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The study of rhythms and oscillations in the brain is gaining attention. While it is unclear

exactly what the role of oscillation, synchrony, and rhythm is, it appears increasingly likely

that synchrony is related to normal and abnormal brain states and possibly cognition.

In this article, we explore the relationship between basal ganglia (BG) synchrony and

reinforcement learning. We simulate a biologically-realistic model of the striatum initially

proposed by Ponzi and Wickens (2010) and enhance the model by adding plastic

cortico-BG synapses that can be modified using reinforcement learning. The effect

of reinforcement learning on striatal rhythmic activity is then explored, and disrupted

using simulated deep brain stimulation (DBS). The stimulator injects current in the brain

structure to which it is attached, which affects neuronal synchrony. The results show that

training the model without DBS yields a high accuracy in the learning task and reduced

the number of active neurons in the striatum, along with an increased firing periodicity

and a decreased firing synchrony between neurons in the same assembly. In addition, a

spectral decomposition shows a stronger signal for correct trials than incorrect trials in

high frequency bands. If the DBS is ON during the training phase, but not the test phase,

the amount of learning in the model is reduced, along with firing periodicity. Similar to

when the DBS is OFF, spectral decomposition shows a stronger signal for correct trials

than for incorrect trials in high frequency domains, but this phenoemenon happens in

higher frequency bands than when the DBS is OFF. Synchrony between the neurons is

not affected. Finally, the results show that turning the DBS ON at test increases both firing

periodicity and striatal synchrony, and spectral decomposition of the signal show that

neural activity synchronizes with the DBS fundamental frequency (and its harmonics).

Turning the DBS ON during the test phase results in chance performance regardless

of whether the DBS was ON or OFF during training. We conclude that reinforcement

learning is related to firing periodicity, and a stronger signal for correct trials when

compared to incorrect trials in high frequency bands.
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INTRODUCTION

The study of rhythms and oscillations in the brain is gaining
attention (Wang, 2010). While it is unclear exactly what the role
of oscillation, synchrony, and rhythm is (Walters and Bergstrom,
2010), it appears increasingly likely that synchrony is related
to normal and abnormal brain states and possibly cognition.
For example, impaired beta- and gamma-band synchronization
(16–31 and 32–100Hz, respectively) has been observed in
schizophrenic patients performing a number of perceptual tasks
(for a review, see Uhlhaas and Singer, 2010). These are thought
to reflect impairment in long-range cortical connectivity (Wang,
2010). As another example, people suffering from Parkinson’s
disease show abnormal synchrony in the beta range in the
basal ganglia (BG), especially in the globus pallidus and the
subthalamic nucleus (Bergman et al., 2010). Parkinson’s disease
is characterized by the accelerated death of dopamine (DA)
producing neurons (Hélie et al., 2012), and there is evidence
showing that the death of DA-producing neurons increases
neuronal synchrony (Walters and Bergstrom, 2010). Treatment
with L-DOPA tends to restore normal rhythmic activity in the
BG (Wichmann and DeLong, 2010).

Dopamine also plays an important role in many cognitive
functions (e.g., Nieoullon, 2002). One of the most well-
established roles of DA in cognitive function is related to
feedback-driven (instrumental) learning (Schultz et al., 1997;
Ashby and Helie, 2011). Specifically, DA levels in the BG increase
when an unexpected reward is received, dip when an expected
reward fails to appear, and change with a high-enough temporal
resolution to serve as a reward signal in reinforcement learning
(Helie et al., 2015). Perhaps relatedly, people suffering from
Parkinson’s disease, who have overall lower DA availability,
suffer from many cognitive deficits related to memory, learning,
visuospatial skills, and attention (Price et al., 2009).

In this article, we explore the relationship between BG
rhythm and reinforcement learning. The evidence reviewed
above suggests that both synchrony and learning are related to
DA levels, but it is unclear if synchrony and learning are directly
related. Specifically, we simulate a biologically-realistic model
of the striatum initially proposed by Ponzi and Wickens (2010)
and enhance the model by adding plastic cortico-BG synapses
that can be modified using reinforcement learning (Ashby and
Helie, 2011). The effect of reinforcement learning on striatal
rhythmic activity is then explored, and disrupted using simulated
deep brain stimulation (DBS) (Rubin and Terman, 2004). Deep
brain stimulation uses a brain implant to treat brain dysfunctions
such as Parkinson’s disease, dystonia, and depression (among
others, see Wichmann and DeLong, 2010). The stimulator injects
current in the brain structure to which it is attached, which
affects neuronal synchrony. To anticipate, training the model
without DBS yields a high accuracy in the learning task, along
with an increased firing periodicity (for individual neurons)
and a decreased firing synchrony between neurons in the same
assembly. In addition, a spectral decomposition shows a stronger
signal for correct trials than incorrect trials in high frequency
bands. If the DBS is ON during the training phase, but not
the test phase, the amount of learning (i.e., improvement in

