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We present a novel method to extract classification features from functional magnetic
resonance imaging (fMRI) data collected at rest or during the performance of a task. By
combining a two-level feature identification scheme with kernel principal component analy-
sis (KPCA) and Fisher’s linear discriminant analysis (FLD), we achieve high classification
rates in discriminating healthy controls from patients with schizophrenia. Experimental
results using leave-one-out cross-validation show that features extracted from the default
mode network (DMN) lead to a classification accuracy of over 90% in both data sets. More-
over, using a majority vote method that uses multiple features, we achieve a classification
accuracy of 98% in auditory oddball (AOD) task and 93% in rest data. Several components,
including DMN, temporal, and medial visual regions, are consistently present in the set of
features that yield high classification accuracy. The features we have extracted thus show
promise to be used as biomarkers for schizophrenia. Results also suggest that there may
be different advantages to using resting fMRI data or task fMRI data.
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1. INTRODUCTION
Since the beginning of psychiatry, scientists have tried to develop
methods for classifying patients with severe mental illness, in
particular by examining differences between patient groups and
healthy controls on neuroscientific measures. In this regard, neu-
roscientists have used event-related potentials (ERP) derived from
the electroencephalogram (EEG) to characterize abnormalities
in schizophrenia for over 50 years. One prominent ERP wave-
form that has held promise for differentiating schizophrenia from
healthy controls is elicited by AOD stimuli (McCarley et al., 1991;
Ford, 1999). However, these ERP studies have not proven to be
sensitive enough to be used in classification or for diagnostic
purposes.

Functional magnetic resonance imaging (fMRI) data, on the
other hand, have been shown to have the potential to characterize
and classify various brain disorders including schizophrenia with
a higher degree of accuracy than other neuroimaging techniques
such as ERPs (Levin et al., 1995; Calhoun et al., 2008b; Demirci
et al., 2008). However, the high dimensionality (in terms of vox-
els) and noisy nature of fMRI data present numerous challenges
to accurate analysis and interpretation. These challenges include
choices for preprocessing, statistical analysis, feature selection,
classification, and validation. Independent component analysis
(ICA) is useful for fMRI analysis in extracting components to be
used as powerful multivariate features for classification (McKeown
et al., 1998; Calhoun et al., 2008a; Arribas et al., 2010). Spatial ICA

decomposes fMRI data into a product of a set of time courses and
independent components (ICs). Most ICs are reported to be iden-
tified consistently in healthy controls and schizophrenia patients
(Calhoun et al., 2008a). However, some brain regions within these
ICs show different activation levels in these two groups. To remove
the redundancy and retain the most discriminative activation pat-
terns from ICs, it is important to find an effective feature selection
and extraction scheme.

Numerous research efforts have used fMRI activation lev-
els to discriminate healthy controls and schizophrenia patients.
Shinkareva et al. (2006) identified groups of voxels showing
between-group temporal dissimilarity and worked directly with
fMRI time series from those voxels for classification purposes,
achieving a prediction accuracy of 86% using a leave-one-out
cross-validation on 14 subjects (7 patients and 7 controls). In their
classification approach, the task-associated stimulus was used to
calculate the temporal dissimilarity matrix. However, in rest data,
no such stimulus is presented and the data are not task-related.
Thus, this approach is not applicable for such cases. Ford et al.
(2002) combined structural and functional MRI data for classifi-
cation purposes, proposing to use principal component analysis
(PCA) to project the high dimensional data onto a lower dimen-
sional space for the training set. The prediction accuracy of the
classifier was tested in 23 subjects (15 patients and 8 controls)
with a leave-one-out method, achieving a maximum classifica-
tion accuracy of 87%. Since fMRI data tend to be smoothed and
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clustered, there may exist higher-order correlations among vox-
els (Li et al., 2007). However, PCA is a linear transformation that
projects the data to a new coordinate system such that the new set
of variables are linear functions of the original ones, which can be
achieved by eigenvalue decomposition of a data covariance matrix
(Pearson, 1901; Hotelling, 1933). As a second-order method, PCA
cannot take higher-order statistical information into account to
discriminate healthy control from schizophrenia subjects.

In this paper, we propose a new approach to discriminate the
above groups, using components estimated by ICA. The training
and test data are processed completely separately in the proce-
dure to avoid “double dipping” (Kriegeskorte et al., 2009). After
obtaining ICs, we develop a three-phase feature selection and
extraction framework as follows. First, a two-level feature iden-
tification scheme is performed to select significantly activated
and discriminative voxels. Second, kernel PCA (KPCA) is used
to extract non-linear features from the selected significant voxels
by taking higher-order statistics into account. Then, Fisher’s lin-
ear discriminant analysis (FLD) is performed to further extract
features that maximize the ratio of between-class and within-class
variability. This feature extraction framework is applied to two
data sets, one collected during rest and the second during the per-
formance of an auditory oddball task (AOD) acquired from the
same set of healthy controls and schizophrenia patients. We evalu-
ate the classification performance using individual and combined
components as features. By performing a leave-one-out approach
in each data set, we show that features extracted from several
components such as default mode (DMN) and motor-temporal
networks lead to a classification accuracy of over 90%. We find
that features extracted from combined components produce a
classification accuracy of 98% for AOD data and 93% for rest
data. Several components, including DMN, temporal, and medial
visual regions, are consistently contained in those combined com-
ponents for both data sets. In our study, controls and patients
are better discriminated when performing a task, although both
data sets work well. Results also suggest that discriminative fea-
tures are spread through a wide variety of intrinsic networks and
not limited to one specific brain region or regions. The features
extracted using our method show promise as potential biomarkers
for schizophrenia.

