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Falls in seniors are a major public health problem. Falls lead to fear of falling, reduced 
mobility, and decreased quality of life. Vestibular dysfunction is one of the fall risk factors. 
The relationship between objective measures of vestibular responses and age has been 
studied. However, the effects of age on vestibular perception during caloric stimulation 
have not been studied. Twenty senior subjects were included in the study, and separated 
in two groups: 10 seniors reporting postural instability (PI) and exhibiting absence of 
vestibular perception when they tested with caloric stimulation and 10 sex- and age-
matched seniors with no such problems (controls). We assessed vestibular perception 
on a binary rating scale during the warm irrigation of the caloric test. The function of the 
various vestibular receptors was assessed using video head impulse test (vHIT), caloric 
tests, and cervical and ocular vestibular-evoked myogenic potentials. The Equitest was 
used to evaluate balance. No horizontal canal dysfunction assessed using both caloric 
test and vHIT was detected in either group. No significant difference was detected 
between PI and control groups for the peak SPV of caloric-induced ocular nystagmus 
or for the HVOR gain. All the controls perceived rotation when the maximal SPV during 
warm irrigation was equal to or ≥15°/s. None of the subjects in the PI group perceived 
rotation even while the peak SPV exceeded 15°/s, providing objective evidence of nor-
mal peripheral horizontal canal function. All the PI group had abnormal Equitest results, 
particularly in the two last conditions. These investigations show for the first time that 
vestibular perception can be absent during a caloric test despite normal horizontal canal 
function. We call this as dissociation vestibular neglect. Patients with poor vestibular 
perception may not be aware of postural perturbations and so will not correct for them. 
Thus, falls in the elderly may result, among other factors, from a vestibular neglect due to 
an inappropriate central processing of normal vestibular peripheral inputs. That is, failure 
to perceive rotation during caloric testing when the SPV is >15°/s, should prompt the 
clinician to envisage preventive actions to avoid future falls such as rehabilitation.
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inTrODUcTiOn

Falls in seniors are a major public health problem. In studies of 
the risk of falls, seniors frequently report dizziness when walking; 
also standing upright in the dark becomes difficult with age (1). 
Maintaining balance for 30 s on a foam pad with eyes closed was 
impossible for 68% of healthy individuals over 70 years old (2). 
More than one in three people older than 65 years fall at least 
once a year (3). Falls cause primary injuries such as fracture or 
head injury. These lead to fear of falling, reduced mobility, and 
decreased quality of life in the long term (4, 5).

Falls have numerous causes, including deformations of 
skeletal geometry, peripheral, hind limb neuropathy, peripheral, 
foveal visual deficits, and vestibular deficits. Risk factors of falling 
are well described in the literature. The risk of falling increases 
linearly with the number of risk factors (3). Vestibular dysfunc-
tion is one of these risk factors (6, 7).

At the peripheral level, vestibular function changes with age. 
Horizontal canal function, as assessed by caloric stimulation (8) 
or video-HIT (9), does not appear to decline with age, but some 
reports of response to head impulses suggest that it does (10–12). 
In contrast, the use of ocular and cervical vestibular-evoked 
myogenic potentials (VEMPs) has provided evidence that otolith 
utricular and saccular functions are affected by age (13–16).

At the central level, findings concerning the changes to ves-
tibular perception with age are consistent: there is no effect of 
age on self-motion perception (17, 18), but there is an increase in 
the variability of the perception threshold (19). In that context, 
it is also interesting that there is a very large literature on canal-
otolith interaction  –  demonstrating that modulating otolithic 
input modifies canal-induced nystagmus and also canal-induced 
subjective sensations (20, 21). The neural basis for that interac-
tion is also well established  –  convergence of otolith neurons 
onto second order canal neurons (22, 23). Finally, age seems to 
decrease the activation of the cortical area activated by caloric 
stimulations such as the ipsilateral parieto-insular vestibular 
cortex (PIVC) (24, 25).