accuracy) in the model is reduced, along with firing periodicity.
Similar to when the DBS is OFF, spectral decomposition shows
a stronger signal for correct trials than for incorrect trials in
high frequency domains, but this phenoemenon happens at
higher frequency bands than when the DBS is always absent.
Synchrony between the neurons is not affected. Finally, the
results show that turning the DBS ON at test increases both firing
periodicity and striatal synchrony, and spectral decomposition
of the signal shows that neural activity synchronizes with the
DBS fundamental frequency (and its harmonics). Perhaps not
surprinsingly, turning the DBS ON during the test phase results
in chance performance regardless of whether the DBS was ON or
OFF during training. We conclude that reinforcement learning is
related to firing periodicity, and a stronger signal for correct trials
when compared to incorrect trials in high frequency bands.

MATERIALS AND METHODS

Model
Cognitive computational neuroscience models (Ashby and Helie,
2011) of the BG typically represent the striatum as a fully
interconnected winner-take-all network of neurons (for a review,
see Helie et al., 2013). While the winner-take-all dynamic is
well-supported by the segregated channels and the striatum’s
association with the selection of mutually exclusive actions, the
striatum is not as fully interconnected as these models imply.
Striatal interconnection is sparse (Plenz and Wickens, 2010).
One model that accurately simulates this connectivity is the
Ponzi and Wickens model (2010). The Ponzi and Wickens
model includes a single layer of neurons with random sparse
inhibitory interconnectivity, and the model has been shown to
automatically produce clusters of neurons (cell assemblies) that
fire in synchrony (as in a real striatum) under random input
conditions. Accurately modeling sparse striatal connectivity is
essential to accurately modeling BG synchrony, so the Ponzi
and Wickens model was used as a starting point to explore the
possible relationship between BG synchrony and learning. All the
equations used to implement the Ponzi and Wickens model are
shown in the Supplementary Material. The proposed expansion
of the model is described in the remainder of this section.

Cortical Input
The first addition made to the Ponzi and Wickens model
is a cortical input grid of 10,000 input nodes. We use the
term “nodes” to emphasize that we did not model membrane
potentials or spiking behaviors in these units. The cortical nodes
were directly activated by the external stimuli (modeled as boxcar
functions) and filtered through Gaussian functions. To facilitate
this, the cortical nodes were conceptually organized into a 100×
100 grid with a node at each vertex. The output of cortical node
Cij is calculated using a bivariate normal function with peak at (x,
y) and a standard deviation of 8.5 (and no covariance). Stimuli
had two dimensions which were defined as coordinates: a and
b. Both a and b fall within the range of 0 to 100. The amplitude
of the normal distribution is scaled so that if the coordinates of
a stimulus, a and b, are equal to i and j, respectively, then Cij’s
output is 1.0.
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Connections between the cortical layer and the striatal layer
were randomly determined with the restriction that each striatal
neuron received input from exactly 5000 cortical nodes. This
matches the number of cortical inputs to a striatal neuron in the
rat striatum (Wickens and Arbuthnott, 2010). The strength ωCijSk
of the connection between a cortical node Cij and striatal neuron
Sk is initialized using a normally distributed random variable
with mean µk and standard deviation 0.35, the result of which
is divided by the expected number of cortical nodes with output
greater than 0.5 (i.e., the area of the cross section of the Gaussian
at amplitude 0.5. µk is a normally distributed random variable
associated with Sk with mean 3.5 and standard deviation 0.35).
This allows the total input received by a striatal neuron to fall in
the same range as in Ponzi and Wickens (2010).

Learning
There is evidence suggesting that striatal dopamine acts as
a reward signal (Schultz et al., 1997). Unexpected reward
causes dopamine levels to rise above baseline and unexpected
punishment or a failure to receive an expected reward causes
dopamine to fall below baseline. In the model the expected
reward for trial n+1 is defined as (Ashby and Helie, 2011):

Pn+1 = Pn + .075(Rn − Pn)

with Rn being the received reward at trial n. If the model
responded correctly Rn = 1, otherwise Rn = −1. The dopamine
level after feedback is received is:

