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We contrasted the predictive power of three measures of semantic richness—number of
features (NFs), contextual dispersion (CD), and a novel measure of number of semantic
neighbors (NSN)—for a large set of concrete and abstract concepts on lexical decision
and naming tasks. NSN (but not NF) facilitated processing for abstract concepts, while
NF (but not NSN) facilitated processing for the most concrete concepts, consistent with
claims that linguistic information is more relevant for abstract concepts in early processing.
Additionally, converging evidence from two datasets suggests that when NSN and CD
are controlled for, the features that most facilitate processing are those associated with
a concept’s physical characteristics and real-world contexts. These results suggest that
rich linguistic contexts (many semantic neighbors) facilitate early activation of abstract
concepts, whereas concrete concepts benefit more from rich physical contexts (many
associated objects and locations).
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The majority of experimental evidence guiding our knowledge
of lexical semantic representation comes from research using
concrete words. Concrete words are the dominant stimuli in
the literatures on semantic priming, property generation, and
single-item recognition (e.g., naming or lexical decision in iso-
lation). In contrast, a larger proportion of the human lexicon
may actually be composed of abstract words. For example, of
the 500 most frequent words in the TASA corpus (Landauer
and Dumais, 1997), 70% are classified as abstract according to
the MRC Psycholinguistic Database (Coltheart, 1981). In studies
involving large representative samples of English nouns, a sub-
stantial proportion (over 40%) are rated as abstract by human
raters (Gilhooly and Logie, 1980) and classified as abstract
entities in lexical databases such as WordNet (Miller, 1990).
Furthermore, abstract words have been implicated as particularly
worthy of study due to their status as network hubs (Sigman
and Cecchi, 2002), the challenge they pose to grounded the-
ories of cognition (Barsalou, 2008), and their higher relative
frequency than concrete words (Audet and Burgess, 1999). In
his review of research on grounded cognition, Barsalou (2008)
notes “Because the scientific study of concepts has primarily
focused so far on concrete concepts, we actually know remark-
ably little about abstract concepts, even from the perspective of
traditional cognitive theories” (p. 634). The disconnect between
the type of words we know the most about and the type of
words that most inhabit the lexicon means that theoretical devel-
opment may be over-emphasizing mechanisms and information
sources for word representation that do not generalize to the full
lexicon.

Abstract concepts are particularly important to study because
various theories of semantic representation make different claims
about the degree of semantic richness possessed by abstract con-
cepts, particularly with respect to semantic features. Abstract

concepts may be semantically impoverished, deriving their mean-
ing primarily from their associations with other words (Paivio,
1986, 2010; Plaut and Shallice, 1993). Alternatively, they may be
no less semantically rich, but be more grounded in introspective
simulations (Barsalou et al., 2008) or aspects of meaning related
to their social/communicative function (Borghi and Cimatti,
2009; Borghi et al., 2011).

If semantic features are important to abstract concept repre-
sentations, one might expect to find feature-based effects similar
to those observed for concrete words. For concrete concepts,
being associated with many semantic features facilitates lexical
processing (Pexman et al., 2002, 2003; Grondin et al., 2009).
These so-called number of feature (NF) effects have established
the importance of semantic richness in concrete word represen-
tation. Investigating whether NF effects are obtained for abstract
words—and if so, for what types of features—can yield insight
into their representations and the information sources used to
learn those representations.

