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This study was conducted to assess the feasibility and diagnostic accuracy of brain
artery territory recognition based on geoprojected two-dimensional maps of diffusion
MRI data in stroke patients. In this retrospective study, multiplanar diffusion MRI data of
ischemic stroke patients was used to create a two-dimensional map of the entire brain.
To guarantee correct representation of the stroke, a computer-aided brain artery territory
diagnosis was developed and tested for its diagnostic accuracy. The test recognized the
stroke-affected brain artery territory based on the position of the stroke in the map. The
performance of the test was evaluated by comparing it to the reference standard of each
patient’s diagnosed stroke territory on record. This study was designed and conducted
according to Standards for Reporting of Diagnostic Accuracy (STARD). The statistical
analysis included diagnostic accuracy parameters, cross-validation, and Youden Index
optimization. After cross-validation on a cohort of 91 patients, the sensitivity of this territory
diagnosis was 81% with a specificity of 87%. With this, the projection of strokes onto a
two-dimensional map is accurate for representing the affected stroke territory and can be
used to provide a static and printable overview of the diffusion MRI data. The projected
map is compatible with other two-dimensional data such as EEG and will serve as a useful
visualization tool.

Keywords: computer-aided detection and diagnosis, diffusion-weighted imaging, dimensionality reduction,
magnetic resonance imaging, stroke territories, validation, visualization

INTRODUCTION

Worldwide, ischemic stroke is the third-most common cause of years of live lost (1). In developed
countries, stroke even ranks second (1). Routine patients presenting with stroke symptoms are
typically evaluated by assessing diffusionMRI data, which is themost accuratemethod of illustrating
the affected brain area in the acute phase of a stroke (2). In diffusion MRI, the degree to which
water molecules can diffuse freely in the tissue is measured. In brain regions affected by stroke,
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the diffusion of water is impaired and can be detected as a reduced
darkening of the MRI image over a recording time of (typically)
20ms per layer (3). To evaluate the results, the two-dimensional
images are stacked to form a three-dimensional dataset. Through
this method of representing the imaging data, an observer can
only assess the full information through visual inspection and
steady rotation or directmanipulation of the images (e.g., scrolling
through the layers). This approach is not always possible and
limits the applicability of the method in printed reports.

Computer-aided diagnosis of stroke has gained in importance
over the last decade. There is a multitude of approaches (4–7).
Most groups use CT images to make early developments of stroke
visible and detectable (8–10). Tyan et al. (11) considered diffusion
MRI data as well as CT images for unsupervised computer-aided
diagnosis of stroke-affected brain volume. The focus of all these
approaches lies in enhancing the imaging data so that search
algorithms can detect stroke symptoms. With this work, we aim
to add to the visualization possibilities, which are not addressed
by most computer-aided diagnosis approaches. The dimensional-
ity reduction to a two-dimensional depiction of the entire brain
provides advantages in print, in compatibility with brain surface
measurements such as EEG and in tracking changes of the stroke
lesion over time.Wehere present a new approach of converting the
three-dimensional imaging data set to a two-dimensional map by
geoprojection. To ensure the correct representation of strokes in
the two-dimensional map, we developed a computer-aided artery
territory recognition algorithm, using the projectedmaps as input.

The projection of three-dimensional data into a two-
dimensional map via Mollweide geoprojection is a common
method in other fields (12–14). We applied this mathematical
method to diffusion MRI data to create a static, two-dimensional
representation of the entire brain providing accurate information
on stroke position and size.

The purpose of this retrospective study was to develop an
intuitive two-dimensional representation of three-dimensional
brain imaging data and to probe it for its diagnostic validity.
To validate the projection outcome, we assessed the diagnostic
accuracy of computer-aided stroke territory recognition based on
geoprojected two-dimensional maps of diffusion MRI data.

MATERIALS AND METHODS

Study Population and Design
This retrospective study was designed and conducted according
to Standards for Reporting of Diagnostic Accuracy (STARD)
(15). The data for this study were collected using the
institutional database of the Neurological Department at
the Friedrich–Alexander University of Erlangen-Nuremberg.
The patient’s demographic information was obtained from
medical records. Patients of any sex and age were accepted if
diffusion-weighted MR imaging data with apparent ischemic
stroke was available. The patients’ stroke diagnoses on recordwere
categorized according to the affected brain artery territory into
the following groups: the anterior cerebral artery (ACA) territory,
superior or inferior division of the middle cerebral artery (MCA)
territory, the posterior cerebral artery (PCA) territory or the
posterior inferior cerebellar artery (PICA) territory. This division

of the brain follows the definition of vascular territories used in
other studies (16–18). Superior cerebellar artery infarctions were
rare in our search group; thus, this type of infarction was not
included in the study.