Dn =







1 if (Rn − Pn) >1
0 if (Rn − Pn)< −0.25

0.8 (Rn − Pn) + 0.2 else

where 0.2 is the baseline level of dopamine.
The weight of each cortico-striatal connection changes as a

function of the level of dopamine Dn, the output of the pre-
synaptic (cortical) node CA(t), and the excitation of the post-
synaptic (striatal) neuron VB(t):

ωA,B (n+ 1) = ωA,B (n)

+αω

∫

CA (t) dt

[∫

[VB (t)]+dt − θNMDA

]+

[Dn − Dbase]
+

[

ωmax − ωA,B (n)
]

−βω

∫

CA (t) dt

[∫

[VB (t)]+dt − θNMDA

]+

[ Dbase − Dn]
+ωA,B (n)

−γω

∫

CA (t) dt

[

θNMDA −

∫

[VB (t)]+dt

]+

[∫

[VB (t)]+dt − θAMPA

]+

ωA,B (n)

where ωmax = 16, αω = 7 × 10−11, βω = 2 × 10−11,
γ ω = 5 × 10−12, and [X]+ = X if X > 0 and [X]+ = 0
otherwise. Each term represents a different case. (1) If the level
of dopamine Dn is greater than the baseline Dbase and the sum

of the positive membrane potential of the striatal neuron is high
enough to activate the NMDA receptors (i.e.,

∫

[VB (t)]+dt is
above the threshold θNMDA = 25), the connection weight is
increased (long-term potentiation). (2) If the level of dopamine
is below baseline and the sum of the positive membrane potential
of the striatal neuron is again high enough to activate the
NMDA receptors, the connection weight is decreased (long-term
depression). (3) Finally, if the sum of the positive membrane
potential of the striatal neuron is not high enough to activate the
NMDA receptors but high enough to activate AMPA receptors
(i.e.,

∫

[VB (t)]+dt is above the threshold θAMPA = 10),
the connection weight is decreased. If the positive membrane
potential of the striatal neuron is not sufficient to activate
AMPA receptors, no change is made. Note that only the
positive postsynapticmembrane potential is integrated because at
resting membrane potentials, an extracellular Mg2+ plug blocks
the mechanisms of long-term potentiation/depression. More
biological details justifying the learning equation are reviewed in
Ashby and Helie (2011).

The synaptic plasticity modeled by the learning equation
has been verified (for reviews see, e.g., Arbuthnott et al., 2000;
Wickens et al., 2003) and previously used to model instrumental
learning (e.g., Ashby andHelie, 2011; Hélie et al., 2012). However,
the mechanism underlying plasticity at inhibitory synapses (e.g.,
GABA) is still unclear (Castillo et al., 2011), and the lateral
inhibition in the Ponzi and Wickens model is responsible for
the rhythmic activity in the simulated striatum. The main goal
of this article is to study how reinforcement learning affects the
rhythmic activity in the striatum. Hence, the possible plasticity
of the inhibitory lateral connections within the striatum was not
modeled, and inhibitory lateral connections were fixed in all the
simulations included in this article.

Deep Brain Stimulation
The goal of the DBS manipulation in this article is to disrupt
periodicity and striatal synchrony and observe whether learning
is affected. It is well-known that inputting a correlated signal in a
network increases synchrony (Wang, 2010). Thus, we used Rubin
and Terman’s (2004) model of DBS to increase periodicity and
synchrony in the newmodel. Rubin and Terman’s original model
is described by:

IDBS (t) = iDH

(

sin

(

2π t

ρD

)) (

1−H

(

sin

(

2π(t + δD

ρD

)))

where iD = 200 is the amplitude of the DBS input, ρD = 6ms is
the period of the input, δD = 0.6ms is the duration of the input,
and H() is the Heaviside function (i.e., it returns 0 for negative
arguments and 1 for positive arguments). To put it simply this
model of a DBS adds a square signal of amplitude iD for δD
ms every period of ρD ms. At each time step, IDBS is calculated
and added to the input of every striatal neuron. While the above
equation is a realistic model of a DBS, it increases the total activity
in the network, which is unwanted for the present purpose. We
added an additional term to the DBS model to keep the total
input received by each striatal neuron the same when the DBS
is ON or OFF. Since the intent is to manipulate the periodicity
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and synchrony of the network with as few side effects as possible,
the DBS model was modified as follows:

IDBS (t) = iDH

(

sin

(

2π t

ρD

)) (

1−H

(

sin

(

2π(t + δD

ρD

)))

−
δDiD

ρD

As a result, over the duration of one period the net
sum input of the DBS model used in the present work
is 0. This deviates from DBS that are implanted in real
brains but better serves the purpose of modifying rhythmic
activity without increasing the total input. The input from
the DBS at time t [IDBS(t)] is added to the input of all
neurons.