Pexman et al. (2008) found that in addition to NF, a concept’s
number of semantic neighbors (NSN) and contextual dispersion
(CD) accounted for unique response time variance in a lexi-
cal decision task. However, their reliance upon the McRae et al.
(2005) feature norms to calculate NF restricted their analysis to
concrete words. In this paper, we use a novel online game mod-
eled after McRae et al.’s task to gather feature generation data, and
present results from data collected from 30 subjects/word for 550
words, including 177 abstract concepts. Extending the methods of
Pexman et al. (2008) to this database and to alternative measures
of NSN, NF, and CD, we evaluate whether NSN, NF, and CD each
account for unique variance in lexical decision times (LDT) for
abstract as well as concrete words. We also investigated the spe-
cific types of features that contribute to NF effects when NSN and
CD are controlled for.
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ARE ABSTRACT CONCEPTS RICH IN ANYTHING?
Several studies have investigated whether the processing and
memory advantages often observed for concrete words are due
to their allegedly richer featural representations (e.g., Saffran,
1980; Barry, 1984; Plaut and Shallice, 1993; Moss and Tyler,
1995). While there is general agreement that properties of con-
crete concepts include perceptual and functional features, the
literature is less consistent about what exactly qualifies as a prop-
erty of an abstract concept. When participants are specifically
instructed to produce properties that they feel are characteris-
tic of the concept itself, abstract concepts elicit fewer properties
than concrete concepts (de Mornay Davies and Funnell, 2000;
Tyler et al., 2002). Other studies with a broader definition of what
qualifies as a property have found that concrete concepts elicit
more properties that explicitly describe the concept (Barsalou
and Wiemer-Hastings, 2005; Wiemer-Hastings and Xu, 2005),
but have noted that the definition of a property can be extended
to include persons, objects, and other elements of situations
associated with the concept, as well as internal states and other
meaning-bearing utterances. For example, the protocol used by
Wiemer-Hastings and Xu classifies the words good and want in a
participant’s description of HOPE (“something will happen good,
you really want something to happen,” p. 736) as words that carry
information about internal states (“introspective features”), and
many elements of situations were observed in descriptions of
abstract concepts in the present study, including mentions of per-
sons (DANGER → “a policeman may face this in his job”), objects
(SUCCESS → “great house”), and events (MISCHIEF → “crimes
at night”). When information of this sort is not ignored, appar-
ent differences in richness between concrete and abstract concepts
disappear or become far less extreme (Wiemer-Hastings and Xu,
2005).

While the present research does tally the number of properties
for each concept according to both broad and a narrow criteria,
our primary motivation was not to determine whether concrete
words possess more properties than abstract ones. Rather, the
primary goal was to determine whether the descriptions elicited
by abstract words in property generation tasks add to their rich-
ness in in a comparable manner to concrete words (i.e., whether
“properties” of abstract concepts contribute to NF effects), and if
so, what kinds of properties are most facilitative.

On some accounts, the situation-relevant and introspective
utterances that participants use to describe abstract concepts
in feature generation tasks are conceived of as properties in a
strong sense, playing a central role in abstract concept repre-
sentations (Barsalou and Wiemer-Hastings, 2005; Barsalou et al.,
2008). If this is the case, one might expect that the quantity of
introspective and situation properties that an abstract word elic-
its would predict its ease of processing, just as the number of
perceptual properties does for concrete words (Grondin et al.,
2009).

However, such utterances may not describe core compo-
nents of the concept’s representation at all. One possibility is
that the words that participants use to describe abstract con-
cepts are analogous to associates, i.e., participants’ responses in
free-association tasks. Studies of concrete concepts that have
directly compared the influence of NF and number of associates

(NoA) have shown the latter to have a relatively weak or unde-
tectable impact (Yap et al., 2011; Rabovsky et al., 2012), and the
same may be true for abstract concepts. A second possibility is
that the words that participants use to describe abstract con-
cepts may facilitate processing to the degree that they occur in
similar linguistic contexts. It has been argued that language-
based information plays a more important role in abstract (vs.
concrete) concept representations (e.g., Sabsevitz et al., 2005;
Borghi et al., 2011). NSN measures the number of words (NW)
that occur in similar lexical contexts (Pexman et al., 2008), as
approximated by counting the NW that occur within a particular
radius of a high-dimensional semantic space. Such language-
based measures of richness have been shown to predict LDT
among concrete concepts (Buchanan et al., 2001; Pexman et al.,
2008; Yap et al., 2011). According to theories that emphasize the
importance of linguistic information for abstract concepts, such
measures of the richness of a word’s linguistic contexts should
be even more predictive of processing differences among abstract
stimuli.