Test Methods
To report the diagnostic accuracy of the projected representation
of stroke territories in two-dimensional maps, we used each of the
diagnoses on record for the 125 patients in the study, which were
approved by an experienced neurologist and neuroradiologist as
a reference standard. The clinical diagnoses were based on the
evaluation of the same diffusion MRI datasets used for our test
method.

Diffusion-Weighted MR Imaging
Image acquisition was performed on a 1.5-T MR-Scanner (Aera;
Siemens, Erlangen, Germany) using routine protocols for stroke
imaging, including an axial diffusion-weighted echo planar
sequence (b value= 1000 s/mm2; repetition time= 6800ms; echo
time= 89ms; slices= 25; slice thickness= 5mm).

Projection Method
The projection of MRI data into two-dimensional maps, as well
as statistical analysis, was performed with MATLAB software
(Mathworks). The scripts are available at https://github.com/
janawrosch/mrt_projection.

To create the two-dimensional maps of the entire brain, we
first arranged all diffusion MRI data points to form a three-
dimensional data stack, which was similar to the stacked image
layers commonly created for MRI evaluation.

In the first step, the voxels depicting the brain were distin-
guished from the ones showing the background by background
determination-based detection (19). For that, we plotted the val-
ues of all diffusionMRI data points fromall layers into a histogram
(Figure 1). This plot resulted in a large peak at low intensity
values, which represents the background, and a smaller peak at

FIGURE 1 | Histogram of diffusion MRI values of one exemplary
dataset. The intense peak at the diffusion level around 20 a.u. represents the
background. The broad peak around 180 a.u. representing the healthy brain
values is accompanied by a smaller second “peak” around 300 a.u., which is
representing the stroke-affected tissue. The left vertical line shows the
calculated cut-off value between the background and the brain. The right
vertical line shows the cut-off value between the healthy brain and
stroke-affected tissue.
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higher intensities, which represents the brain. For the cut-off
value between the background and brain, the minimum of the dip
between those peaks was calculated (left line in Figure 1). This
method is based on the assumption of a Gaussian distribution of
the values in the histogram. Since it has been shown thatMRI data
follows a Rician distribution (20–22), we ensured applicability
of the background determination-based method with the signal-
to-noise levels at hand by testing the distributions in the his-
togram via Kolmogorov–Smirnov test for Gaussian distribution
and found that it is applicable in each of the 125 cases (Figure S1
in Supplementary Material).

To evaluate the quality of the two-dimensional projection,
the proportion of stroke volume per total brain volume in the
diffusion MRI data was compared to the proportion of stroke
area per total brain area in the two-dimensional map. For the
separation of MRI voxels representing healthy brain from stroke
voxels representing stroke-affected tissue, we also used the inten-
sity histogram in which the broad peak representing the brain
is positively skewed by the scarce high intensity stroke values.
Based on a normal, and therefore symmetrical, distribution of
healthy brain values, the cut-off point between the healthy brain
and stroke is the minimum value from the left side of the curve
reflected across the maximum of the healthy brain values, which
is indicated by the right line in Figure 1. These cut-off values were
calculated for each patient’s individual histogram.

In the next step, all diffusion MRI data points representing
the brain (healthy and stroke-affected tissue) were projected onto
a sphere around the surface of the brain (see Figure 2A). For
the center of this sphere, we chose the ventral surface of the
lower mesencephalon between the cerebral peduncles, as shown
in Figure 2B. We chose this location due to its centric and dis-
tinct position within the brain. The voxels within the sphere are
projected straight out onto their nearest neighbor on the sphere.
The generated surface contains all the information included in the
three-dimensional MRI data volume. In a final step, this surface
was transformed into a plane.

FIGURE 2 | Projection of three-dimensional diffusion MRI data onto a
two-dimensional map. (A) All data points are projected onto a sphere
around the surface of the brain, which is illustrated by the dashed circles;
(B) center of the projection sphere at the ventral surface of the lower
mesencephalon between both cerebral peduncles; (C) plane transformation
of the projection sphere via Mollweide geoprojection.