The rest of this paper is organized as follows. We first briefly
describe the two data sets and the preprocessing method. Next, we
introduce the three-phase feature selection and extraction frame-
work for the classification including a two-level feature identifica-
tion scheme, KPCA and FLD. In Section 4, we present the exper-
imental results and discuss them in Section 5, with conclusions
presented in the last section.

2. DATA AND PREPROCESSING
2.1. DATA SETS
We analyze the fMRI data from 28 healthy controls and 28 chronic
schizophrenia patients, all of whom provided IOI/Hartford Hospi-
tal and Yale University IRB-approved written, informed, consent.
All participants were scanned during two runs of an AOD task
and one 5 min run while resting, resulting in two AOD and one
rest data sets per subject. The AOD task consisted of detecting an

infrequent sound within a series of regular and different sounds.
Auditory stimuli were presented to each participant by a com-
puter stimulus presentation system via insert earphones embedded
within 30-dB sound attenuating MR compatible headphones. The
task had three kinds of sounds: target (1000 Hz with a proba-
bility of 0.10), novel (non-repeating random digital noises with
a probability of 0.10), and standard (500 Hz with a probability of
0.80). Participants were instructed to respond as quickly and accu-
rately as possible with their right index finger when they heard
the target stimulus and not to respond to other sounds. Partici-
pants separately performed a 5-min resting-state scan (rest) where
they were instructed to rest quietly without falling asleep with
their eyes open while focused on an asterisk. An MRI compatible
fiber-optic response device (Lightwave Medical, Vancouver, BC,
Canada) was used to acquire behavioral responses. Preprocessing,
including realignment, normalization, and smoothing, was per-
formed in SPM5 (2011). Further details of the AOD paradigm and
image acquisition parameters for both AOD and rest are described
in Calhoun et al. (2008a), Kiehl et al. (2005). Patients were slightly
older than controls. All but four patients and one control were
right handed. Twenty-one patients were receiving stable treatment
with atypical antipsychotic medications and nine patients were
on antidepressants. Medication information was not available for
seven patients. All patients in our study had chronic schizophrenia
and symptoms were also assessed by positive and negative syn-
drome scale (PANSS). Demographic and clinical characteristics
are reported in Table 1.

2.2. ICA ALGORITHM
The ICA analysis of fMRI data start with the spatial ICA model
where X=AS, S= [s1,. . ., sN]T is an N -by-V source matrix, N is
the number of sources, V is the number of voxels and si is the
ith spatial component. The mixing matrix A is an M -by-N matrix

Table 1 | Demographic and clinical characteristics of patients with

schizophrenia (n=28) and healthy controls (n=28).

Variable SZ HC t/P -value

Age 39.4±12.7 31.5±11.1 2.4/0.02

Percent male 82 68 NS

NART, estimated IQ 105.3±6.9 111.3±8.3 NS

PANSS (P/N) 15.8±5.5/15.4±5.6 NA NA

Percent treated with

atypical antipsychotic

medication

100 NA NA

Percent treated with anti-

depressants

43 NA NA

Percent with some psy-

chotic symptoms

67 NA NA

SZ, schizophrenia; HC, healthy control; NS, non-significant; NART, national adult

reading test; NA, non-applicable; P/N, positive/negative; Group comparisons are

reported in the last column.
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where each column ai represents the time course for the ith source.
The goal of the ICA algorithm is to determine a demixing matrix
W such that the sources are estimated using Ŝ = WX under the
assumption of statistical independence of spatial components.

The sources of interest in fMRI data are commonly assumed to
have a super-Gaussian distribution (Calhoun and Adali, 2006).
The standard version of Infomax assuming such distribution
sources produces consistent ICs (Correa et al., 2007; Du et al.,
2011). It minimizes the mutual information among the estimated
sources by maximizing information transfer from the input to the
output within a network through a non-linear function (Bell and
Sejnowski, 1995). Hence, we apply Infomax in our fMRI analysis.
Instead of entering each subject’s data into a separate ICA analy-
sis, we use a group ICA (Calhoun et al., 2001; Erhardt et al., 2011)
technique implemented in the Group ICA of fMRI Toolbox (GIFT,
2011) to estimate a set of spatial components.

In the ICA step, ICs belonging to several brain networks are
generated. Our classification approach includes the extraction of
powerful features from those ICs. The advantage of using ICA
is to evaluate the classification power with different networks.
Hence, the ICA step is important and necessary in the classification
method we presented.