Simulation Method
The first step in the simulation was to generate random striatal
maps composed of 100 neurons and identify clusters. We
used the same methodology as Ponzi and Wickens (2010), but
changed the clustering algorithm for the rate time series from
k-means to the gap statistic from Tibshirani et al. (2001). The
main advantage of using the gap statistic is that this measure
will not only cluster the data but also find the number of
clusters best suggested by the data, including the possibility
of a single cluster in the case of undifferentiated data. The
gap statistic clusters the data multiple times using k-means
clustering for k = 1, 2, . . . , kmax where kmax is the maximum
number of clusters selected by the experimenter. For each
resulting clustering, the pooled within-cluster sum of squares
around the cluster means Wk is calculated. Log(Wk) is then
compared to its expectation under an appropriate unclustered
distribution of the data. The value of k for which log(Wk)
falls farthest below its expectation is the appropriate k to
use for k-means clustering (for details, see Tibshirani et al.,
2001). Using the gap statistic ensured that we used a striatal
network that naturally generated two clusters of neurons. Twenty
different striatal networks were randomly generated and the
network that resulted in the most consistent clustering (i.e., the
neurons were consistently clustered in the same pattern across
multiple trials with randomly fluctuating input) was selected.
In this case, the chosen network presented two clusters of
size 40 and 60 (respectively). This set of striatal connections
and the resulting clustering were used in all the following
simulations.

The model was trained on a simple categorization task typical
of human cognitive research (e.g., Ashby and Gott, 1988). In a
categorization task, one stimulus is presented to the participant
in each trial, and the participant needs to assign the stimulus
to one of a number of categories. After a response is made,
the participant receives accuracy feedback, and a new trial is
initiated. At the beginning of the task, the participant does
not know the stimulus—response associations and responds
randomly, but accuracy improves as the participant receives
feedback (instrumental learning). In the present simulation, a
2D stimulus was uniformly sampled from the 0. . . 100 space
at the beginning of each trial. The input space was sectioned

into two catagories to match the two groups of striatal neurons
(cell assemblies) found through clustering. In all trials, an input
stimulus with an X-coordinate <50 was a member of category A
and an input with X-coordinate ≥50 was a member of category
B. Category membership was not dependent on the value on
the Y-coordinate. The cortical input signal was filtered through
Gaussian functions as described in Section “Cortical Input”.

For each trial the model was run for 3000ms after which
the average total positive activation per neuron was calculated
for each cluster. If Cluster A’s total was higher the model was
treated as having categorized the stimulus as part of category
A. Otherwise the model categorized the stimulus as belonging
to category B. In this article a trial refers to running the model
for 3000ms with a single stimulus. During the training phase,
feedback was provided to the model (as a DA increase or
dip) at the end of each trial and the learning equation was
applied to each cortico-striatal weight. Note that the inhibitory
striatal weights were constant throughout the simulation. The
test phases were identical to the training phase, except that
learning was disabled to observe a snapshot of the model
performance in a constant state. When learning is disabled the
DA level is not calculated, the cortico-striatal connection weights
are not adjusted and the reward prediction is not updated.
A test block is a series of trials with constant cortical-striatal
connections.

A simulation went as follows: First, the cortico-striatal
connections are initialized as described in Section “Cortical
Input”. Second, there is a test block (pretest) in which learning
was disabled. The pretest was used to gather 40 data points
under each of the following 4 conditions: model ran with
the DBS ON (designated “Test+”) and correctly responded
(designated “C”), model ran with the DBS ON and incorrectly
responded (designated “F”), model ran with the DBS OFF
(designated “Test−”) and correctly responded, and model ran
with the DBS OFF and incorrectly responded. Next, learning
was enabled and there were 2000 training trials for the
network to learn the stimulus—response associations. Training
was run under one of two conditions. Either the DBS was
turned ON for all training trials (designated “Learn+”) or it
was turned OFF for all training trials (designated “Learn−”).
Fourth, learning was again disabled and another test block
(post-test) was conducted where 40 more results are gathered
under each condition as described in the pretest above. One
hundred simulations were run with the DBS ON at training
and another 100 simulations were run with the DBS OFF at
training.

In addition to the main simulation described above, 23
additional simulations were run in the Learn-/Test- condition
(i.e., no DBS) with a test block conducted after every 100 training
trials. These were used to compute the correlation between
performance and periodicity as learning developed (more later).