Of course, this need not be framed as a dichotomy. For
example, Kiefer and Pulvermüller (2011) argue that multimodal
information from perception and action constitutes the core
content of abstract concept representations, but also note that
abstract concepts may be more dependent upon on word-based
associations than concrete concepts. Furthermore, a measure of
semantic richness is not wholly language-based merely because
it is derived from a text corpus; word pairs that are highly
related according to corpus-based measures such as LSA fre-
quently refer to objects that occur together in the world (Baroni
and Lenci, 2008; Louwerse, 2008). Even so, the fact that mea-
sures based on corpora and feature norms account for unique
variance in lexical and semantic decision tasks suggests that
corpus-based measures contain some information about associ-
ations between words as they are used in language that feature
norms do not, and vice versa (see Riordan and Jones, 2011).
Contrasting the predictive power of multiple measures of richness
can thus inform our understanding of the relative importance of
different types of information to concrete and abstract conceptual
representations.

MEASURES OF SEMANTIC RICHNESS
The three variables considered by Pexman et al. (2008)—NF,
CD, and NSN—are not the only ones that have been investi-
gated as measures of semantic richness. Yap et al. (2011) extended
this work in several ways. First, they included additional vari-
ables that had been proposed in the literature as indicators of
semantic richness: NoA (Duñabeitia et al., 2008) in the Nelson
et al. (1998) free-association norms, and lexical ambiguity, which
they operationalized as a word’s log-transformed number of
senses in WordNet (Miller, 1990). Second, they used alternative
CD and neighborhood measures that had been calculated on
larger corpora and accounted for more variance than previous
operationalizations of CD and NSN.

Finally, they included additional lexical control variables
known to account for substantial variance in lexical decision
and naming times (NTs). Using these measures, they found that
neighborhood density, CD, and NF all accounted for unique
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variance above and beyond that accounted for by lexical-level
variables in the lexical decision task, whereas number of senses
and lexical ambiguity did not. Yap et al. also found that CD and
NF, but not NSN, predicted unique variance in speeded pro-
nunciation times, although the effects were less robust. This is
consistent with previous findings of facilitation for words with
many features (Ashcraft, 1978; Pexman et al., 2003), contexts
(Adelman et al., 2006; Jones et al., 2012), and semantic neighbors
(Buchanan et al., 2001; Shaoul and Westbury, 2010).

COLLECTING SEMANTIC RICHNESS NORMS FOR
CONCRETE AND ABSTRACT WORDS
Our norming study builds on Yap et al. (2011) by replicating
their pattern of effects for lexical decision and speeded pro-
nunciation on a new set of stimuli containing words that vary
widely in concreteness. The absence of publicly available fea-
ture norms for English abstract concepts required us to collect
a large set of property generation norms. In a property gen-
eration study, participants describe the properties of a concept
verbally or in writing. For example, presented with the concept
dog, participants might produce descriptions such as has four legs,
is furry, etc. This method has a long history of use by researchers
wishing to gain insight into the representations of concrete con-
cepts and categories (e.g., Rosch and Mervis, 1975; Hampton,
1979; McRae et al., 2005; Vinson and Vigliocco, 2008), and
less frequently, events and abstract concepts (e.g., Barsalou and
Wiemer-Hastings, 2005; Wiemer-Hastings and Xu, 2005; Vinson
and Vigliocco, 2008). Property norms should not be interpreted
as a verbatim readout of semantic representations (Medin, 1989),
but rather as a reflection of systematic regularities in the ways
that participants describe concepts. They can provide insight into
a concept’s underlying semantic representation, although not all
aspects of meaning are equally well represented. Some aspects of
a concept’s representation are not easily verbalized, while others
may be particularly salient due to their distinctiveness. This poses
philosophical challenges to traditional views that interpret fea-
tures as fundamental components of semantic representations.
However, it is less problematic for positions that treat features
as offering a window into aspects of semantic meaning (McRae
et al., 2005) or as ad-hoc descriptions of perceptual simulations
(Barsalou and Wiemer-Hastings, 2005). McRae et al. (2005) note
that although the absence of biological features, internal features,
etc., is “occasionally interpreted as a weakness of such norms, it
may actually be a strength, because it appears that these general
features play only a small role in object identification, language
comprehension, and language production precisely because they
are not salient and are true of large numbers of concepts” (p. 549).
Overall, the impressive ability of measures based on feature norms
to account for variability across a wide range of lexical process-
ing tasks (e.g., Yap et al., 2012) attests to their utility in capturing
important aspects of meaning.

