary et al., 2015).
However, there has been little discussion about how additional
modalities should be utilized for analyzing and modeling neural
activity. These analyses will be crucial for determining how the
interplay between different modalities leads to neural function.

One way to analyze this multimodal data is simply to use
current analysis methods, and gain additional knowledge by
labeling the results based on information about another modality.
For example, we generally model the activity of a single neuron
based on external factors (e.g., movement or stimuli) and the
activity of other neurons (Stevenson et al., 2012; Fernandes et al.,
2014; Park et al., 2014). With knowledge from another modality
(e.g., cell type), we could first use this same approach. Then,
we could look at the results in terms of the cell type to answer
questions such as: Do the different cell types respond differently
to external factors, and are neurons of certain cell types more
likely to be functionally connected? Thus, when modeling the
activity of single neurons, standard analysis approaches may be
sufficient to answer some questions.

Similarly, it is possible to use current analysis methods to
analyze multimodal data from large populations of neurons.
When analyzing large populations of neurons, researchers often
use dimensionality reduction techniques to better understand
how neural activity of a population changes over time in relation
to external factors (Mante et al., 2013; Shenoy et al., 2013;
Cunningham and Yu, 2014). With information about additional
modalities, we could separately use dimensionality reduction
techniques on separate populations of neurons (e.g., those of
different cell type; Armañanzas and Ascoli, 2015) to see how

2Working on a larger scale than individual neurons (or in the case of
c. elegans), matching information across subjects is more feasible. For
example, to match connectomes, graph matching approaches are being used
(Vogelstein et al., 2015). Others have matched information about diseases
in humans and animal models using ontologies (Washington et al., 2009;
Maynard et al., 2013).

they differ. Related to dimensionality reduction techniques,
researchers use latent variable models to model shared, but
unobservable, variance between neurons (Sahani, 1999; Kulkarni
and Paninski, 2007). These models could be better understood
with knowledge about other modalities. For example, we could
understand whether the shared variability is due to neurons
sharing the same morphology, having similar gene expression,
sharing synaptic inputs, or sharing neuromodulatory inputs.
In general, by simply looking at differences between separate
categories of neurons, many of our current analysis techniques
can help us understand multimodal data.

Another method for utilizing multimodal data would be to
analyze the neural activity as a function of other modalities. In
the case of modeling the activity of individual neurons, another
modality could act as a covariate in a predictive model. For
example, a regression model of spikes could include local field
potentials or fMRI as covariates. This would yield insight into
how activity at a larger spatial and temporal scale influences local
activity, i.e., how more global phenomena affect local, precise
activity. As another example, suppose we aim to understand
how gene expression is related to neurons’ response properties.
First, the response properties (e.g., whether it has phasic or
tonic responses to stimuli) could be quantified, and then the
expression of many genes could be used as covariates to predict
these responses. Predictive models can help us understand how
other modalities influence activity of individual neurons.

Similarly, the activity of large populations of neurons can
be modeled as a function of other modalities. To do this,
the additional modalities can be utilized as constraints in
latent variable or dimensionality reduction models. For instance,
latent variable models could be enhanced by constraining the
latent variables to be consistent with observations from other
experimental modalities. That is, only neurons of a specific
classification would share latent inputs. Another possibility
would be to constrain dimensionality reduction techniques
so that different classes of neurons would occupy different
dimensions. This approach could be similar to targeted
dimensionality reduction (Mante et al., 2013), which uses task-
relevant variables as the different dimensions. Essentially, we
would want to de-mix the activity into activity caused by each
class of neurons. In general, constraints would allow more
directly interpreting the outputs of these analysis techniques, to
understand how these modalities predict activity.

Lastly, it could be especially beneficial to develop
analysis methods that are specifically designed for analyzing
multimodal data. Semedo et al. (2014) developed a latent
variable model to look at the interaction between separate
populations of neurons. While they used their method to
investigate interactions between neurons from different brain
areas, the technique could be used to look at interactions
between any different classifications of neurons (differing
morphology, gene expression, etc.). The authors make the
important point that an alternative approach would be to
first reduce the dimensionality of each population of neurons,
and then look at their interaction. However, the separate
dimensionality reduction could remove important aspects
of the interaction between populations. Thus, their specific
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method for analyzing both populations simultaneously was
important.

In the previous discussion, we have assumed that adding an
additional modality would always be beneficial for modeling
the neural activity. However, this may not always be the case;
there may be explaining away across modalities. For example,
if we have a lot of electrophysiological data, then connectomics
data may become irrelevant, because the physiology already
gives away a lot of connectivity information (Keshri et al., 2013;
Fletcher and Rangan, 2014; Veeriah et al., 2015). Similarly,
having both connectivity and cell type information may not be
very beneficial, because connectivity information can predict cell
types (Jonas and Kording, 2015). As such, there are a wide range
of scenarios where recording from multiple modalities may not
be overly useful. Further multimodal measurements are needed
to determine how complementary vs. redundant different data
sources are, as we move towards truly large datasets.

In an era when both the amount and the diversity of
data is increasing, it’s critical to develop techniques that
can help us make sense of this large-scale and multimodal
data.
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