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Background: Alterations of the gray and white matter have been identified in Alzheimer’s
disease (AD) by structural magnetic resonance imaging (MRI) and diffusion tensor imaging
(DTI). However, whether the combination of these modalities could increase the diagnostic
performance is unknown. Methods: Participants included 19 AD patients, 22 amnestic mild
cognitive impairment (aMCI) patients, and 22 cognitively normal elderly (NC). The aMCI
group was further divided into an “aMCI-converter” group (converted to AD dementia
within 3 years), and an “aMCI-stable” group who did not convert in this time period. A T1-
weighted image, aT2 map, and a DTI of each participant were normalized, and voxel-based
comparisons between AD and NC groups were performed. Regions-of-interest, which
defined the areas with significant differences between AD and NC, were created for each
modality and named “disease-specific spatial filters” (DSF). Linear discriminant analysis
was used to optimize the combination of multiple MRI measurements extracted by DSF to
effectively differentiate AD from NC.The resultant DSF and the discriminant function were
applied to the aMCI group to investigate the power to differentiate the aMCI-converters
from the aMCI-stable patients. Results:The multi-modal approach with AD-specific filters
led to a predictive model with an area under the receiver operating characteristic curve
(AUC) of 0.93, in differentiating aMCI-converters from aMCI-stable patients.This AUC was
better than that of a single-contrast-based approach, such as T1-based morphometry or
diffusion anisotropy analysis. Conclusion: The multi-modal approach has the potential to
increase the value of MRI in predicting conversion from aMCI to AD.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common cause of dementia.
The importance of medical intervention in pre-dementia (Albert
et al., 2011) or in the pre-symptomatic (Sperling et al., 2011) phase
of AD has been a target of active research. For disease-preventive
clinical trials, in which pre-diagnostic intervention is required,
biomarkers that are linked to pathology are needed, both for early
diagnosis and for monitoring, since pathological changes in AD are
believed to have already developed prior to the onset of symptoms
(Jack et al., 2010).

Efforts have been made to establish biomarkers using mag-
netic resonance imaging (MRI), which is a widely prevalent,
non-invasive modality. A wide array of studies have character-
ized the structural MRI features (for review, McEvoy and Brewer,
2010) and the diffusion tensor imaging (DTI) features (for review,
Chua et al., 2008; Stebbins and Murphy, 2009), related to AD.

Although robust patterns of MR-detectable pathology, such as vol-
ume loss in the medial temporal lobe or a decrease in the diffusion
anisotropy of the limbic white matter (WM) fibers, have been
identified, improvements in the accuracy with which AD can be
identified is required; namely, there is a considerable amount of
overlap between cognitively normal elderly participants (NC) and
AD patients, especially in the pre-dementia phase.

To increase the accuracy of MRI in differentiating AD from
NC, a multi-modal MRI analysis (structural MRI + DTI-derived
contrasts) is one of the common approaches (Di Paola et al.,
2010; Gold et al., 2010). However, whether the combination can
increase the accuracy to predict conversion from MCI to AD, com-
pared to the single-modal approach, still remains to be elucidated.
In this study, we introduce a method called “multi-modal MRI
analysis with disease-specific spatial filtering” (MDSF), based on
the following hypotheses. First, assuming that there are multiple
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pathologies with different spatial distributions in a single dis-
ease, the optimized combination of multiple MR modalities could
increase the power to separate diseased brains from normal brains.
Second, if the purpose of the analysis is to investigate the existence
of known pathological features of a particular disease, such fea-
tures can be sensitively detected by defining regions-of-interest
(ROI) that follows the expected distribution of the pathology. In
MDSF, such ROIs [disease-specific spatial filters (DSF)] were cre-
ated independently for multiple MR modalities (e.g., structural
MRI and DTI-derived contrasts), and the MR measures extracted
from the corresponding DSF were optimally combined to separate
diseased brains from control brains.