Following the basic design of McRae et al. (2005), our partic-
ipants completed a property generation task in the form of an
online game within our Semantic Pictionary platform (Kievit-
Kylar and Jones, 2011). Online “games with a purpose” (von
Ahn, 2006) are becoming more commonplace in cognitive science
to crowdsource information about the properties of common

objects from Internet users (e.g., Singh et al., 2002; Speer et al.,
2010). This method permitted participants to describe abstract
words without constraining them to produce properties in the
form of predicates such as has wings, is fast, etc. There is a high
correlation between ease of predication (participants’ ratings of
how easy it is to put words into simple factual statements) and
concreteness (Jones, 1985; de Mornay Davies and Funnell, 2000),
leading some to surmise that abstract words have far fewer prop-
erties than concrete words (e.g., Plaut and Shallice, 1993). If a
property is defined as a predicate, this is a foregone conclusion.

However, predicates are not the basic units of semantic analy-
sis, but are rather only one way of expressing underlying semantic
relationships. Wing, passenger, and pilot are all concepts that pos-
sess a meaningful semantic relationship to airplane, and language
affords us an easy way to express these relationships as predi-
cates (airplanes have wings, airplanes carry passengers, airplanes
need pilots). However, courthouse, crime, and justice are all con-
cepts that possess a meaningful semantic relationship to law, and
may play a role in its semantic representation, even if it is diffi-
cult to produce a three- or four-word sentence that encapsulates
the nature of this relationship. We risk missing important insights
about the nature of abstract concept representation if we exclude
such concepts from analysis simply because participants do not
express them as predicates. On the other hand, if we interpret all
frequent responses as “features,” we risk being too inclusive. We
do not pretend to have a solution to this dilemma, and believe
there may be value in both broad and constrained notions of what
constitutes a property. For this reason, we restricted our definition
of NF to the number of {concept → word} pairs that matched
a subset of predefined semantic relations identified in the litera-
ture as being of likely importance to concrete and abstract concept
representations. However, we also created an additional variable,
NW, which is simply a count of all words produced by at least
six of the 30 subjects who generated descriptions for that word.
Details on how each of these measures was calculated appear in
the Methods section.

METHODS
Participants
Seven hundred and sixty six participants (57% female) partici-
pated via the Indiana University Psychology Department subject
pool for partial course credit. An additional 208 participants
recruited via Amazon Mechanical Turk who completed the study
for a payment of $1 per session. All participants resided in the
United States and reported English as their first language.

Materials
After surveying the literature on feature generation studies and
abstract word representation, 593 English nouns were selected
to be normed. Items used in the feature generation studies of
Barsalou and Wiemer-Hastings (2005), McRae et al. (2005),
Wiemer-Hastings and Xu (2005), and Vinson and Vigliocco
(2008) were selected to facilitate comparison between the data to
be collected and that collected by other researchers, to build upon
previous findings that used existing datasets, and because these
items were originally selected to represent a broad range of stimuli
used in the semantic memory literature. Additional stimuli were
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selected from the MRC Psycholinguistic Database (Coltheart,
1981) in order to ensure our stimuli included words with a high
level of diversity in frequency, length, and concreteness. All words
were classified for concreteness/abstractness on the basis of their
rated MRC concreteness (see Analysis 2). See Recchia and Jones
(2012) for the complete set of stimuli.