2.3. CLASSIFICATION PREPROCESSING
The classification procedure uses a leave-one-out method to eval-
uate performance of the feature extraction framework. For each
left-out test subject, the remaining 55 subjects (including controls
and patients) comprise the training set. In order to avoid the bias
introduced by processing the training and test data together, we
perform group ICA each time to decompose the training data. The
single-subject spatial maps for the test data are obtained using
back-reconstruction via regression, also called spatial-temporal
regression (STR; Erhardt et al., 2011).

Group ICA consists of two dimension reduction stages. At the
subject level, the number of components for each subject is first
reduced to 40 by PCA; the reduced components from each subject
are then concatenated. At the group level, the number of com-
ponents for the aggregate group is reduced to 30. This order has
proven to be consistently estimated for fMRI data sets from two
AOD sessions and one resting-state session (Li et al., 2011). We
then perform ICA on this final set. Since the ICA algorithm is iter-
ative, we use ICASSO (Himberg and Hyvarinen, 2003) in GIFT to
improve robustness of the estimated results. ICASSO runs the ICA
algorithm several times, producing different estimated compo-
nents for each run and then collects the components by clustering
them based on the absolute value of the correlation between source
estimates (Himberg and Hyvarinen, 2003). Reliable estimates cor-
respond to tight clusters including components that have high
correlations with each other. We perform ten runs with different
initial values on 30 clusters, which latter is the same as the number
of estimated components. Instead of using the average of different
runs, we select the centrotype of the cluster for each component
as the best estimate. Then, for each session of each subject in the
training set, spatial components, and time courses are obtained
from the back-reconstruction step.

To obtain spatial components for the test subject, we use the
ICA model X=AS as the STR model. First, time courses of the

test subject are calculated by At = Xt S
†
g , where Xt is the observa-

tion matrix of the test subject, Sg is the aggregate results estimated
from the training group and each column of At corresponds to
the time course of the test subject. Then spatial components of

the test subject are calculated by St = A
†
t Xt . Next, we calculate

the mean of spatial components in the training set and convert
it to Z -values. The definition of Z -value is Z = (s – μ)/σ , where
s is the value of each voxel, μ is the mean of all voxels, and σ is
the standard deviation. To generate a mask containing only binary
values, we set the values of voxels in the Z -map to be 1 if | Z | > 0.5,
otherwise to be 0, then apply this mask to the spatial component
obtained from STR to generate a better defined component for
later analysis.

The same preprocessing procedure used in the training and
test data is then applied to the rest and AOD data set. All spatial
components are converted to Z -values. Hence, the image intensi-
ties provide a relative strength of the degree to which a particular
component contributes to the data, thus enabling us to compare
spatial components across different subjects (Calhoun et al., 2001;
Allen et al., 2011; Erhardt et al., 2011). Since we have two AOD
and one rest data set per subject, we average spatial components
of two AOD data sets and convert them to Z -values.

As our data consist of 56 subjects, we perform group ICA 56
times on different training sets and obtain corresponding spatial
components of each test subject using STR. However, group ICA
introduces a permutation ambiguity. We need to generate several
masks to select the same component from each training set. To
simplify the problem, we use components obtained from group
ICA to generate masks, and then calculate correlations between
each spatial component and a particular mask in different train-
ing sets. The component providing the largest correlation value
corresponds to the same brain region as the mask. Using these
procedures, 14 components of interest were selected from 30 ICs
based on visual inspection and were correlated with corresponding
components in each training set. The 14 components of interest
were advanced to the next step.

3. METHODS
The feature extraction method for the classification consists of
three steps: a two-level feature identification scheme, kernel PCA,
and Fisher’s linear discriminant analysis, as illustrated in Figure 1.
First, we generate a two-level feature identification scheme to select
significant features based on statistical hypothesis testing such as
t -tests. Second, we perform KPCA to compute low dimensional
representations of the significant features selected in the first step.
KPCA computes the higher-order statistics without the combi-
natorial explosion of time and memory complexity (Schölkopf
et al., 1998). Then we apply FLD to further extract features that
maximize the ratio of between- and within-class variability.

The kernel Fisher discriminant analysis (KFD) combines the
kernel trick with FLD (Mika et al.,1999; Baudat and Anouar,2000).
The KFD always encounters the ill-posed problem in its real-world
applications and with KPCA and FLD together, we could make full
use of two kinds of methods and achieve a more powerful discrim-
inator (Yang et al., 2005). Our algorithm applies a two-phase KFD
using KPCA and FLD together.
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FIGURE 1 |The flow chart shows a leave-one-out scheme given k subjects. This includes the preprocessing stage and the three-phase feature selection
and extraction framework. Spatial components as inputs are obtained from the data preprocessing stage. Training and test data are processed separately in the
whole procedure.

3.1. TWO-LEVEL FEATURE IDENTIFICATION
FMRI data are high dimensional in terms of numerous voxels and
have high noise levels. Even though we select only a small num-
ber of ICs after ICA, each IC still contains more than 60 k voxels,
which may provoke over-fitting in a classifier without prior dimen-
sion reduction. In order to avoid the “curse of dimensionality”
and select significant voxels, we apply one-sample and two-sample
t -tests to the selected components.