The relationship between objective measures of vestibular 
responses and age has been studied. However, to our knowl-
edge, the effects of age on vestibular perception during caloric 
stimulation and on the relation between the absence of vestibular 
perception and falls in senior subjects have not been studied. We 
therefore studied these issues in two groups of senior subjects: 
one reporting unstable feelings and exhibiting absence of ves-
tibular perception when they tested with caloric stimulation and 
the other (age-matched) group with no such problems. Patients 
with poor vestibular perception may not be aware of postural 

perturbations, and so will not correct for them; such individuals 
may be more likely than their age-matched peers to fall. Thus, 
falls in the elderly may result from a vestibular neglect due to an 
inappropriate central processing of normal vestibular peripheral 
inputs.

We assessed vestibular perception on a simple binary rating 
scale during the caloric test and more particularly during warm 
irrigation. The function of the various vestibular receptors was 
assessed using vHIT, caloric tests, and cervical and ocular VEMPs 
(26). The Equitest was used to evaluate balance.

MaTerials anD MeThODs

Twenty subjects were included in the study: ten patients and ten 
controls:

Ten senior patients (six females, four males; mean age 
77 ± 8 years; min–max: 66–85) were selected using two criteria:

•	 First, they complained of postural instability (PI): these 
patients reported feeling unstable as if they had drunk too 
much but without having consumed alcohol. They had to walk 
close to a wall if they wanted to walk in a straight line and 
reported feeling as if they were on a rocking boat.

•	 Second, these patients with PI complaints also displayed an 
absence of rotatory perception during warm caloric nystag-
mus. As it turned out, they had objectively measured PI greater 
than age-matched controls.

Ten age- and sex-matched seniors (mean age of 74 ± 6 years; 
min–max: 67–85) were also investigated. They did not complain 
of PI (controls).

The inclusion criterion for both groups was that the peak of the 
slow-phase eye velocity of their caloric nystagmus during warm 
irrigation should exceed 15°/s, providing objective evidence of 
normal peripheral horizontal canal function. Subjects were not 
included if they experienced vertigo or if they had a chronic inner 
ear disease (such as Meniere’s disease, positional vertigo, or ves-
tibular neuritis), neurological problem, or abnormal MRI. All the 
patients were informed about the different vestibular and balance 
tests and gave written informed consent. The clinical Research 
Ethics Committee approved this work, registered at ANSM (ID 
RCB 2014-A00222-45).

Dizziness handicap inventory
The Dizziness Handicap Inventory (DHI) questionnaire devel-
oped by Jacobson and Newman (27) reports activity limitation 
and restriction resulting from dizziness and unsteadiness. All 
subjects completed the DHI.

caloric Test
Caloric tests were performed using open-loop sequential bither-
mal external auditory conduct irrigations with water at 30 and 
44°C and using video-nystagmography (Synapsis, France). The 
peak velocity of the slow phase of the induced-ocular nystagmus 
(peak SPV) was recorded for each warm and cold stimulation 
(30 s of irrigation) and for each ear. Percent canal paresis (CP) 
was calculated using Jongkees’ formula (28): CP = 100 × [(LW + 
LC) − (RW + RC)]/LW + LC + RW + RC, where LW, LC, RW, 

Abbreviations: ACS, air-conducted sound; BCV, bone-conducted vibration; 
cVEMP, cervical vestibular-evoked myogenic potentials; DHI, Dizziness Handicap 
Inventory; H-VHIT, horizontal video head impulse test; HVOR gain, horizontal 
vestibulo-ocular reflex; NR, not responders to VEMPs; oVEMP, ocular vestibular-
evoked myogenic potentials; PI, postural instability; PIVC, parieto-insular 
vestibular cortex; SCM, sterno-cleido-mastoideus; SOT, Sensory Organization 
Test; SPV, slow-phase velocity of the ocular nystagmus; STB, short tone burst; 
VEMPs, vestibular-evoked myogenic potentials; VHIT, video head impulse test; 
VOR, vestibulo-ocular reflex.
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FigUre 1 | Time series of the slow-phase velocity (sPV) of caloric nystagmus to warm and cold external canal ear irrigation. Abscissa: time in seconds 
from the beginning of irrigation; Ordinates: SPV of the induced ocular nystagmus in degree per second; purple bar: duration of the ear irrigation (30 s). (a) Typical 
response of a control senior. The red vertical lines indicate the start and the end of the perception of rotation for warm irrigation. The blue vertical lines indicate the 
start and the end of the perception of rotation for warm irrigation. The perception appeared when the SPV reached a value for SPV close to 5°/s (start) and 
disappears when SPV decline to or below 10°/s (end). (B) Typical response of one of our senior complaining for postural instability. Note that despite the high SPV 
(exceeding 15°/s) to both warm and cold irrigations, the patient did not report any rotation perception.
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and RC are maximum velocity of the induced ocular nystagmus 
obtained on the left (L) and right (R) sides, with warm (W) and 
cold (C) water. A CP value above 25% was considered to indicate 
an abnormal response.