We used the mathematical method of Mollweide geoprojection
(23) to convert the spherical coordinates λ and θ of each point on
the sphere with radius r to Cartesian coordinates x and y using the
following formulae:

x = (
√

8 · r · λ · cos θ)/π; y =
√

2 · r · sin θ

With this geoprojection, the position of each data point on the
sphere is transformed to a point on a two-dimensional map of the
brain (see Figure 2C). In about 40% of the pixels on the map, it
is the case that several data points fall into the range of the same
pixel. In those pixels, the maximum diffusion value was plotted
onto the map to ensure that no stroke data (higher values) gets
lost or obstructed by healthy brain data (lower values).

To determine which diffusion levels indicate a stroke at each
point on the map, we created a diffusion level reference map from
the healthy brain hemispheres of 50 patients. For each single pixel
of the map, we averaged the diffusion values of healthy brains and
calculated the SD of the diffusion values in that point. A patient’s
projected data are compared, pixel-wise, to this reference map.
If the data differ by more than 2 SDs from the averaged healthy
diffusion value at that point, the deviation is considered indicative
of stroke. We determined the threshold of the mean plus 2 SDs
by minimizing the difference in the proportion of the stroke-
affected volume per total brain volume and the proportion of the
stroke-affected area per total brain area in the two-dimensional
projection, as shown in Figure 3.

With this software, the three-dimensionally stacked MRI data
were automatically converted into a two-dimensional map show-
ing the entire brain at once and indicating the stroke area with
above threshold values.

To be able to assign stroke coordinates in the two-dimensional
map to a defined region in the patients’ brains, we created a
stroke territory reference map referencing the pixels according
to brain artery territory. We created this map by merging the
stroke-covered regions of the patients with a distinct diagnosis of
stroke in only the one artery territory. For good coverage of the
complete artery territory, we chose patients who had a widespread
lesion within that territory (see Figure 4). The patients used for
this stroke territory assessment (14 patients) were excluded from
further analysis to prevent biased test results.

To ensure accurate representation of strokes in the two-
dimensional maps, we developed an algorithm for computer-
aided stroke territory diagnosis that is using projected maps as
input and assessed this test’s diagnostic accuracy.

The algorithm tests each territory for stroke by applying two
criteria: (1) If a large percentage of the territories’ area is covered
by stroke-indicating pixels, that territory is positive for stroke.
The cut-off value for this criterion decides to what extend each
region needs to be covered to be counted as positive. (2) If a large
bulk of all stroke-indicating pixels falls together into the same
territory, that territory is positive for stroke. The cut-off value
for this criterion decides how many of all the stroke-indicating
pixels need to be convened in a territory for this to be counted
as positive. The values for each criterion and each round of outer
cross-validation ore listed in Table 1.

The resulting stroke territory diagnosis was compared to the
patient’s recorded clinical diagnosis (reference standard).
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FIGURE 3 | Diffusion level reference. (A–C) Projections with strokes indicated for the pixels of values above the mean plus different numbers of SDs from the
healthy diffusion levels; (A) projection referenced at one sigma level, which corresponds to a mean difference in the proportion of stroke per total brain in the original
MRI data and in the projected maps (SPB-ratio) of 16.5% (SD: 31.9%); (B) projection referenced at two sigma levels, which corresponds to a SPB-ratio of 5.4% (SD:
8.1%); (C) projection referenced at three sigma levels, which corresponds to a SPB-ratio of 9.2% (SD: 6.9%); (D) representative layer of the diffusion MRI data of the
projected brain in (A) through (C), showing the stroke-affected region.

FIGURE 4 | Stroke territory reference map. (A) Anterior cerebral artery
territory; (B) superior division of the middle cerebral artery territory; (C) inferior
division of the middle cerebral artery territory; (D) posterior cerebral artery
territory; (E) posterior inferior cerebellar artery territory; left side of the map
also shows the left side of the brain.

Statistical Methods
To assess sensitivity and specificity (24) as well as the posi-
tive predictive value (PPV) and negative predictive value (NPV)
and positive likelihood ratio (PLR) and negative likelihood ratio
(NLR), we used leave-p-out cross-validation (25–27). The study

population of 91 patients was randomly divided into 10 sub-
groups. In 10 rounds of parameter optimization and subsequent
test validation one subgroup at a time was excluded from the
parameter optimization. The following validation was applied to
the excluded data set respectively. The test performance results of
all 10 validation rounds were averaged. Parameter optimization
as well as test performance evaluation was based on the counts of
true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) results.