Data Analysis
We used the Synchronization Index (SI), also called Vector
Strength (VS), described in Kuebler and Thivierge (2014) to
evaluate the neurons’ spiking in two ways. First we used SI as
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written

VS =
1

N

√

(

∑N

i=1
cos(θi)

)2

+

(

∑N

i=1
sin(θi)

)2

(1)

θi = 2π
mod

( ti
c

)

c

where ti is the spike time of the ith spike and c is the period of
a sine wave. We used this as a measurement of the periodicity
of the neuron. The period was chosen to be equal to the mode
of the intervals (rounded to the nearest ms) between spikes of
that neuron. If the second mode was 1ms off from the first
mode the period c was instead set to the mean of the two modes
weighted by their frequency. Put simply, periodicity is a measure
of the synchrony between each neuron and a regular sine-wave
function with a phase duration equal to the most common inter-
spike delay for this neuron. For example, Neuron 1 in Figure 1

shows a neurons where the mode of the interspike delay is
15.3ms, so this neuron’s periodicity is calculated by computing
its synchrony with a sine-wave function with a period of 15.3ms.
The periodicity of Neuron 1 is 0.249. Likewise, the mode of the
interspike delay for Neuron 2 in Figure 1 is 13.5ms, and its
periodicity is 0.293.

The second measure compared the synchrony between the
spike times of two neurons. Each neuron is paired with every
other neuron in its cluster (cell assembly). Each neuron in a
pair acts as a reference to the other neuron in that pair. For
each ti the period c is the length of the spike interval of the
reference neuron that ti falls within. What this means is that,
for example, if the neuron currently being evaluated spiked
halfway through each interval between the spikes of the reference
neuron then the neuron being evaluated would be judged to
be perfectly synchronized with the reference neuron (i.e., phase
is not considered). For example, Neuron 1 in Figure 1 has a
synchrony of 0.210 with Neuron 2, andNeuron 2 has a synchrony
of 0.228 with Neuron 1. It should be noted that these measures
of periodicity and synchrony (Equation 1) only give meaningful
results if the neuron(s) being examined spike(s) more than once.
Neurons spiking more than once are referred as active neurons.

RESULTS

Each trial of the model was run for 3000ms (see Section
“Simulation Method” above). For each trial, the first second was
considered a burn-in period used to stabilize the model and

FIGURE 1 | Spike trains for two striatal neurons over a 320ms time window prior to training the model.
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discarded. All the following results focus on the last 2 s of each
trial (stable period).

Model Without DBS
The average accuracy without DBS after 2000 trials of training
was 0.911 with a standard deviation 0.097. The (within-
neuron) periodicity and (between-neuron) striatal synchrony
was separately calculated for each trial type (pre-test C, pre-test
F, post-test C, post-test F) as follows. For each trial, periodicity
was calculated individually for each active neuron, and synchrony
was calculated for each pair of active neurons within each cluster
(cell assembly). The mean periodicity and synchrony was then
calculated for each trial. Next, trial-averaged synchronies and
periodicities were calculated for each of the four trial types.
Figure 2 shows the results for the Learn-/Test- condition. The
error bars are calculated from the trial-level data. As can be seen,
there was an increase in periodicity after training (post-test). In
addition, posttest periodicity was higher for correct trials than
for incorrect trials. These results suggest that neurons fire more
regularly (i.e., higher periodicity) as the network becomes more
accurate after being trained in the absence of DBS.

The results for striatal synchrony are also shown in Figure 2.
As can be seen, training decreased striatal synchrony. This
suggests that training with reinforcement learning tends to
desynchronize the firing of striatal neurons within a cell
assembly. Unlike the increase in periodicity, this decrease in
striatal synchrony is non-specific and does not appear to be
related to the accuracy of the response.

One possible explanation for the increased periodicity is that
fewer neurons in the network were active after training, and
thus there were fewer active neurons sending inhibition. Indeed,
training did increase the number of neurons that did not fire any
spikes. The mean number of active neurons (i.e., neurons that
fired) during pre-test trials was 20.2 with a standard deviation
of 14.04. In post-test trials the mean number of active neurons

was reduced to 11.86 with a standard deviation of 3.46. Further,
the probability that one of the active neurons inhibits another
active neuron in pre-test trials is 0.10 while in post-test trials
that probability is 0.05. This increased the average firing rate
of active neurons from 32 to 129Hz. This change in firing rate
could account for the observed change in neural synchrony.
Indeed, randomly generating spike times at the pre- and post-
test average spike rates produced synchrony in the same range
as those observed pre- and post-test in the model (respectively).
However, this changes in the firing rates was not responsible for
the observed changes in periodicity because generating random
spike times at the firing rates observed for pre- and post-test
always yielded levels of periodicity similar to those observed in
the pre-test phase of the simulation.