For vestibular perception, we asked the subject to report 
feelings of rotation and/or dizziness during the post-warm-
irrigation period while the induced caloric nystagmus was pre-
sent. Vestibular perception was scored 1 if there was perception 
of body rotation whose direction (to the right or the left) could 
be clearly given by the patient (Figure 1A) and 0 if there was no 
perception of body rotation (Figure 1B).

We assessed perception of rotation to warm irrigation only 
because, in our patients, warm irrigation induced more vigor-
ous ocular nystagmus than cold irrigation. Also, the peak SPV 
needed to be ≥15°/s, the value which induced a perception of 
rotatory vertigo in 100% of the controls. Individuals with a poor 
ocular response (SPV <15°/s) to warm caloric stimulations were 
excluded from the study.

Video head impulse Test
Horizontal video-HIT (OtosuiteV®, GN Otometrics, Denmark) 
was used to test horizontal semicircular canal function (29). 
Approximately 20 horizontal head impulses were manually 
applied to each side with unpredictable timing and direction. 
Gain of HVOR was quantified at similar head acceleration in the 
both groups. The HVOR gain values were separated according 
to the direction (toward the right or left) of the head impulse. A 
significant difference between the two sides has been reported in 
healthy subjects (30). For the PI group, the mean peak head veloc-
ity was 195 ± 21°/s (mean peak head acceleration: 3957 ± 283°/
s2) for impulses toward the left side and was 189 ± 29°/s (mean 
peak head acceleration: 3841 ± 943°/s2) for impulses toward the 
right side. For the control group, the mean peak head velocity was 

189 ±  17°/s (mean peak head acceleration: 3709 ±  447°/s2) for 
impulses toward the left side and was 188 ± 19°/s (mean peak head 
acceleration: 3658 ± 518°/s2) for impulses toward the right side.

The VOR gain was calculated using two methods. First, the 
method described by MacDougall et  al. (31): VOR gain was 
calculated as the area under the desaccaded eye velocity curve 
divided by the area under the head velocity curve. Second, a 
method developed in our laboratory using a linear regression 
(slope method). The linear regression was computed in MATLAB 
using linear polynomial curve fitting (polyfit) of the eye velocity 
from the start of the head movement to the peak of the head 
velocity. Noise was reduced by a rectangular low-pass filter using 
the discrete Fourier transform at 20 Hz for head velocity and at 
38  Hz for eye velocity. Only data following almost perfectly a 
straight line were included in the analysis (linearity >98%). The 
difference between left and right sides was quantified as a gain 
asymmetry ratio: ratio = (L − R)/(L + R) × 100 where L and R 
are the mean gain values from the left and right head impulses, 
respectively.

cervical and Ocular VeMPs
Vestibular-evoked myogenic potentials were recorded with a 
Nicolet Viking 4 apparatus (Nicolet Biomedical Inc., Madison, 
WI, USA) with a four-channel averaging capacity, as previously 
described (32–34).

Cervical vestibular-evoked myogenic potentials assess 
predominantly the function of the sacculo-spinal pathways 
(35). They were recorded from surface electrodes above the 
tensed sterno-cleido-mastoideus (SCM) muscle ipsilateral to 
the stimulated ear in response to air-conducted (AC) short tone 
burst (STB) stimuli: 500  Hz, 102  dB nHL, 128  dB SPL, rise/
fall time 2 ms, plateau time 2 ms, presented through calibrated 
TDH39 headphones. EMG activity of the SCM was monitored 
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TaBle 1 | Mean slow-phase peak velocity (sPV) of the induced ocular 
nystagmus obtained for warm and cold irrigations in Pi and control 
senior groups.

sPV (°/s) sPV left 
warm

sPV right 
warm

sPV left 
cold

sPV right  
cold

PI 25 ± 9.4 
(15–40)

25 ± 5  
(17–32)

13 ± 5 
(7–19)

12 ± 4  
(7–16)

Control 27 ± 8 
(20–42)

24 ± 5  
(15–33)

16 ± 5 
(6–24)

15 ± 4  
(11–23)

There was no significant difference between the two groups.
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on a display to ensure that sufficient muscle activation was 
maintained (>150 μV).