T -tests are among the most widely used statistical significance
measures currently adopted in feature selection. The one-sample
t -test is used to infer whether an unknown population mean dif-
fers from a hypothesized value. For instance, we have training data
x1,. . ., xn assumed to be independent realizations. Then we test
the following hypothesis:

Null Hypothesis : H0 : μ = μ0

Alternate Hypothesis : H1 : μ �= μ0.

The mean is estimated by the sample mean x̄ . The greater the
deviation between x̄ and μ0, the greater the evidence that the
hypothesis is untrue. The test statistic t is a function of this
deviation, standardized by the standard error of x̄ . It is defined as

t = x̄ − μ0

σ
/√

n
.

We compute voxel-wise one-sample t -tests separately for the con-
trol and patient groups in the training set, which treats each subject
as a random effect and provides a statistical threshold on the com-
ponents. The null hypothesis is set to be H 0: μ= 0 and the test
statistic is treated as the threshold in selecting significant fea-
tures. The thresholds are the same for both groups and defined
as t 1. Voxel positions are recorded in an index set if the t -values
are larger than the threshold t 1. Then we obtain a union index
set of significantly activated voxels in both control and patient
groups.

Next, we compute a voxel-wise two-sample t -test between the
two groups, using a two-sample t -test to assess whether the means
of the two classes are statistically different from each other by cal-
culating a ratio between the difference of two class means and the
variability of the two classes. The training data are selected from

FIGURE 2 | A one-sample t -test is applied across the same components

separately to the control and patient groups in the training set. A
two-sample t -test is performed to find voxels that are significantly different
between two groups. The features including the significantly activated and
different voxels are identified in this two-level feature identification scheme.

two groups, x11, . . . , x1n1 and x21, . . . , x2n2 , and it is desired to test
the null hypothesis μ1=μ2 (Dalgaard, 2008). The test statistic is
defined as

t = x̄1 − x̄2√
σ 2

1

/
n1 + σ 2

2

/
n2

.

The threshold of two-sample t -test is denoted as t 2. An index set
of significantly different voxels is composed of the voxel positions
where two-sample t -statistics are larger than t 2. Next, we calcu-
late the intersection of index sets obtained from one-sample and
two-sample t -test to generate a final index set with significant
positions in the training set. Then we apply this final index set to
components of interest for the test set to select significant vox-
els. The scheme of the two-level feature identification is shown in
Figure 2.
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3.2. KERNEL PCA
After the two-level feature identification step, the dimension of
features is reduced to thousands (this value depends on t -test
thresholds), which, however, is still high to some classifiers. More-
over, in fMRI, activation patterns of BOLD-related sources tend
to be spatially smoothed and clustered. These contextual features
encoded in the signal sample space are not exploited in a standard
ICA framework (Li et al., 2007). Thus, higher-order correlations
may exist among voxels. To reduce feature dimensions and take
higher-order statistics into account, we apply KPCA to project the
input data into a new space using a non-linear mapping and apply
linear PCA in this new space.

For a given non-linear mapping �, the input data space Rn

can be mapped into a new space called feature space F (Schölkopf
et al., 1998):

� : Rn → F

x = (x1, . . . , xn) �→ �(x) = (�1(x), . . . , �N (x)) .

The mapping can lead to a potentially much higher dimensional
feature vector in the feature space F. The additional feature dimen-
sions which indicate the complexity of the function class matters
can be useful for performing target classification (Müller et al.,
2001). KPCA, as described in (Schölkopf et al., 1998; Müller et al.,
2001), is shown as follows.

First, given a set of training samples xk, k = 1,. . ., M, xk ∈ Rn,
we define an M ×M matrix K̃ with entries k(xi, xj), where

k
(

xi , xj
) = 〈

� (xi) , �
(

xj
)〉

is the kernel representation. We obtain centered data �(x) by
centralizing K̃, such that

K = K̃ − 1M K̃ − K̃1M + 1M K̃1M ,

where the matrix 1M is the M -by-M matrix with all entries equal
to 1/M.

Second, we compute the eigenvectors of K and normalize them
in feature space by

β j = 1√
λj

Kαj , j = 1, . . . , m,

where m is the dimension after KPCA, λ1 > λ2 > . . . > λm denote
the m largest positive eigenvalues of the kernel matrix K, α1,. . .,
αm are the corresponding eigenvectors, and β1,. . ., βm are the
normalized eigenvectors in feature space.

Third, for a training sample xk, we can obtain the KPCA trans-
formed feature vector yk= [yk1, yk2,. . ., ykm]T by yk=〈V, �(xk)〉,
where V is a matrix of eigenvectors in feature space and specifically,

ykj =
M∑

l = 1

β
j
l k (xl , xk) , j = 1, . . . , m . (1)

For a test data xi with a mapping �(xi) in feature space, we project
the data onto the subspace generated by the training data. Then

the KPCA transformed feature vector yi= [yi1, yi2,. . ., yim]T is
obtained by (1).

In summary, the following steps are necessary to compute the
features for training and test data (Schölkopf et al., 1998): (1) com-
pute the matrix K using all training data, (2) compute its eigen-
vectors and normalize them in feature space F, and (3) compute
projections of training and test data onto the eigenvectors.