Procedure
Property generation. Participants were asked to participate in an
online game in which they would be required to describe vari-
ous words, and were informed that a future participant would
be responsible for guessing the words from their descriptions.
Participants were asked to provide 10 short descriptive properties
for each of 20 words that would help their partner guess the tar-
get word. Participants were instructed to describe the concept, not
the word itself; i.e., clues about the letter that a word starts with or
words that it rhymed with were not permitted. Participants were
asked to fill in all 10 blanks, but the online application did not
require all 10 blanks to be filled in order to move on to the next
word. Word type was alternated for each participant (i.e., each
concrete word followed an abstract word and vice versa), and
word type that began the task was balanced across participants.
While McRae et al. (2005) provided explicit instructions about
the sorts of properties they wanted subjects to produce (“phys-
ical properties, such as internal and external parts, and how it
looks, sounds, smells, feels, or tastes; functional properties, such
as what it is used for; where, when and by whom it is used; things
that the concept is related to, such as the category that it belongs
in; and other facts, such as how it behaves, or where it comes
from,” McRae et al., p. 556), our instructions left this consider-
ably more open-ended, asking participants to “provide 10 short
descriptive properties for each word that will help your partner
guess your noun, without specifically telling your partner which
word you have,” with further instructions emphasizing that par-
ticipants were responsible for describing the concept, not surface
features of the word itself (e.g., “rhymes with”). At the completion
of the study, 93% of the original 593 stimuli had been described
by at least 30 participants, the same number of participants per
word recruited by McRae et al. (2005); words for which this was
not the case were excluded from analysis. The resulting set of 550
words included 281 items from the McRae et al. norms.

Measures of semantic richness. Four measures of semantic rich-
ness were obtained for each of the 550 cue words: NW, NF, NSN,
and CD. Each concept’s NW was determined by counting the
number of unique words (types) produced by at least six1 of
the 30 subjects who generated descriptions for that concept. The
set of words produced by at least six participants in response
to a given concept were reformatted as a list of {concept →
word} pairs. Some pairs exhibited a clear semantic relationship
that could be expressed as a predicate (e.g., {key → metal}:
is made of ), while others exhibited semantic relationships that
were not necessarily expressed as predicates but were captured by

1This was the same threshold used by Vinson and Vigliocco (Andrews et al.,
2009), and is nearly identical to the 5-subject threshold used by McRae et al.
(2005).

Wu and Barsalou’s (2009) taxonomy of semantic codes for gener-
ated properties (e.g., {danger → emergency}: event). Yet others
matched categories not covered in the Wu and Barsalou tax-
onomy, but which have been hypothesized to be of particular
importance to abstract concept representations, such as com-
municative acts and social institutions/artifacts (Barsalou and
Wiemer-Hastings, 2005; Wiemer-Hastings and Xu, 2005; Borghi
and Cimatti, 2009).

Although Wu and Barsalou (2009) reported high levels of rater
agreement for concrete words, our initial attempts at using their
taxonomy for our set of abstract words proved relatively unreli-
able, as did our initial attempts to use taxonomies developed for
coding free-response protocols (Barsalou and Wiemer-Hastings,
2005; Wiemer-Hastings and Xu, 2005). After multiple rounds
of classification of a subset of properties by two raters, we ulti-
mately settled on the partial taxonomy detailed in Recchia and
Jones (2012). It is not intended to represent a complete set of
feature types, as it omits several property types hypothesized to
be highly relevant to concrete word representations (e.g., func-
tions; agentive actions; category coordinates). The primary reason
for this was that we wished to include only those feature types
for which high levels of rater agreement could be achieved. Are
bowl and spoon best conceived of as category coordinates (e.g., eat-
ing utensils) or associated entities? Systematic disagreements of
this nature between raters were generally solved either by collaps-
ing multiple categories into one or omitting a category entirely.
However, when fine-grained distinctions could be preserved while
retaining high reliability, we generally did so. Agreement between
two raters on a 500-feature subset of the data was quite good
(Cohen’s κ = 0.78), and so the remainder of the data was coded
by a single rater. Each {concept, word} pair that was produced
by at least six participants and which matched one of these
codes was considered a feature and was included in the NF
measure.

A common trade-off in the development of a coding scheme
is between reliability and comprehensiveness; our criteria clearly
lean toward reliability. Our exclusion of some feature categories
means that some valid features will have escaped our NF mea-
sure, but the feature categories that are coded for are consistent
between raters. Thus, our NW and NF measures represent broad
and narrow ends of the spectrum of definitions of what con-
stitutes a “feature.” As with any measure of NF, it is important
to keep in mind that exactly how features are defined is criti-
cally important to the interpretation of NF effects (or the absence
thereof).