Breaking down the periodicity into component frequencies
using the Fourier transform (Figure 3) shows that the signal
for random activation (as used by Ponzi and Wickens, 2010)
is mostly located in the gamma frequency range (as expected,
green line). Activation from the simulated cortex added in
this research increases the frequency of the signal. Correct
and incorrect trials are indistinguishable before training (purple
and teal), but the signal is stronger in high frequency bands
for correct trials (blue) than for incorrect trials (red) after
training. This result is consistent with those obtained by
Brincat and Miller (2015), who measured synchrony between
the prefrontal cortex and hippocampus in monkeys. Brincat
and Miller argued that the stronger component in high
frequencies for correct responses may correspond to long-
term potentiation, whereas the weaker component in high
frequency for incorrect responses may correspond to long-
term depression (in line with spike timing dependent plasticity:
Dan and Poo, 2004). In the present simulation, correct trials
lead to long-term potentiation while incorrect trials lead to
long-term depression, which supports Brincat and Miller’s
explanation.

FIGURE 2 | Periodicity and synchrony of the model without DBS (Learn-/Test-) calculated using Equation (1). There is an increase in periodicity after

training, especially for correct trials.There is a decrease in striatal synchrony from pre-test to post-test, and this effect is similar for correct and incorrect trials.
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FIGURE 3 | Power spectrum of the model without DBS (Learn-/Test-). Before training correct and incorrect trials are indistinguishable. After training correct

trials have a stronger signal than incorrect trials in high frequency bands. The power spectrum of the Ponzi and Wickens model under random input condition is also

included. In the random condition, input varies across cells and is drawn from a uniform distribution over the interval (4.51, 5.51). The input is redrawn every 10ms.

Model with DBS
The previous simulations show that (1) the model can learn the
task, (2) that training increases periodicity, especially for correct
trials, (3) training unspecifically reduces striatal synchrony (4)
training increases the firing rate of active neurons, which can
account for (3) but not (2) and, (5) after training, correct
trials show a stronger component in high frequency bands than
incorrect trials. This subsection explores the effect of turning
ON the DBS during training only, during test only (both pre-
and post-test), or during both. The dependent variables are the
same as in Section “Model Without DBS”, namely accuracy,
periodicity, striatal synchrony, and power spectrum.

Post-test accuracy for the three simulation conditions with
DBS ON is shown in Figure 4. Note that accuracy in the Learn-
/Test- corresponds to the condition described in Section “Model
Without DBS” above and is shown in all the following figures
to facilitate comparison. As can be seen, the presence of DBS
at test is enough to reduce accuracy to chance performance
(0.5). This is true even if the model was trained under the same
conditions that is was tested on (e.g., Learn+/Test+). However,
when DBS is turned ON during training but not during testing
(Learn+/Test−), accuracy is 73.8%, which is well-above chance
performance but still substantially less than when DBS is not
turned ON during either the test or training phase (Learn-/Test-,
accuracy= 91.1%).

Next we examined the effect of DBS on periodicity and
striatal synchrony. Given the results shown in Section “Model
Without DBS”, it could be expected that periodicity may be
related to successful training as evidenced by improvement
(or lack thereof) in accuracy. Figure 5 shows the periodicity
and striatal synchrony for all conditions, both before and after
training (pre- and post-test, respectively). As can be seen,
the levels of striatal synchrony and periodicity vary in each
condition. There was no effect of training on both periodicity
and striatal synchrony when the DBS was ON during testing.

Figure 4, shows that the model performed at chance in these two
conditions.

In the Learn+/Test- condition, posttest periodicity for
incorrect trials was similar to that obtained in the Learn-
/Test- condition (and also similar to the Test+ conditions).
However, post-test periodicity for correct trials was lower in the
Learn+/Test- condition than in the Learn-/Test- condition. In
contrast, striatal synchrony decreased after training when the
DBS was OFF at test, but there was no difference between correct
and incorrect trials. Turning the DBS ON or OFF during the
training phase also had no effect. Hence, the difference in post-
test periodicity for correct trials may account for the difference in
accuracy between the Learn-/Test- and Learn+/Test- conditions
(91.1% vs. 73.8%). This suggests that increased periodicity for
correct trials may be responsible for the increased accuracy after
training.

Looking at the spectral decomposition of the three DBS
conditions is important for further understanding the model’s
behavior. These are shown in Figures 6, 7. The spectral
decomposition for random activity (denoted in the figure as
Random) is also shown for comparison (same as in Figure 3).
First, Figure 6 shows the spectral decomposition of the two
conditions with the DBS ON at test. As can be seen, the spectral
decompositions are identical, and the signal is perfectly synced
with the DBS’ fundamental frequency (and its harmonics). This
shows that the signal from the DBS is regular, and overpowered
the cortical stimulation thus making it irrelevant. As a reminder,
these two conditions performed at chance.