Ocular vestibular-evoked myogenic potentials assess pre-
dominantly the function of the utriculo-ocular pathways (36). 
They were recorded from surface electrodes above the inferior 
oblique extraocular muscle contralateral to the stimulated ear in 
response to AC STB, and to bone-conducted vibration (BCV) at 
Fz, and to BCV stimulation at the mastoid. The AC STB (500 Hz, 
110 dB nHL, 132 dB SPL, rise/fall time 2 ms, plateau time 2 ms) 
were presented through calibrated TDH39 headphones. BCV 
stimuli (500 Hz STB, 135 dB FL, rise/fall time = 2 ms and plateau 
time  =  2  ms) were delivered by a hand-held Bruel and Kjaer 
(Naerum, Denmark) Mini-Shaker 4810.

Patients with no measurable response on either side were 
considered to be non-responders (NR).

equitest
Equilibrium was assessed by the Sensory Organization Test (SOT) 
on the EquiTest® (37, 38). The SOT included six conditions. 
Condition 1: the subject was asked to stand upright while main-
taining eyes open. Condition 2: the subject was asked to stand 
upright while maintaining eyes closed. Condition 3: the cabin 
moved adaptively following subject’s movements. In this condi-
tion, the vision was sway-referenced. Condition 4: the support 
base moved adaptively following subject’s movements while eyes 
were open: sway-referenced proprioception. Condition 5: same as 
condition 4, but with eyes closed. Condition 6: the support base 
and the cabin moved in a synchronized way: vision and proprio-
ception are sway-referenced. According to the change of the body 
center of pressure for the six different conditions, a percentage 
somatosensory, visual, and vestibular score was calculated, a visual 
preference was estimated, and a composite score was obtained.

Vibration-induced nystagmus and head-
shaking nystagmus Test
Spontaneous nystagmus was tested using an infrared camera with 
the subject in a sitting and a supine position. Vibration-induced 
nystagmus was tested with a vibratory stimulation of 100  Hz 
applied to the mastoid (39–41). Head-shaking stimulation con-
sisted of turning the head of the patient in the horizontal plane 
to the left and the right at 2 Hz for 20 s (42–44). The presence of 
nystagmus during one or more of these tests indicated asymmetry 
of vestibular function between the ears in the horizontal plane.

audiometric Tests
Tympanometry and stapedial reflexes were carefully evaluated to 
exclude patients suffering from conductive hearing loss, which 
could lead to a misinterpretation of ACS VEMPs. The mean pure-
tone threshold (PTA) for tones at 250 and 500 Hz and 1 and 2 kHz 
was used as indicator of hearing loss.

resUlTs

Dizziness handicap inventory
The DHI score 39 ± 11% was for the PI group and 14 ± 19% for 
the control group. In the control group, 3 individuals out of 10 

with high score (20, 22, and 30), the remaining individuals had 
DHI score inferior or equal to 10. These three patients did not 
complain for instability (and did not fail on the Equitest). These 
high score was linked to high scores at questions related to their 
difficulty at performing head movement (French DHI, questions 
1, 8, 11, 12, 13, 25), a current syndrome without objective deficits 
in seniors over 70 years old. This difference was significant (non-
parametric Mann–Whitney test, p = 0.002).

Vestibular horizontal canal receptor 
Function
Horizontal canal function was assessed using both video- 
nystagmoscopy and video-nystagmography. None of the 
study population (control or PI group) exhibited spontaneous  
nystagmus in darkness or ocular nystagmus induced by either 
head shaking or vibration.

Caloric Tests
No significant difference was detected between PI and control 
groups for the peak SPV of caloric ocular nystagmus induced 
either by warm or cold water irrigations (Table 1). No CP was 
detected in either group.