Test parameters were optimized to find the best cut-off values
for the brain artery territory recognition criteria. Optimization
was achieved by maximizing the Youden Index Y (28), which is
calculated by the formula:

Y =
TP

TP + FN +
TN

FP + TN − 1

The associated receiver operating diagrams (29) are provided
in Figure S2 in Supplementary Material.

To assess the test performance, the following formulae were
used to calculate sensitivity and specificity (24), PPV and NPV
(30), and PLR and NLR (31) from the result counts:

Sensitivity =
TP

TP + TN

Specificity =
TN

TN + FN
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TABLE 1 | Cut-off values for computer-aided brain artery territory diagnosis.

Excluded groups How much area must be covered by stroke? How many of the stroke pixels must be convened?

ACA (%) supMCA (%) infMCA (%) PCA (%) PICA (%) ACA (%) supMCA (%) infMCA (%) PCA (%) PICA (%)

1 20 10 5 10 30 0 0 0 90 50
2 20 10 5 10 30 0 0 0 90 50
3 20 10 5 10 30 0 0 0 90 50
4 20 10 5 10 30 0 0 0 90 50
5 20 10 5 10 30 0 0 0 90 50
6 20 10 5 10 30 0 0 0 90 50
7 20 10 5 10 25 0 0 0 90 50
8 20 10 5 10 30 0 0 0 90 50
9 20 10 5 10 30 0 0 0 25 50
10 20 10 5 10 30 0 0 0 90 50

Best cut-off values were found by Youden Index maximization as shown in Figure S1 in Supplementary Material. The table gives the cut-off values for each criterion and each of the 10
rounds of leave-p-out cross-validation, where the optimization is based on all 10 subgroups of data except the named excluded group.
ACA, anterior cerebral artery territory; supMCA, superior division of the middle cerebral artery territory; infMCA, inferior division of the middle cerebral artery territory; PCA, posterior
cerebral artery territory; PICA, posterior inferior cerebellar artery territory.

PPV =
TP

TP + FP

NPV =
TN

TN + FN

PLR =
Sensitivity

1 − Specificity

NLR =
1 − Sensitivity

Specificity
RESULTS

Participants
The study was performed in 2015 with archived patient data
that ranged from February 2012 until August 2015. We included
125 patients in this study with a mean age of 65 years (range
23–93 years). The study population included 47 female patients
(38%). Twenty-four patients had an ACA territory stroke, 48
patients had a stroke in the superior division of theMCA territory,
and 51 in the inferior division. The PCA territory stroke was
diagnosed in 33 patients, and PICA territory infarctions occurred
in 32 patients. The patient demographics are presented inTable 2.

Of the total study cohort of 125 patients, 14 data sets were used
to create the stroke territory reference map and were excluded
from the test evaluation. Therefore, the analysis of our method’s
diagnostic accuracy is based on 101 cases. These 101 cases were
split into two groups of sizes 91 and 20. For cross-validation, the
91 cases were used and randomly divided into 10 subgroups on
which 10 rounds of outer cross-validationwere performed. In each
round, the test parameters were optimized using the data of nine
subgroups. Subsequently, the test performance was validated on
the tenth subgroup each round. The performance results of all 10
rounds of cross-validation were then averaged. For an indepen-
dent validation, the test parameters were optimized using the data
of all 91 patients and then validated on the 20 independent data
sets, which were excluded from cross-validation. Of those, 20 data
sets were excluded from the cross-validation, to be later used for
independent validation. The remaining 91 cases were randomly
split up into 10 groups of 9 cases each (one group contained 10
cases). The study procedure is illustrated as a flow chart in Figure
S3 in Supplementary Material.

TABLE 2 | Demographic characteristics of the study population (n=125).

Characteristic Value

Female sex – no. (%) 47 (38)
Age – years

Mean±SD 65±15
Range 23–93
Diagnosed stroke territory – no. (%)

ACA 24 (19)
MCA superior division 48 (38)
MCA inferior division 51 (41)
PCA 33 (27)
PICA 32 (26)

ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery;
PICA, posterior inferior cerebellar artery.

The neurological diagnoses were approved by an experienced
neurologist and neuroradiologist and were used as a reference
standard. This reference and the stroke projectionwere both based
on the same diffusion MRI dataset. Discrepancies in the test
results were not ascribed to any change in the disease pattern.