In this study, images from 19 AD patients and 22 NC partici-
pants were used as the training dataset to create DSF for each MR
contrast, followed by a linear discriminant analysis (LDA) to opti-
mally combine the MR measures to calculate a discriminant score.
We applied the resultant DSF to the test dataset, which consists
of images from patients with amnestic mild cognitive impairment
(aMCI), and investigated whether the resultant discriminant score
could predict the conversion to AD. The classification accuracy
was compared with that achieved by single MR measures or with
cognitive scores.

MATERIALS AND METHODS
PARTICIPANTS
We used data from a study of a well-characterized group of
individuals (Mielke et al., 2009). Briefly, the study sample com-
prised 25 probable-AD patients (mean age, 75.6) who met
NINCDS/ADRDA criteria (McKhann et al., 1984), with a clin-
ical dementia rating (CDR) of 1; 25 aMCI patients (mean age,
75.8) who met the criteria for amnestic MCI (Petersen, 2004) with
a CDR = 0.5; and 25 NC participants (mean age, 74.3) with a
CDR = 0. There were no differences among these groups with
regard to age, race, education, and the occurrence of vascular
conditions (Mielke et al., 2009). Written, informed consent was
obtained under the oversight of the Johns Hopkins Institutional
Review Board. Three aMCI patients and three NC participants
were excluded because the DTI did not cover the whole-brain.
After 3 years of follow-up, six aMCI patients had converted to AD
and were defined as aMCI-converters. The remaining 16 patients
were defined as aMCI-stable. Therefore, the final images used in
this analyses were from 19 AD, 6 aMCI-converters, 16 aMCI-stable
patients, and 22 NC participants.

CLINICAL EVALUATIONS
The diagnosis and neuropsychiatric evaluations [CDR, the
Alzheimer’s Disease Assessment Scale – cognitive portion (ADAS-
cog), the mini mental state examination (MMSE), and the geriatric
depression scale (GDS)] were performed at the time of the MRI
scan by the Alzheimer’s Disease Research Center (ADRC) staff.
Re-evaluation of the diagnosis was continued annually for 3 years.

MRI SCANS AND IMAGE PROCESSING
For each participant, a DTI, co-registered, double-echo fast spin
echo (DE-FSE), and a T1-weighted image were acquired using a 3T
scanner (Gyroscan NT, Philips Medical Systems). The parameters
were as follows. DTI: single-shot echo-planar imaging; 30 diffusion

weighting orientations; b-value 700 s/mm2; 50–60 gapless whole-
brain axial sections of 2.2 mm thickness; matrix 96 × 96; field of
view (FOV) 212 mm × 212 mm; zero-filled to 256 mm × 256 mm.
DE-FSE: first echo time (TE) 10.1 ms; second TE 96.0 ms; repe-
tition time (TR) 3,000 ms; 48 gapless whole-brain axial slices of
3 mm thickness; matrix 256 × 247; FOV 240 mm × 210 mm; zero-
filled to 256 mm × 256 mm. T1-weighted image: magnetization-
prepared rapid gradient recalled echo; TE 3.2 ms; TR 6.9 ms;
matrix 256 × 256 × 170; FOV 240 mm × 240 mm × 204 mm;
zero-filled to 256 mm × 256 mm × 204 mm. After the raw
diffusion-weighted images were corrected for motion, eddy cur-
rent, and B0-susceptibility distortion (Huang et al., 2008), a
tensor field was calculated. A T2 map was calculated from the
DE-FSE, using the simple mono-exponential model. All images
were co-registered and re-sliced to 1 mm isotropic resolution
(181 × 217 × 181 matrix).

NORMALIZATION OF THE IMAGES TO THE JHU-MNI ATLAS
Diffusion tensor imaging and T2 maps were normalized to a
multi-modal JHU-MNI atlas, as previously described (Oishi et al.,
2009). Briefly, DTI was transformed using first affine transforma-
tion and then large deformation diffeomorphic metric mapping
(LDDMM). The resultant matrices were applied to the corre-
sponding T2 maps for the normalization. From the normal-
ized tensor, FA, MD, axial diffusion (λ||), and radial diffusion
(λ⊥) maps were calculated. The Jacobian map was calculated
from the transformation matrix of LDDMM (called Jacobian-DTI
hereafter) for the morphometric analysis.