Algorithm 1 classifier based on euclidean distance
Require: features of training data and test data as inputs, such

that fi, i= 1, 2, . . ., 55, and ft

1. Calculate di= ||ft – fi||2, d [c] = 1
n1

�
n1
i = 1 d [c]i , and d [p] =

1
n2

�
n2
i = 1 d

[p]
i

2. if d[c] < d[p] then
3. the test data belongs to the control group
4. else
5. the test data belongs to the patient group
6. end if
7. return the class label of the test subject

Algorithm 2 feature combination algorithm
Require: for a test subject, input component matrix Xi, i= 1,2,

. . ., m and Xi= (x1, x2,. . ., x56)T

1. given an initial value num= 0 and calculate the majority value
M =m/2+ 1 or M = (m+ 1)/2

2. for k = 1→m do
3. fk=F(Xk)
4. classify the test subject using Algorithm 1
5. if the test data is classified into the control group then
6. num← num+ 1
7. end if
8. end for
9. if num≥M then

10. the test data belongs to the control group
11. else
12. the test data belongs to the patient group
13. end if
14. return the class label of the test subject

3.3. FLD
The Fisher discriminant function aims to achieve an optimal lin-
ear dimensionality reduction, by employing a linear projection of
the data onto a one-dimensional space, such that an input vector x
is projected onto y =wTx, where w is a vector of adjustable weight
parameters (Fisher, 1936; Bishop, 1995). In general, the projection
onto one dimension leads to a considerable loss of information.
However, by adjusting w, we can achieve a projection that max-
imizes the class separation and also does not lose within-class
compactness. The resolution proposed by Fisher is to maximize
a function representing the difference between the projected class
means, normalized by a measure of the within-class scatter along
the direction of w. The Fisher criterion is given by

J (w) = wT SBw

wT Sw w
, (2)
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where SB is the between-class covariance matrix and is given by

SB = (m2 − m1) (m2 − m1)
T

and SW is the total within-class covariance matrix, given by

SW =
∑
n∈C1

(
xn − m1

) (
xn − m1

)T

+
∑
n∈C2

(
xn − m2

) (
xn − m2

)T
.

The mean vectors of the two groups are given by

m1 = 1

n1

∑
n∈C1

xn and m2 = 1

n2

∑
n∈C2

xn ,

where n1 and n2 are the numbers of controls and patients
in the training set. The objective J (w) is maximized by w ∝
S−1

W (m2 − m1) , where w is the eigenvector corresponding to

the largest eigenvalue of S−1
W SB .

3.4. PARAMETERS AND CLASSIFIER
For different thresholds in the two-level identification scheme, the
proposed feature extraction framework generates different fea-
tures for the training data. In order to obtain a set of features
characterized by sufficiently large discrimination power, we select
a combination of thresholds t 1 and t 2 that maximizes the value of
the objective function J (w) shown in (2) in the training stage. Then
the selected thresholds are applied to all data, including training
and test data. After obtaining significant features, we calculate the
Euclidean distances between the test feature and all training fea-

tures, such that d [c]1 , . . . , d [c]n1 , d
[p]
1 , . . . , d

[p]
n2 , where c denotes the

healthy control and p the patient group. By comparing the mean
distances between the test data and each training group, we clas-
sify the test data into the closest group. The classifier algorithm is
labeled and described as Algorithm 1.

4. EXPERIMENTAL RESULTS
In our experiments, the AOD and rest data sets are used to eval-
uate the performance of the proposed feature extraction method.
We select 14 components of interest as features to discriminate
healthy controls and patients in each data set. The components
are labeled as follows and the t -maps for these components are
shown in Figure 3: (1) DMN, (2) temporal, (3) motor-temporal,
(4) sensorimotor, (5) anterior DMN (medial frontal), (6) anterior
frontal, (7) lateral frontal, (8) fronto-insula, (9) motor, (10) poste-
rior parietal, (11) right frontoparietal, (12) left frontoparietal, (13)
cerebellum, and (14) medial visual components.

We first use individual components of interest as inputs of
the feature extraction framework. Then a leave-one-out approach
is performed to validate the classification procedure. Second, we
combine features in a majority vote method to classify the left-
out test subject. We show the accuracy, sensitivity, and specificity
of the obtained classification results. Accuracy is calculated as the
ratio between the number of test data sets classified into the cor-
rect group and the total number of test data sets. Sensitivity and
specificity are defined and calculated as shown in Table 2.

Table 2 |The definitions of sensitivity and specificity.

Condition

Test outcome True positive (TP) False positive (FP)

False negative (FN) True negative (TN)

Sensitivity=TP/(TP+FN) Specificity=TN/(FP+TN)

TP, correctly diagnosed patients; FP, incorrectly identified patients; TN, correctly

diagnosed controls; FN, incorrectly identified controls.