The Learn+/Test- condition is more interesting, as the model
performed better than chance, but not as well as when there was
no DBS at learning (Learn-/Test-). Previous analyses suggest that
the difference between these two conditions may be periodicity
(see Figure 5A). Figure 7 shows the spectral decomposition
for the Learn+/Test- condition. As can be seen, the signal is
stronger for incorrect trials (red) than for correct trials (blue)
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FIGURE 4 | Model accuracy after training for the three DBS conditions. Accuracy without DBS (Learn-/Test-, from Section “Model Without DBS”) is also

included for comparison. Performance is near-chance (0.5) when the DBS is turned ON at test.

in moderate frequency bands, but there is a cross-over and
the signal becomes stronger for correct than incorrect trials
in higher frequency bands. Comparing these results to those
obtained in the Learn-/Test- condition (Figure 3) shows that
the strength of the signal is stronger for correct trials than
for incorrect trials for a broader frequency band, starting at a
lower frequency, in the Learn-/Test- than in the Learn+/Test-.
If stronger signal in high frequency bands is related to long-
term potentiation [as hypothesized by Brincat andMiller (2015)],
then the stronger signal in high frequency should co-occur with
correct responses in order for the model to correctly learn
the task (the same, but reverse reasoning applies to long-term
depression). Because this effect begins lower on the frequency
spectrum in the Learn-/Test- condition than in the Learn+/Test-
condition, the former condition should learn the task better.
This mechanism can account for the higher accuracy in the
Learn-/Test- condition.

Correlation with Learning Curve
The final performances of the different conditions in Sections
“Model Without DBS” and “Model With DBS” suggest that
higher periodicity for correct trials is related to higher accuracy.
If this is the case, then periodicity for correct trials should
increase as the model learns. To test for this hypothesis, the
Learn-/Test- condition was re-run with periodicity and accuracy
calculated after each block of 100 trials. Figure 8 shows how
periodicity and accuracy change over the course of training
for correct and incorrect trials. The periodicity of correct trials
correlates almost perfectly with accuracy with a correlation
coefficient of 0.981. The periodicity of incorrect trials also
matches accuracy well with a coefficient of 0.905. However, the
correlation between periodicity in correct trials and accuracy is
significantly higher than the correlation between periodicity in

incorrect trials and accuracy (Z = 2.4, p < 05). The final
accuracy and periodicity for correct trials in Figure 8 below
are about 90% and 0.75 (respectively), which reproduces the
results earlier obtained in the Learn-/Test- condition in Section
“Model Without DBS” (see Figures 4, 5). Furthermore, accuracy
reaches 70% after about 200 trials, and the periodicity in correct
trials at this point is slightly above 0.5. This corresponds to the
final accuracy and periodicity of the Learn+/Test- condition
in Section “Model With DBS” (also shown in Figures 4, 5).
Together, these results provide strong support for the previous
interpretation that periodicity for correct trials is related to
accuracy.

DISCUSSION

This article explored the effect of reinforcement learning on
(within-neuron) periodicity and (between-neuron) synchrony
in the striatum. This was accomplished by adding cortical
input and a reinforcement learning algorithm to the Ponzi
and Wickens (2010) striatal model. The new model was used
to simulate a simple instrumental conditioning task. Neural
periodicity and striatal synchrony was disrupted by simulating
DBS (Rubin and Terman, 2004) either during training and/or
at test. The results show that (1) periodicity increases with
training and (2) striatal synchrony decreases with training
(but this may be an artifact linked to increases in firing
rates). In addition, (3) there is a highly positive correlations
between accuracy and periodicity in correct trials. This
correlation is stronger for correct responses than for incorrect
responses. Finally, (4) successful learning is accompanied by a
stronger signal for correct trials than incorrect trials in high
frequency bands. Below we explore some implications of these
results.
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FIGURE 5 | Periodicity and striatal synchrony (A,B) under the three DBS conditions. The Learn-/Test- from Section “Model Without DBS” is included to

facilitate comparison. When DBS is turned ON at test there is no effect of training on either measure but when DBS is turned ON only during training the effect on both

measures is in the same direction as those obtained with the control condition (i.e., Learn-/Test-).