For the analysis of the T1-weighted images, we followed a voxel-
based morphometry method (Ashburner and Friston, 2000), with
several modifications. First, tissue segmentation was performed
for individual T1-weighted images using VBM5.11. A gray matter
(GM) template was created from the JHU-MNI atlas the same way.
There was no isotropic smoothing after segmentation. GM seg-
mentation of each individual was normalized to the GM template,
first using 12-parameter affine transformation and then using
LDDMM. The Jacobian map (called Jacobian-T1 hereafter) was
calculated from the transformation matrix of LDDMM.

The final products for each participant after normalizations
were: Jacobian-T1; Jacobian-DTI; FA; MD; λ||; λ⊥; and T2

measures, mapped on the atlas space (Figure 1A). All image
transformation was achieved with the software DiffeoMap2.

IDENTIFICATION OF THE AREAS WITH AD-RELATED ALTERATIONS
USING A TRAINING DATASET
We performed a voxel-based comparison between 19 AD and 22
NC patients for each MR measure, using the SPM5 software3,
implemented in Matlab 6.5 (The MathWorks, Natick, MA, USA;
Figure 1B). Since all images were already normalized to the atlas
space (JHU-MNI atlas) by LDDMM, we used only a two-sample
t -test of SPM5 without smoothing. The reason we did not use
isotropic smoothing is that it introduces partial volume effects,

1http://dbm.neuro.uni-jena.de/vbm/
2www.MriStudio.org
3http://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 1 | Flow chart of the study.

especially for the WM, in which tracts with very different con-
nectivity are adjacent to each other. The areas with statistical
significance (p < 0.05 after correction for multiple comparisons
using a false discovery rate) were binarized to create a mask called
a DSF, which represented the spatial distribution of AD-related
alterations in each MR parameter. The DSF of each MR parameter
was called DSF-“parameter name”. For example, the DSF of the FA
map was called the DSF-FA. Note that the DSF-Jacobian-ex-DTI
indicated areas of expansion, and the DSF-Jacobian-DTI indicated
areas of atrophy.

OPTIMIZATION OF THE COMBINATION OF MR MEASURES TO
SEPARATE AD FROM NC USING A TRAINING DATASET
The eight DSFs were applied to the normalized images of each
subject. MR measures inside the corresponding DSF were aver-
aged and called the DSF-“parameter name” value. As a result, each
subject had eight DSF values.

In order to combine the DSF values to increase the classifica-
tion power, we used LDA. Separate LDFs were performed using
the DTI-derived values (Jacobian-DTI, Jacobian-ex-DTI, FA, MD,
λ||, and λ⊥), and all the MR values (Jacobian-T1, Jacobian-DTI,
Jacobian-ex-DTI, FA, MD, λ||, λ⊥, and T2), as the input variables.

The classification score for DTI-derived DSF values was called the
DTI score, and the classification score for all DSF values was called
the MRI score.

APPLICATION OF THE OPTIMIZED COMBINATION OF DSF TO THE aMCI
GROUP
Previous steps included the creation of the DSFs and discrim-
inant function to calculate discriminant scores (DTI score and
MRI score), which were required to perform MDSF. We applied
the MDSF to the aMCI group (Figure 1C) to see whether the DTI
score and the MRI score could accurately classify aMCI-converters
and aMCI-stable patients (Figure 1D). The ROC analyses were
performed to assess the classification performance. SPSS 19 (IBM
Corporation, New York, USA) was used to create ROC curves.
MedCalc 11.5.1 (MedCalc Software, Mariakerke, Belgium) was
used for the non-parametric pair-wise comparison between the
areas under the ROC curves.