During the training stage, we repeat the process of the two-level
feature identification, KPCA and FLD to calculate the value of the
objective function in (2) for each combination of thresholds. If
the thresholds are selected as large values, a few voxels are retained
after the two-level feature identification step. To reduce the com-
putation time and retain more information, we use the values of
0–3 with the increment of 0.5 for t 1 in the one-sample t -test and
the same interval for t 2 in the two-sample t -test. We select the
combination of thresholds leading to the maximum value of (2)
in this range. To implement KPCA, we use the polynomial kernel
function primarily due to its simplicity as it has a simpler struc-
ture and by selecting different orders, we can control the degree of
non-linear mapping. It is defined as

k(x,y) =
(

xT y + 1
)d

,

where d is the order of the polynomial kernel. Also, our experimen-
tal results show that the polynomial kernel function performs bet-
ter than the Gaussian kernel in KPCA in our task when tested with
a number of kernel widths. For the polynomial kernel, we use d = 3
in our experiments. The dimensionality of the underlying KPCA
space cannot be allowed to exceed M – c, where M is the total
number of training samples available and c is the number of classes
(Martínez and Kak, 2001). In our study, M = 55, c = 2. Thus, we set
the dimension of principal components after KPCA to 53. Figure 4
shows visualization of features for controls versus patients after
each feature extraction step. Results show that training samples
are linearly separable after the three-phase feature extraction.

4.1. CLASSIFICATION USING AOD DATA
4.1.1. Classification using individual component
Components selected from ICA results are independent brain
images, each of which can be considered as an independent
feature vector and used as the input of our feature extraction
framework. We find 14 components of interest in our AOD data.
As shown in Figure 1, after the training stage, a significant feature
is extracted from one component for each subject. Then we use a
simple classifier given in Algorithm 1 to discriminate the test data.
Classification results are shown in Table 3.

4.1.2. Classification using combined features
Since each component of interest may provide different infor-
mation in discriminating healthy controls and patients, we also
wanted to evaluate results when incorporating more than one
component. We select m components from the 14 components
of interest and input them into F , denoting the feature extrac-
tion framework shown in Figure 1. Then for each test subject, we
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FIGURE 3 | Four slices from each component are shown in the figure; components are identified from the AOD task. Each component is entered into a
one-sample t -test and thresholded at P < 1e−7 (corrected for multiple comparisons using the family wise error (FWE) approach, implemented in SPM5).

FIGURE 4 |The figure shows features for controls versus patients after

each feature extraction step. Each dot represents an individual and the color
of the dot indicates the correct diagnosis of either control (blue) or
schizophrenia (red). Individuals are close to each other if the Euclidean
distances between training data are small. The original training samples
cannot be separated by a linear classifier. A two-level feature identification

step is used to select significantly different voxels. After KPCA, most of
training samples separate to two groups. Training samples are linearly
separable and a maximum margin is obtained after FLD. Parameters in
two-level feature identification step are t 1 =0.5 and t 2 =0.5, which are
selected during the training stage using the DMN component (from rest data)
as input to the framework.

use classification results obtained from m components to provide
a vote and classify the test subject into the group based on the
majority vote. If more than half of selected components classify
the test data into the control group, then the test subject is assigned
to the control group, otherwise the test subject is assigned to the
patient group. The algorithm for combining features is labeled and
described as Algorithm 2. In our experiments, we explore all possi-
ble combinations of the 14 components of interest to discriminate

the test data. The component combinations leading to the highest
accuracy is shown in Table 5.

4.2. CLASSIFICATION USING REST DATA
4.2.1. Classification using individual component
In the rest data, we select components of interest as same as those in
AOD data. We select 13 components of interest from ICA results,
corresponding to those obtained above, with the exception of the
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Table 3 | Classification results with AOD data (one component as

features).

Index Accuracy Sensitivity Specificity

1 0.93 0.93 0.93

2 0.86 0.89 0.82

3 0.91 0.86 0.96

4 0.88 0.86 0.89

5 0.82 0.82 0.82

6 0.86 0.86 0.86

7 0.84 0.75 0.93

8 0.84 0.89 0.79

9 0.82 0.79 0.86

10 0.80 0.82 0.79

11 0.79 0.71 0.86

12 0.82 0.86 0.79

13 0.84 0.68 1.00

14 0.86 0.79 0.93

Table 4 | Classification results with rest data (one component as

features).

Index Accuracy Sensitivity Specificity

1 0.91 0.89 0.93

2 0.88 0.86 0.89

3 NA NA NA

4 0.84 0.86 0.82

5 0.82 0.93 0.71

6 0.80 0.82 0.79

7 0.82 0.79 0.86

8 0.84 0.82 0.86

9 0.84 0.89 0.79

10 0.79 0.79 0.79

11 0.80 0.82 0.79

12 0.82 0.82 0.82

13 0.80 0.64 0.96

14 0.84 0.89 0.79

motor-temporal component. This latter component could be esti-
mated in the control group, but it could not be consistently derived
from the patient group. Thus, we exclude the motor-temporal
component in the classification of rest data. We extract features
using the proposed framework from these 13 ICs and classify the
test data; results are shown in Table 4.

4.2.2. Classification using combined features
The feature combination method in Algorithm 2 is used in the rest
data set. Since the motor-temporal component is not included
in the experiment, the component with index 3 is not used in
the feature combination. We assess every combination of the
13 components to discriminate the test data and then evaluate
classification performance. Several combinations lead to similar
classification results; some of those with the highest accuracy are
shown in Table 5.