All of controls perceived rotation (score 1) (Figure 2) when 
the maximal SPV during warm irrigation was ≥15°/s. The direc-
tion of the perceived rotation was in all cases toward the side of 
the fast phase of the induced ocular nystagmus. The perception of 
rotation increased progressively to a maximum at the peak of the 
SPV and then progressively decreased in good agreement with 
the eye velocity of the induced caloric nystagmus. The percep-
tion disappeared when eye velocity fell to or below 10°/s. In most 
cases, the patient’s head turned progressively in the direction of 
the slow component of caloric-induced eye nystagmus for both 
warm and cold irrigation.

None of the subjects in the PI group perceived rotation 
(score  0) (Figure  2) even while the peak SPV exceeded 15°/s. 
They all stated that did not feel anything: absolutely no sensation 
at all of head or body rotation.

Horizontal Video Head Impulse Test
There was no significant difference between the two groups in 
the mean HVOR gain calculated by either slope or area method 
(Table  2). The HVOR gain calculated using the slope method 
was similar to that using the area method, although the value 
obtained from the area was consistently greater that from the 
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TaBle 3 | Mean values of amplitude and latencies for cVeMPs and 
oVeMPs for Pi senior and control senior groups in response to acs and 
BcV at Fz and mastoid.

amplitude (μV) P13/n1 
latency (ms)

n23/p1 
latency (ms)

ACS 102 dB 
cVEMPs

PI Uncorrected: 79 ± 129 15.3 ± 0.9 22.3 ± 2.0
Corrected: 0.41 ± 0.67

Control Uncorrected: 85 ± 88 15.0 ± 1.1 21.4 ± 1.5
Corrected: 0.56 ± 0.45

ACS 110 dB 
oVEMPs

PI 2.1 ± 4.0* 11.4 ± 0.5 15.4 ± 1.0
Control 5.9 ± 5.3 11.0 ± 0.4 14.6 ± 0.8

Fz BCV 
oVEMPs

PI 3.6 ± 5.0* 11.3 ± 0.8 15.6 ± 1.0
Control 8.7 ± 7.7 11.0 ± 0.7 15.0 ± 0.8

Mastoid BCV 
oVEMPs

PI 7.7 ± 6.1 11.5 ± 1.0 15.7 ± 1.3
Control 12.9 ± 9.8 10.8 ± 0.8 15.2 ± 0.8

*Non-parametric Mann–Whitney test, p = 0.001.

FigUre 3 | graph showing the gain of hVOr calculated by slope and 
area methods. There was no significant difference in HVOR gain with age 
between 65 and 86 years even for high accelerations (mean 3700 ± 550°/s2).

TaBle 2 | Mean hVOr gain calculated with slope and area methods in Pi 
and control seniors groups.

hVOr 
gain

left with 
slope

left with 
area

right with 
slope

right with 
area

PI 0.76 ± 0.06 0.95 ± 0.11 0.90 ± 0.08 1.02 ± 0.07
Control 0.73 ± 0.08 0.90 ± 0.08 0.88 ± 0.09 1.02 ± 0.06

There was no significant difference between the two groups.

FigUre 2 | The perception of rotation score during caloric testing as 
a function of the peak of the slow-phase velocity. Ordinates: peak SPV 
induced by warm water irrigation of the right or the left ear; abscissa: 
perception rotation score during irrigation. Note that the seniors with postural 
instability did not perceive any rotation (score 0) irrespective of whether the 
left or right ear was irrigated; all controls perceived rotation.

January 2016 | Volume 7 | Article 45

Chiarovano et al. No Vestibular Perception in Seniors

Frontiers in Neurology | www.frontiersin.org

slope (Figure  3). The HVOR gain ratio for the PI group was: 
−8.3 ± 2.0 (min–max: −11.5 to −5.0), which was not significantly 
different from that for the control group: −8.9 ± 2.1 (min–max: 
−11.4 to −5.3).

These investigations show for the first time that vestibular 
perception can be absent during a caloric test despite objective 
measures of horizontal canal functioning suggesting that it is 
normal. We went on to test whether vestibular perception can be 
associated with PI.

Vestibular Otolithic (Utricular and 
saccular) receptor Function
None of our subjects exhibited conductive hearing loss. The mean 
PTA in the PI group was 30 ± 20 dB (min–max: 0–110 dB) and in 
the control group was 35 ± 25 dB (min–max: 5–110 dB).