COMPARISON BETWEEN MRI SCORE AND COGNITIVE SCALES
We performed permutation tests and ROC analysis for the two
types of cognitive scales (ADAS-cog and MMSE), as well as for
the number of correct answers in the immediate and delayed story
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recall of the WMS-III, in order to assess the accuracy of separating
aMCI-converter from aMCI-stable patients.

RESULTS
NORMALIZATION OF THE IMAGES TO THE JHU-MNI ATLAS
All 63 images were normalized to the JHU-MNI template. In
Figure 2, the averaged FA map (first to fifth rows), the averaged
T2 map (sixth row), and the averaged GM segmentation (seventh
row) are shown. The extent of the anatomical details appreciated
in these figures represents the accuracy of the normalization.

CREATION OF DSFs
The areas with statistical significance that differentiated AD
patients from NC subjects were overlaid on the averaged images
(Figure 2). The WM alterations were mainly found in the lim-
bic fibers (the fornix, the cingulum hippocampal area, and the

posterior cingulate), the forceps major and minor (including the
splenium and the genu of the corpus callosum), and the periven-
tricular WM areas. In addition, small areas with significant alter-
ations were scattered in the gyrus rectus, the inferior frontal gyrus,
and the temporal–parietal lobes. Generally, the limbic fibers and
the forceps showed a decrease in the FA, with an increase in the
MD, which was mainly caused by a greater increase in the λ⊥
than in the λ||. Among these fibers, the fornix had the most strik-
ing change, with atrophy and increased T2. On the other hand,
a general increase in diffusivity, accompanied by a T2 increase,
was found in the area surrounding the lateral ventricles. To elimi-
nate the possibility that the decreased FA and increased diffusivity
were due to misregistration of the ventricle, the ventricles of each
image were manually defined and normalized by applying the cor-
responding transformations. Misregistration of the ventricle was
not found in any of the abnormal FA/diffusivity areas, except for

FIGURE 2 | Voxel-based group comparison between AD and NC. Areas
with signal or volume alterations in AD compared to NC are shown as
colored maps, overlaid on an averaged FA map (A–E), an averaged T2 map (F),
and an averaged GM segmentation map (G), created from all 63 images. (A):
Areas with reduced FA. (B) Areas with increased MD. (C) Areas with
increased λ|| . (D) Areas with increased λ⊥. (E) Areas with an increased and

decreased Jacobian, which was calculated from a transformation matrix
obtained from the normalization of DTI. (F) Area with increased T2. (G) Areas
with increased and decreased Jacobian, which were calculated from a
transformation matrix obtained from the normalization of a GM segmentation
map. White arrows show the misregistration seen in the left posterior horn of
the lateral ventricle.
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the area medial to the left posterior horn of the lateral ventricle,
indicated by the white arrow in Figure 2. The significant changes
in FA and diffusivity in this area, therefore, were artifacts.

Gray matter atrophy was mainly found in the hippocampus,
the entorhinal area, and the thalamus. Small areas with significant
atrophy were also found in the parietal cortices. Atrophy was also
found by both Jacobian-DTI and Jacobian-T1 in the area where the
basal nucleus of Meynert and the olfactory radiation are located.

The areas with significant AD-related alterations in each MR
measure were binarized to create DSFs for AD, as shown in
Figure 3. DSA-values for each MR measure were calculated and
are demonstrated in Figure 4.

OPTIMIZATION OF THE COMBINATION OF DISEASE-SPECIFIC ATLASES
Linear discriminant analysis provided discriminant functions to
calculate a DTI score and an MRI score. The structure coeffi-
cients for each DSF value to calculate a DTI score were: DSF-
Jacobian-DTI value, 0.726; DSF-Jacobian-ex-DTI value, −0.502;
DSF-FA value, 0.878; DSF-MD value, −0.785; DSF-λ|| value,
−692; and DSF-λ⊥ value, −0.813. The structure coefficients for
each DSF value to calculate an MRI score were: DSF-Jacobian-T1

value, 0.460; DSF-Jacobian-DTI value, 0.722; DSF-Jacobian-ex-
DTI value, −0.499; DSF-FA value, 0.876; DSF-MD value, −0.781;
DSF-λ|| value, −0.689; DSF-λ⊥ value, −0.809; and DSF-T2 value,
−0.687.