Our study population had amedianNational Institute ofHealth
Stroke Scale (NIHSS) Score (32–34) of 4 with an interquartile
range of 9. As a measure of quantitative severity, we calculated
the stroke per brain ratio from the diffusion MRI pixels and
found that the study population had a mean of 4.3% (SD: 5.8%)
of brain volume affected by stroke. The median of stroke per
brain ratio was 2.3% with an interquartile range of 3.7%. For
patients with strokes in the PCA territory, the quantitative severity
even reached a median of 2.8% with an interquartile range of
5.4%. The most severely affected group of patients according
to NIHSS was the one with infarctions in the superior division
of the MCA territory. Here, the median score was 7 with an
interquartile range of 13. A detailed list of the NIHSS Scores and
quantitative severity for all brain artery territories is shown in
Table 3.

Diagnostic Accuracy of Territory
Recognition Based on Stroke Projections
The detection of stroke-affected brain artery territories based
on geoprojected diffusion MRI data with our method reached
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a sensitivity of 81% (SD: 7.8%) and a specificity of 87% (SD:
6.8%) after cross-validation on 91 cases. In independent valida-
tion on another 20 cases, the test had a sensitivity of 75% with
specificity of 86%. A detailed cross tabulation of the results for
each round of cross-validation is given in Table S1 in Supple-
mentary Material. The statistical analysis results are presented in
Table 4.

In our study, we can rule out diagnostic review bias (35) because
the diagnoses used as reference standards were already set before
the study was conducted. Because the test software does not have
any information about the reference standard results, there is also
no test review bias (35).

The reference standard is affected by observer variability
(36) because there is no standardized method for physicians
to definitively diagnose the affected stroke area, whereas the
projection method is fixed software that has no analytical
noise.

TABLE 3 | Severity of stroke within the study population (n=125).

Quantitative severity (%) NIHSS score

Median Interquartile
range

Median Interquartile
range

ACA 1.5 1.3 4 3
MCA superior division 1.9 1.9 7 13
MCA inferior division 1.6 2.1 2 6
PCA 2.8 5.4 3.5 5
PICA 2.0 5.2 1.5 2.5

Total 2.3 3.7 4 9

The quantitative severity was calculated from the proportion of the number of diffusion
MRI pixels representing stroke to the total number of “brain pixels”; NIHSS scores were
taken from patient records.
ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery;
PICA, posterior inferior cerebellar artery.

TABLE 4 | Statistical analysis of stroke territory recognition based on the geoprojected, two-dimensional map compared to the clinical diagnoses.

Outer cross-validation on 91 cases

Validation group Sensitivity Specificity PPV NPV PLR NLR TP FP TN FN

1 84.6% 87.5% 0.733 0.933 6.769 0.176 11 4 28 2
2 75.0% 96.0% 0.938 0.828 18.750 0.260 15 1 24 5
3 86.7% 83.3% 0.722 0.926 5.200 0.160 13 5 25 2
4 76.9% 78.1% 0.588 0.893 3.516 0.295 10 7 25 3
5 64.3% 80.7% 0.600 0.833 3.321 0.443 9 6 25 5
6 78.6% 100.0% 1.000 0.912 0.000 0.214 11 0 31 3
7 92.3% 81.3% 0.667 0.963 4.923 0.095 12 6 26 1
8 83.3% 87.9% 0.714 0.935 6.875 0.190 10 4 29 2
9 75.0% 84.9% 0.643 0.903 4.950 0.295 9 5 28 3
10 88.9% 93.8% 0.889 0.938 14.222 0.119 16 2 30 2
Mean 80.6% 87.3% 0.749 0.906 6.853 0.225
SD 7.8% 6.8% 0.137 0.042 5.258 0.097

Independent validation

On 20 cases 75.0% 85.5% 0.621 0.916 5.182 0.292 18 11 65 6

Outer cross-validation was repeated 10 times with parameters resulting from the Youden Index optimization for nine of 10 randomly chosen subgroups and test performance validation
on the tenth subgroups each. In independent validation, parameters were optimized on 91 cases and validated on 20 independent cases.
PPV, positive predictive value; NPV, negative predictive values; PLR, positive likelihood ratio; NLR, negative likelihood ratio; TP, true positive count; FP, false positive count; TN, true
negative count; FN, false negative count; SD, standard deviation.