Cervical VEMPs in Response to AC STB
The mean peak-to-peak (corrected and uncorrected) amplitudes 
of the early P13–N23 waves were not significantly different 
between the two groups (Table 3). The EMG activity of the SCM 
muscle was similar: 180 ± 42 for PI subjects versus 184 ± 70 for 
control subjects. No significant difference was found for the P13 
and N23 latencies between the two groups. Forty percent of PI 
and 30% of the control group were NR.

Ocular VEMPs in Response to AC STB
The mean peak-to-peak n1–p1 amplitude was significantly lower 
in the PI group than the control group (Table 3). There was no 
significant difference for the n1 and p1 latencies between the two 
groups. Sixty percent of PI subjects and 30% of the control group 
were NR.

Ocular VEMPs in Response to BCV at the Fz 
Location
The mean peak-to-peak amplitude was significantly smaller in 
the PI group than the control group (Table 3). There was no sig-
nificant difference between the groups for the n1 and p1 latencies. 
Sixty percent of PI subjects and 20% of controls were NR.

Ocular VEMPs in Response to BCV at Mastoid 
Location
The mean peak-to-peak amplitude was not significantly different 
between the PI and control groups (Table 3). The n1 and p1 laten-
cies did not differ significantly between the two groups. Twenty 
percent of PI subjects and 10% of controls were NR.
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FigUre 4 | relation between composite and vestibular score on the 
equitest and the perception score during caloric irrigation. Most 
patients with a low perception score had a poor vestibular score on the 
Equitest and a low composite score.
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equitest
All members of the control group had normal Equitest results 
in all six conditions. All the PI group had abnormal Equitest 
results: 80% fell in conditions 5 and 6; and 20% had a low score 
in condition 5 and fell in condition 6. Subjects with no perception 
of vertigo during the caloric test could not maintain balance in 
condition 5 (eyes closed, sway-referenced platform), a condition 
which tests the contribution of the vestibular inputs to balance 
(Figure 4).

DiscUssiOn

In this work, we report that a subset of patient complaining of PI, 
when submitted to caloric irrigation, displayed a lack of percep-
tion of ego motion, contrasting with a normal ocular nystagmic 
response. Such vestibular neglect appearing quite uncommon, 
we assessed their full vestibular and postural performances. We 
found that poor vestibular perception in these 10 PI patients was 
associated with an inadequate postural strategy to maintain bal-
ance in conditions 5 (eyes closed  +  sway-referenced platform) 
and condition 6 (vision-referenced + sway-referenced platform) 
of the Equitest. We hypothesized that the absence of perception 
of movement during caloric test may be a marker of risk of fall 
which has not been considered before.

Our results are consistent with a study by Diard et al. (45). They 
reported that despite normal caloric tests, some seniors failed 
to maintain balance in the conditions 5 and 6 of the Equitest, a 
syndrome they called a vestibular omission. They suggested that 
this phenomenon was due to misapplication of normal peripheral 
vestibular information. However, they did not report whether 
patients perceived rotation during caloric stimulation.

Ours is the first report of a clear dissociation between hori-
zontal canal function and perception of rotation during caloric 
stimulation in elderly subjects. We propose to call this disso-
ciation “vestibular neglect.” Despite normal responses to warm 
caloric stimulation, the subjects have no perception of rotation 
and no perception of eye movements. The only similar report we 

are aware is by Takeda et al. (46), who describe a stroke patient 
with normal caloric responses and no perception of rotation 
during caloric stimulation. We found a relationship between 
vestibular neglect and PI. This result suggested a deficit of the 
central processing of vestibular information in patients exhibiting 
vestibular neglect. In summary, we suggest that a lack of egomo-
tion perception during caloric test should draw the attention to PI 
and encourage measures to prevent falls. That said, it is clear that 
“vestibular neglect” may be one of the many causes of PI.