FIGURE 3 |Top and left-side view of the eight disease-specific spatial

filters (DSFs) created from voxel-based statistical comparisons of the

training dataset (AD and NC). The brain surface and the hippocampal
surface of the JHU-MNI atlas are shown in gray and pink, respectively.

APPLICATION OF THE MDSF TO THE MCI GROUP
We applied the MDSF (combination of the DSF and discriminant
function from the training dataset) to an aMCI group as a test
dataset, to calculate a DTI score and an MRI score of each patient
(Figure 4). The ROC curves, the AUCs, and the classification func-
tions based on the optimal cutoffs, are shown in Figure 5A and
Table 1. Pair-wise comparison of the ROC curves demonstrated
that the MRI score was significantly better than any scores with
the single contrast approach, although the difference between MRI
score and DTI score was not significant.

COMPARISON BETWEEN MRI SCORE AND COGNITIVE SCALES
Among the selected cognitive tests, the number of correct answers
in the delayed story recall of the WMS-III could best predict the
conversion from MCI to AD, with an AUC of 0.83, which tended to
be less than that (0.93) of the MRI score, even though the difference
did not reach the statistical significance (Figure 5B; Table 1).

DISCUSSION
SPATIAL SPECIFICITY OF THE WM AND GM ALTERATIONS
We found two different patterns of WM alterations in AD. Namely,
an FA reduction associated with a λ⊥-predominant increase in dif-
fusivity in the limbic fibers and the forceps, and a general increase
in diffusivity with a T2 increase found in the periventricular area.
Alterations in the fornix, cingulum, and the splenium of the cor-
pus callosum were consistent with earlier ROI studies (Naggara
et al., 2006; Ringman et al., 2007; Zhang et al., 2007; Mielke et al.,
2009). A recent study using tract-based analysis (TBSS; Smith
et al., 2006), also detected alterations in these structures (Damoi-
seaux et al., 2009; Acosta-Cabronero et al., 2010), supporting the
validity of our findings. A test for CSF contamination suggested
a highly accurate registration by LDDMM, with a minimal CSF
contribution. An exception was in the areas around the poste-
rior horn of the lateral ventricles, which were eliminated from the
subsequent analyses. The periventricular WM alterations in AD
are in accordance with past findings, where they were designated
periventricular hyperintense lesions (PVH; Targosz-Gajniak et al.,
2009). We also identified alterations in the superficial WM (Oishi
et al., 2008) that had been found in past studies (Bozzali et al.,
2002; Damoiseaux et al., 2009; Zhang et al., 2009).

Our main findings with regard to GM morphometry in AD
mostly agree with past findings, showing atrophy in the hippocam-
pal complex, the basal nucleus of Meynert, and the thalamus (Jack
et al., 1999; Morris et al., 2002; Karas et al., 2004; Teipel et al.,
2005; de Jong et al., 2008; McEvoy et al., 2009). However, the dis-
tribution of the abnormalities was limited in our study, compared
to the previous studies. One of the reasons for this was that our
voxel-based analysis did not use spatial smoothing, which would
have led to lower sensitivity to detect abnormalities.

PREDICTIVE ABILITY OF THE MDSF
The overall agreement of the above VBA findings with previous
reports confirms that our DSF capture most locations with signif-
icant anatomical alterations. Once the locations with a potential
abnormality are encoded in the DSF (Figure 3), the MRI/DTI
scores can be generated for each patient by applying the DSFs to
the multi-modal MRI data. The ROC analyses indicated that the
MRI and DTI scores better predicted conversion from aMCI to
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FIGURE 4 | Scattergrams of the measured DSF values of the eight parameters, the discriminant scores (DTI score and MRI score), and the results of

cognitive tests of the test dataset (MCI-converter and MCI-stable). MD, λ|| , and λ⊥: 10−3 × mm2/s; T2: ms. C: aMCI-converter; S: aMCI-stable.