DISCUSSION

Two-dimensional projections of three-dimensional data are a ben-
efit because of their “at a glance” usability. Projection methods are
commonly used to transform geographical data (spheres, planet
surfaces) to maps that allow direct and two-dimensional analysis.
In contrast to three-dimensional data, two-dimensional maps are
immediately distinct without the need for dynamic presentation
(e.g., continuous rotation of an object) or interaction (such as
scrolling through stack image layers). These maps can be printed
out in clinical reports without the loss of information on stroke
position and size to provide a complete overview of the brain.

To assess projection quality, we compared the ratio of brain pix-
els covered by stroke in the original diffusion MRI data and in the
two-dimensional projection. The projection of three-dimensional
values onto a sphere is more accurate for near-surface values.
Diffusion deficits that lie too deep in the brain cannot be projected
properly and result in an oversized and scattered stroke across
the two-dimensional map, which leads to a large difference in the
stroke per brain ratios of the diffusion MRI and the projection
as well as a loss of specificity. A possible way of addressing this
problem would be to first project the inner MRI voxels onto a
small sphere just around the center. Then in further steps, the
voxels lying further outwards could be projected onto bigger
spheres. Another weakness of the method is the step of map-
ping all projected MRI data points into the limited pixels of the
two-dimensional maps. To ensure that the data lost during this
process is information about healthy brain rather than the stroke
position and size, each pixel of the map shows the maximum
diffusion value of all data points that it represents. The histogram
in Figure S4 in Supplementary Material shows, that this step
is concerning about 40% of the map pixels. In many of them
the maximum value is taken from a group of only a few data
points. In some pixels though, the number of data points being
represented by only one pixel on the map reaches up to about 35.
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Such losses are an inherent problem of data reduction methods
and represent the cost of implementing a user-friendly and easily
accessible two-dimensional map.

Since there still always is a loss of information and small infarc-
tions could be missed, this method alone is not a reliable basis for
clinical diagnosis. It can only add a way of illustrating the MR
imaging results after careful inspection of the original imaging
data by a physician. This step of visual inspection of the imaging
data is inevitable to reach a reliable and safe diagnosis for the
patients. The projection of strokes with our method will still serve
a useful function as an easily accessible overview for reference for
example in patient records and in research.

The projection may be weaker in representing inner and too
small infarctions, yet it proves to be a useful tool for visualizing
cortical damage and can be powerful in monitoring the progres-
sion of lesions over time. Moreover, it is compatible with other
brain surfacemethods such as EEG. There is a plethora of different
mathematical methods to project surface data to maps. Among
these methods, the Mollweide projection is widely used in visible
studies (37, 38). As an equal area projection, it has the advantage of
representing projected areas in their correct size. The correct size
is attained at the cost of distortions and users will need to adapt
to the new topography. However, with the equal area method, the
extent of cortical damage can be measured quantitatively.

When applying the technique, we found that the different brain
artery territories are represented as intuitively comprehensible
areas on the map. User friendliness is, of course, not enough to
justify a new method. We therefore chose to apply the STARD
criteria for reporting diagnostic accuracy as well as leave-p-out
cross-validation and independent validation to substantiate the
parameter thresholds. We find that with a sensitivity of 81% and a
specificity of 87% in cross-validation and with sensitivity of 75%
and specificity of 86% in independent validation, the detection of
strokes in geoprojected brain maps can compete with diagnostic
methods from other disciplines (39–42). The specificity could
be improved in the future by using a more accurate and com-
plete stroke territory reference map based on a larger number of
patients. These small error rates in the brain artery detection show
that strokes are presented sufficiently correct in the geoprojected
two-dimensional maps for them to be a useful visualization tool.

Diffusion MR imaging is the gold standard for illustrating
stroke lesions, especially in the acute phase. We have reported

a new method for presenting these imaging data. There is no
additional data acquisition needed, and on a standard current
office computer, the projection of one dataset takes approximately
3min. Our method only adds to the visualization possibilities
of diffusion MRI data without imposing any additional risks or
inconveniences on patients or physicians.

In summary, our analytical method complements the classical
approach in terms of intuitiveness, time and repeatability com-
pared to pure subjective visual inspection.Whereas the possibility
of presenting and printing a comprehensive overview of the brain
all at once is a big advantage, one can also imagine this method
could be useful in the future for studies comparing and overlaying
diffusionMRI results with other brain imagingmethods as well as
surface methods such as EEG. Altogether, this work contributes
to furthering the applicability of diffusion MRI data in ischemic
stroke territory recognition.
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