Table 5 | Classification results using feature combination.

Data set Combinations Sensitivity Specificity Accuracy

AOD 1, 2, 3, 8, 14 0.98 1.00 0.98

Rest 1, 2, 11 0.93 0.93 0.93

1, 4, 14

1, 2, 4, 11, 14

5. DISCUSSION
5.1. DURING AOD TASK AND AT REST
In this paper, we propose a novel method for effective feature
selection and extraction. We evaluate the performance of several
components of interest extracted as features using our method
by discriminating healthy controls from schizophrenia patients
during an AOD task and at rest. Our results show that features
extracted from the DMN and the motor-temporal component lead
to significantly high classification accuracy, providing additional
support to previous studies, which noted the importance of these
components for discriminating patients with various mental dis-
eases from controls (Calhoun et al., 2008b; Sui et al., 2009). We also
find that components leading to the highest classification accuracy,
including DMN, temporal, and medial visual regions, are consis-
tently included among the combined components for both data
sets, since similar components have been observed for participants
during an AOD task and at rest (Calhoun et al., 2008a). Over-
all, the AOD task appears to be more discriminating across more
components than the resting fMRI data as shown in Figure 5.

The DMN is one of the most widely analyzed networks
derived from resting-state fMRI data. It is commonly observed
to deactivate during task-based fMRI experiments proportion-
ately to task difficulty (McKiernan et al., 2003). This network
shows significant activity differences between controls and schiz-
ophrenia patients (Garrity et al., 2007), although in most such
comparisons, including the current analysis, patients are taking
antipsychotic medications, which themselves affect DMN activity
(Lui et al., 2010) and may thus exaggerate patient/control dif-
ferences. In our classification results shown in Tables 3 and 4,
the discrimination accuracy is highest using features extracted
from DMN for both data sets. Moreover, classification accu-
racy is slightly higher for AOD than rest data. In DMN, activity
decreases are consistent across a wide variety of task conditions
(Raichle and Snyder, 2007; Raichle, 2010). Consequently, there are
more patient/control DMN differences during the AOD task than
at rest.

Other regions important for diagnostic discrimination include
temporal and motor areas. The temporal region is involved in
auditory processing and motor areas are responsible for the
perception and execution of actions. Since participants were asked
to press a button when they heard the target sound in the AOD task,
brain regions related to auditory and motor functions are expected
to be highly activated. Two components related to auditory func-
tion are derived from AOD data, one designated the temporal and
the other the motor-temporal component. Researchers in several
fields postulate important links between auditory and motor areas
(Hickok et al., 2003). In our results, using the motor-temporal
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FIGURE 5 |The figure shows the comparison between the classification accuracy in AOD and rest data. Using most of components of interest can lead to
a higher accuracy in the AOD data than the rest data.

FIGURE 6 |The figure shows three estimated components in the rest data

set. Each component is entered into a one-sample t -test and thresholded at
P < 0.01 (corrected for multiple comparisons using FWE) shown with 16

slices. The left and middle components are the estimated temporal and
motor-temporal components in the control group, respectively. The right
component is the only temporal related component estimated in patients.

component as a classification feature reveals a high accuracy
in discriminating controls and patients in the AOD task. Con-
versely, in the rest data, the motor-temporal component could
not be consistently estimated in patients but was obvious in
the control group. The temporal and motor-temporal compo-
nents are clearly separated in the control group at rest but not
so in patients. This is shown in Figure 6. This suggests that the
auditory-motor link is weaker in schizophrenia than in healthy
controls. The motor-temporal component can be directly esti-
mated in the patient group during the AOD task, since partici-
pants are instructed to press a button when they hear the target
sound; this condition forces the motor-temporal component to
be estimated. Our numerical results in Table 4 show that using

the temporal component as a feature leads to a higher accu-
racy for rest compared to AOD data. Since patients may lose
attention and/or perform poorly during a task, using other motor-
related components (such as sensorimotor, anterior frontal, and
cerebellum) in AOD data also lead to a high accuracy in our
results.

The feature combination data reveal that a combination of
DMN,temporal,motor-temporal, fronto-insula,and medial visual
components results in the highest classification accuracy for AOD
data. These five components are task-negative networks. In the
rest data, several combinations of components result in the high-
est accuracy. These components, including DMN, temporal, and
medial visual regions, are consistently included among those
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combined components for both data sets. The fronto-insula com-
ponent is often recruited by cognitively demanding tasks and
frequently interpreted as a part of a task-related activation network
(Seeley et al., 2007). Thus, the fronto-insula component might be
expected to have more significant effect in discriminating groups
in AOD data, derived from performance of an actual task, than in
rest data.

5.2. MOTION ARTIFACTS
Motion artifacts are common causes of image degradation in
fMRI, and patients are more prone to exhibit body movements
during scanning procedures for a variety of reasons. Hence,
motion artifacts may amplify differences between controls and
patients in classification results. Our fMRI data are preprocessed
in SPM (Friston et al., 1995; SPM5, 2011) to minimize movement
artifacts. In the preprocessing procedure, a set of realignment para-
meters reflecting the relative orientations of the data is saved for
each subject. To evaluate the influence of motion artifacts in our
classification results, we then use these realignment parameters as
features to perform another classification.