FIGURE 5 | Results of the receiver operating characteristic curve (ROC) analyses. (A) The ROCs of various MR measurements. (B) The ROCs of various
cognitive tests. WMS-imm: number of correct answers in the immediate story recall of the WMS-III; WMS-del: number of correct answers in the delayed story
recall of the WMS-III.
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Table 1 | Result of the ROC curve analysis to separate aMCI-converter from aMCI-stable patients.

AUC 95% CI of AUC Optimal cut-off* Sensitivity Specificity vs. DTI score (p value) vs. MRI score (p value)

FA 0.78 0.56–0.93 <0.35 0.50 1.00 0.037 0.035

MD 0.76 0.53–0.91 >0.9E-03 1.00 0.50 0.026 0.023

λ|| 0.73 0.50–0.89 >1.3E-03 0.50 0.94 0.022 0.018

λ⊥ 0.73 0.50–0.89 >0.8E-03 0.50 1.00 0.032 0.030

Jacobian-ex-DTI 0.59 0.37–0.80 >1.9 0.33 0.94 0.009 0.007

Jacobian-DTI 0.59 0.37–0.80 <0.48 0.33 0.94 0.009 0.007

T2 0.80 0.58–0.94 >105 0.83 0.75 0.075 0.041

Jacobian-T1 0.69 0.46–0.87 <0.94 0.83 0.69 0.055 0.034

DTI score 0.91 0.71–0.99 <0.0 1.00 0.75 N/A 0.140

MRI score 0.93 0.73–0.99 <0.0 1.00 0.75 0.140 N/A

ADAS-cog 0.56 0.34–0.77 >11 0.67 0.63 0.033 0.026

MMSE 0.79 0.57–0.94 <25 0.83 0.69 0.160 0.105

WMS-immediate 0.71 0.48–0.88 <8 0.83 0.63 0.075 0.045

WMS-delayed 0.83 0.61–0.96 <4 0.67 0.88 0.295 0.230

Results of the pair-wise comparison of ROC curves between the DTI score and single-modality approaches (vs. DTI score), and the MRI score and single-modality

approaches (vs. MRI score), are shown in the two right columns.

*MD, λ|| , and λ⊥: mm2/s; T2: ms.

AD, compared to the analysis using a single MR contrast alone
or cognitive scales. This indicates the potential of multi-modal
measurement to increase the value of MRI in the early diagnosis
of AD.

There were several reasons we think the MDSF approach could
classify aMCI-converters from aMCI-stable patients better than
the single-modal approach. First, multiple structures with differ-
ent pathologies are involved in AD. Especially in the early phase,
WM alteration detected by DTI-derived measurements has been
found independently of the GM atrophy (Bai et al., 2009; Agosta
et al., 2011). Therefore, diffusion measurements and morphome-
tric measurements seems to be complementary, and the combina-
tion of these would capture the pathology of AD comprehensively.
Second, AD is one of the neurodegenerative diseases in which par-
ticular brain structures systematically and gradually degenerate.
This systematic feature (not random) is ideal for creating the DSF.

LIMITATIONS
The main limitations of the current study were the small number of
the training dataset (AD and NC) and the testing dataset (aMCI).
Beyond the technical demonstration, the use of larger training and

testing datasets would be necessary to create DSFs and to evalu-
ate their usefulness in actual clinical settings. The application of
this method to the diagnosis of other neurodegenerative diseases
would also be necessary to further evaluate the efficacy of this
method.

In summary, the MDSF approach increased the predictive
power of MRI to identify aMCI patients who might convert to
AD. This method has the potential to quantitatively analyze MRI
data to identify patients at risk for developing AD.
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