Striatal Synchrony
Striatal synchrony was reduced after the model had learned. This
suggests that one of the effects of reinforcement learning is to
decrease striatal synchrony. However, applying the DBS increases
the striatal synchrony and returns the performance to chance.
As explained in Section “Introduction”, abnormal synchrony
between different brain areas, such as the globus pallidus and the
subthalamic nucleus, is related to some cognitive deficits (e.g.,
as in Parkinson’s disease: Bergman et al., 2010). However, the
simulation results suggest that low striatal synchrony does not
cause accurate performance in an instrumental conditioning task.
First, the striatal synchrony is similar for the Learn-/Test- and
the Learn+/Test- conditions, and yet their accuracy differs.
Second, the striatal synchrony is similar for correct and incorrect
trials. In other words, different accuracies do not imply different
synchronies, and the same level of synchrony is measured
in correct and incorrect trials. Third, simulating random
spiking times with the pre- and post-test firing rates produces
synchrony similar to that observed in the model. Together, these
results suggest that the striatal synchrony is a byproduct of

reinforcement learning, possibly related to the higher neural
activity in the inhibitory network, but is not responsible for the
higher accuracy following training.

Neural Periodicity
The correlation between accuracy and periodicity is high, and
even more so in correct trials. As training progresses, both
the accuracy and the periodicity increase. This suggests that
periodicity in correct trials may be related to response accuracy
in the network. As a case in point, Figure 8 shows that the
final performance of the Learn+/Test- condition constitutes an
intermediate stage of learning in the Learn-/Test- condition (with
similar accuracy and periodicity for correct trials). However, like
for striatal synchrony, periodicity does not appear to be sufficient
for accuracy. For example, turning ON the DBS produces
relatively high periodicity, higher than in pretest when the DBS
is OFF, and yet the model performs at chance. However, every
condition that we tested that resulted in improved accuracy also
resulted in increased periodicity, and the fact that periodicity
is higher for correct than incorrect trials suggest that high
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FIGURE 6 | Spectral decomposition of the two conditions with the DBS ON at test. As can be seen, the signal is perfectly synced with the fundamental

frequency and harmonics of the DBS (all four lines overlap near perfectly). The spectral decomposition for randomly distributed input is also shown for comparison (as

described in Figure 3).

FIGURE 7 | Spectral decomposition of the Learn+/Test- condition. As can be seen, the signal is stronger for incorrect trials than for correct trials at moderate

frequencies, but there is a crossover and the signal is stronger for correct trials than for incorrect trials in higher frequency bands. The spectral decomposition for

random activity is also shown for comparison (as described in Figure 3).

periodicity may be necessary for network accuracy. Periodicity
may facilitate communication between brain areas because it
makes neural firing more predictable.

Spectral Decomposition
The spectral decomposition provided the most interesting
results. First, when the DBS is ON, the neural activity perfectly
synchronize with the DBS’ fundamental frequency, thus making
cortical stimulation irrelevant. This result clearly illustrates why
the model performs at chance when the DBS is ON. When
the DBS is OFF, the signal is stronger in correct trials than in
incorrect trials in high frequency bands. This is in line with
observations in monkeys by Brincat and Miller (2015), and may
be causing long-term potentiation following correct responses
and long-term depression following incorrect responses. When
the DBS was ON at training (Learn+/Test-), this phenomenon is
only observed for a much higher frequency band than when the
DBS was OFF the whole time (Learn-/Test-), which can explain
the difference in accuracy. Overall, stronger signal for correct

trials (and weaker signal in incorrect trials) in high frequency
domains may be key to successful learning.

Limitations and Future Work
The present work suggests that simulating network dynamics
may allow for exploring the relationship between cognitive
functions and brain rhythms. However, the simulated network
is still “small scale” when compared to realistic brain networks,
and does not represent the full network required for instrumental
conditioning (Helie et al., 2013). Hence, it is likely that
some of the effects observed would be modified by the rest
of the circuit. Future work should focus on simulating a
more complete network. In addition, synchrony, periodicity,
and spectral decompositions are only three measures of the
dynamics of the network. Future work should use other
measures of network dynamics to explore their relationship to
accuracy in instrumental conditioning (and possibly classical
conditioning) in other cognitive tasks. Finally, the DBS model
was modified to produce a net current of zero, which makes
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FIGURE 8 | Accuracy and periodicity as they change with training. The periodicity of trials where the model responded correctly almost exactly matches the

learning curve while the periodicity of trials where the model responded incorrectly is not as correlated with accuracy.

the DBS less biologically realistic. This was justified because
its role in the current work was limited to disrupting the
striatal rhythms. Future work could use a more realistic
DBS model, that only affects part of the striatum, and
explore the effect of realistic DBS stimulation on striatal
activity.
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