In processing the AOD data set, we average realignment para-
meters from the two sessions per participant resulting in a 249× 6
matrix for each subject (249 time points, each of which has 6
parameters). Similarly, in the rest data set, a 204× 6 matrix is
obtained for each subject (from 204 time points in these data).
We use a leave-one-out cross-validation and the same classifier
in Algorithm 1 to evaluate the classification results. To certify the
result, we extract several kinds of features from the realignment
parameters to perform the same classification. For each subject,
the feature vector comprises the mean value of parameters of each
time point. Another approach is to use feature vectors consisting of
the maximum value of parameters of each time point, or the fea-
ture vector comprises mean (or maximum) values across all time
points. In addition, we can select mean (or maximum) values of
the parameter matrix for each subject as the feature. For the AOD
data, the accuracy of using realignment parameters as features is
from 48 to 54% and for the rest data, the accuracy is from 34 to
52%. Therefore, motion artifacts appear to have little impact on
our classification results.

5.3. MULTIPLE SESSIONS IN AOD DATA
Our analysis used two runs of AOD task data and one session of
rest data. For a representative comparison, we also use the first ses-
sion of AOD data in the same analysis. The results are almost the
same as previous and remain the same when we combine features
in a majority vote method. The most likely reason for these results
is that we treat two sessions of data as two different subjects in the
group ICA analysis, first doubling the number of subjects in AOD
data. We then average the components from the two sessions as
the input of our classification framework. This procedure has few
effects on our classification results.

5.4. AVOID “DOUBLE DIPPING” IN THE ANALYSIS
Double dipping, the use of the same data set for selection and selec-
tive analysis, provides distorted descriptive statistics and invalid
statistical inference whenever the resulting statistics are not inher-
ently independent of the selection criteria under the null hypoth-
esis (Kriegeskorte et al., 2009). In our classification, including the

step that ICs of training data are selected by group ICA and ICs of
the left-out test data are generated by spatial-temporal regression,
initially separates the training and test data. Then, we use only
training data to select thresholds in the two-level feature identi-
fication scheme and generate feature spaces in Kernel PCA and
Fisher’s linear discriminant analysis. The left-out test feature is
obtained by applying selected thresholds to ICs and projecting
selected voxels to the training feature space. For different training
sets and corresponding left-out test subjects, the classification pro-
cedures are independent. Thus, the problem of using the same data
set both to train and to test classification is completely avoided in
our method.

5.5. VALIDATION OF THREE-PHASE FEATURE EXTRACTION
In order to see whether all three steps were essential, we eliminated
the first step and performed KPCA and FLD directly on all voxels.
This two-step approach resulted in significant performance loss.
For example, features extracted from DMN component, without
the first step, lead to a classification accuracy of 73%, which is sig-
nificantly lower than the current result shown in Section 4. Those
unselected voxels in the first step are more likely to be noise and do
not provide sufficient information to discriminate patients from
healthy controls. Hence, the three-phase feature extraction frame-
work is meaningful and necessary in the classification method we
have presented.

6. CONCLUSION
We introduce a three-phase feature extraction framework that
takes higher-order statistics into account and satisfies the Fisher’s
criterion, with components of interest estimated from ICA algo-
rithm as inputs. Three steps of the framework include a two-level
feature identification scheme, KPCA, and FLD. First, a two-level
feature identification scheme is performed to select significantly
activated and discriminative voxels from components of inter-
est. Second, KPCA is used to extract non-linear features from the
selected significant voxels by taking into account higher-order sta-
tistics. Then, FLD is performed to further extract features that
maximize the ratio of between- and within-class variability. Exper-
imental results using both AOD and rest data are included to
demonstrate the performance of the proposed framework. Results
show that features extracted from DMN and motor-temporal
components lead to significantly high classification accuracies.
Moreover, we implement a majority vote method to incorporate
different components of interest into combined features. Sev-
eral components, including DMN, temporal, and medial visual
regions, are consistently contained in the combined components
leading to the best classification accuracy for both data sets. By
comparing the classification results from AOD and rest data, we
find significant interactions and differences between these data
sets for several components of interest. One possible limitation
of the present work is that all patients were on psychotropic
medication during the testing. It is possible that the medica-
tion effects could artificially enhance our classification results.
However, the obtained high classification accuracy, combined
with the fact that several networks all have powerful ability to
distinguish patients from controls, suggests that this is not a

Frontiers in Human Neuroscience www.frontiersin.org June 2012 | Volume 6 | Article 145 | 10

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Du et al. High classification accuracy for schizophrenia

dominant effect. Another possible limitation is the small num-
ber of subjects used in the current study. Hence, it is desirable
to determine to what degree the medication impacts functional
classification and it is desirable to extend the database to include
more subjects. However, features extracted using the method we

presented show very promising results in terms of classification
performance and it is reasonable to say that the framework can
be applied to extract significant features from components of
interest that can be used to discriminate patients from healthy
controls.
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