3
Impact Factor

Original Research ARTICLE

Front. Hum. Neurosci., 28 May 2010 | http://dx.doi.org/10.3389/fnhum.2010.00042

Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging

  • 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
  • 2 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
  • >

Ex vivo magnetic resonance imaging yields high resolution images that reveal detailed cerebral anatomy and explicit cytoarchitecture in the cerebral cortex, subcortical structures, and white matter in the human brain. Our data illustrate neuroanatomical correlates of limbic circuitry with high resolution images at high field. In this report, we have studied ex vivo medial temporal lobe samples in high resolution structural MRI and high resolution diffusion MRI. Structural and diffusion MRIs were registered to each other and to histological sections stained for myelin for validation of the perforant pathway. We demonstrate probability maps and fiber tracking from diffusion tensor data that allows the direct visualization of the perforant pathway. Although it is not possible to validate the DTI data with invasive measures, results described here provide an additional line of evidence of the perforant pathway trajectory in the human brain and that the perforant pathway may cross the hippocampal sulcus.

Keywords: entorhinal cortex, dentate gyrus, hippocampus, subiculum, presubiculum, resolution

Citation: Augustinack JC, Helmer K, Huber KE, Kakunoori S, Zöllei L and Fischl B (2010) Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging. Front. Hum. Neurosci. 4:42. doi: 10.3389/fnhum.2010.00042

Received: 27 August 2009; Paper pending published: 03 February 2010;
Accepted: 26 April 2010; Published online: 28 May 2010

Edited by:

Andreas Jeromin, Banyan Biomarkers, USA

Reviewed by:

Konstantinos Arfanakis, Illinois Institute of Technology, USA
James Gee, University of Pennsylvania, USA
Christopher Kroenke, Oregon Health and Science University, USA

Copyright: © 2010 Augustinack, Helmer, Huber, Kakunoori, Zöllei and Fischl. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

*Correspondence: Jean Augustinack, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. e-mail: jean@nmr.mgh.harvard.edu

Abbreviations: AB, angular bundle; AL, alveus; CC, corpus callosum; CS, collateral sulcus; DG, dentate gyrus; EC, entorhinal cortex; FLASH, fast low angle shot; ff, fimbria–fornix; f, fornix; HP, hippocampus; HF, hippocampal fissure; LPE, lamina principalis externa; MR, magnetic resonance; PARA, parasubiculum; PreSUB, presubiculum; PP, perforant pathway; PR, perirhinal cortex; SUB, subiculum; TE, echo time; TR, repetition time; UHP, uncal hippocampus.