The effect on age on vestibular perception has been the subject 
of several studies. Roditi and Crane (17) used sinusoidal accel-
eration for surge (forward–backward), sway (left–right), heave 
(up–down), and yaw rotation. Only the thresholds for surge and 
sway for sinusoidal rotation at 0.5 and 1  Hz were found to be 
significantly higher in subjects >50 years old. Chang et al. (18) 
failed to detect any correlation between vestibular perception 
threshold, gain of VOR, and age using a rotational chair. A cor-
relation has been found between horizontal perceptual threshold 
and oVEMP amplitude in the otolith system. In contrast, no 
significant association was detected for vertical perceptual 
thresholds and cVEMP amplitudes (10, 11). Therefore, vestibular 
perception is usually tested with more specific and quantified tests 
using rotatory chairs at various frequencies of head accelerations. 
In contrast, the caloric test imposes a large vestibular stimulation, 
activating all sensors at low frequencies. To our knowledge, such 
“brute force” was, rightly so, never employed to test vestibular 
perception. It may be useful to help to prevent fall but it cannot 
be considered as a bona fide test of vestibular perception.

The persistence of a normal HVOR in the PI group contrasted 
with the absence of perception of illusory movements during 
the caloric tests. Three non-mutually exclusive factors could be  
at play.

First, this dissociation can be explained by the differences 
between the vestibulo-ocular and the vestibulo-cortical and 
vestibulo-subcortical pathways. A trisynaptic pathway links the 
canal sensors to the extraocular motoneurons in 6 ms. In con-
trast, a polysynaptic, distributed network underlies self-motion 
perception: its first relay is in the vestibular nuclei, the second 
in the thalamus, and it includes several inter-connected cortical 
areas. These areas include the PIVC, temporal superior gyrus, 
inferior parietal lobe, and insula (47–49), where visual, vestibular, 
and proprioceptive inputs converge. A number of vestibular and 
cerebellum connections have been reported [for review see Ref. 
(50)] so a dysfunction of the cerebellum could be involved. Such 
complex circuitry may be more sensitive to the aging process 
that the three-neuronal arc of the VOR. Functional MRI during 
caloric stimulation may be informative and establish whether 
there is a link between the absence of perception of rotation 
and either a cognitive failure or abnormal activation of the areas 
devoted to integrate vestibular inputs at the subcortical level and/
or the cortical network such as PIVC (48).

Second, the HVOR apparently does not decline with age as 
has been shown using calorics (8, 51) and vHIT: McGarvie et al. 
(9) failed to detect any significant decline of HVOR gain until 
age 90  years. Only a slight decrease of vertical VOR gain after 
age 80  years was found when head impulses were delivered in 
the plane of the posterior canal. These functional studies contrast 
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with morphological data. In humans, the number and the density 
of hair cells decrease with age in the cristae vestibular ampulla 
between 60 and 90 years (52–54). Moreover, there are morpho-
logical changes to the cristae hair cell cilia, including a reduction 
of the numbers, disarrangements, and formation of giant cilia 
(55, 56). Clearly, the vestibulo-ocular network displays sufficient 
plasticity to cope with these cellular alterations.

Third, an inappropriate integration of otolith and canal sig-
nals and central reweighting of sensory inputs related to motion 
detection could participate to vestibular neglect. In that regard, 
the finding of Agrawal et al. (10, 11) that perceptual thresholds 
for linear motion increased in subjects with utricular dysfunction 
is relevant. The occurrence of utricular dysfunction augmenting 
with age, and it would lead to inappropriate integration of otolith 
and canal signals at the second order vestibular neurons level and 
consequently to misperception of the canal information induced 
by the caloric irrigation. We intend to test the hypothesis of an 
inappropriate integration of otolith and canal signals and central 
valuing by comparing the perceptual thresholds for linear motion 
of patients with and without vestibular neglect.

cOnclUsiOn

We show that some seniors are unable to detect and report a sub-
jective sensation of rotation during strong unilateral horizontal 

canal stimulation, despite objective evidence that these seniors 
have normal peripheral horizontal semicircular canal function. 
We suggest that this dissociation between perception and objec-
tive vestibular responses may be a determinant of PI, because it is 
these same seniors who demonstrate greater PI than age-matched 
controls. Therefore, failure to perceive rotation during caloric 
testing when the SPV is >15°/s should encourage the clinician to 
envisage preventive actions to avoid future falls such as rehabilita-
tion. Further studies are needed to evaluate the proportion of PI 
seniors without vestibular perception, amongst a larger popula-
tion of patients with complaints of PI.
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