Finally, NSN was calculated for each concept. Pexman et al.
(2008) used global semantic neighborhood values calculated by
Durda et al.’s (2006) WordMine2 application. According to this
measure, a word’s neighborhood consisted of all words occurring
within a specific radius of the high-dimensional space defined by
HAL (Lund and Burgess, 1996), a co-occurrence-based model of
lexical semantics. Yap et al. (2011) replaced this with an alterna-
tive measure of corpus-based neighborhood density that reflected
the mean cosine between a word and its 5000 closest neighbors
in a HAL-like semantic space (Shaoul and Westbury, 2010). In
both studies, while high NSN facilitated performance in lexical
decision, NSN had null effects on semantic decision tasks. Each
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study noted that this was perhaps due to the fact that neighbor-
hood measures conflate close and distant neighbors, which have
opposite effects on processing in some circumstances (Mirman
and Magnuson, 2008). Yap et al. (2011) suggested that this could
be partially addressed by parametrically manipulating the num-
ber of neighbors considered. In addition, the size of the window
used for assessing whether the nearby appearance of two words
counts as a “co-occurrence” should be treated as a parameter that
must be optimized (Bullinaria and Levy, 2007).

Rather than compute a definition of NSN theoretically tied
to a vector space model such as HAL, we calculated NSN using
pointwise mutual information (PMI), a measure of association
frequently used in computational linguistics to contrast the actual
probability of observing two items together (e.g., in the same
window of text) with the probability of having observed them
together if they had been independently distributed (Manning
and Schütze, 1999). PMI is calculated as

log2
p(xy)

P(x)P(y)
(1)

where P(x) represents the probability of observing word x if a
random window of text is selected from the corpus, P(y) the prob-
ability of observing word y, and P(xy) the probability of observing
x and y together. PMI has been shown to be a good predictor
of human semantic similarity and synonymy judgments (Recchia
and Jones, 2009), and allows for a straightforward manner of
calculating a measure of NSN not tied to any particular seman-
tic space model: one can simply count the NW having a PMI
exceeding some threshold t, using a window size of w. Exploratory
manipulation of these parameters indicated that using the TASA
corpus (Zeno et al., 1995), a window size of 8 and a threshold of
7 maximized correlations between this measure of NSN and LDT,
and that the same parameters maximized correlations to NTs as
well. These were therefore the parameters used for the calculation
of NSN in the analyses reported here.

Finally, following Yap et al. (2011), a measure of CD was
obtained from the English Lexicon Project (Balota et al., 2007),
and the number of senses attributed to each word by lexicog-
raphers was obtained from WordNet (Miller, 1990). What is
referred to in the following analyses as CD refers specifically to
log SUBTL-CD, the logarithm of the number of transcribed film
and television programs in the SUBTLEX corpus (Brysbaert and
New, 2009) in which a word appears.

EXPLORING THE SEMANTIC RICHNESS NORMS
In this section, we conduct three basic analyses to explore the
effects of semantic richness in our norms on lexical decision and
naming data extracted from Balota et al. (2007). First, we attempt
to replicate the overall findings of Yap et al. (2011) using our
larger norms that have greater variability in concreteness. Second,
we repeat the analysis separately for the abstract and most con-
crete sets of words in our norms to evaluate whether facilitative
effects of semantic richness are consistent across the two words
types. Finally, we expand our NF variable into counts of par-
ticular types of features to determine which features are most
responsible for explaining the variance in response latency, and

whether these responsible feature types differ between concrete
and abstract words.

ANALYSIS 1: REPLICATING Yap et al. (2011)
To attempt to replicate the effects obtained by Yap et al. (2011)
with our dataset and our measures of NF and NSN, we con-
ducted a hierarchical regression analysis to assess the impact of
measures of semantic richness on lexical decision and NTs. We
used a near-identical set of control variables to Yap et al., but
omitted Coltheart’s N and its analog for phonological neighbors,
as these are measures designed to account for the same under-
lying construct as the improved Levenshtein distance measures
(orthographic/phonological density). Thus, the control variables
entered into the regression were log-frequency (SUBTLEX cor-
pus), number of morphemes, number of syllables, orthographic
Levenshtein distance 20 (Yarkoni et al., 2008), and phonological
Levenshtein distance 20. To control for phonetic biases in voice
key response time measurements, a set of dichotomous onset
variables taking on values of 0 or 1 for each stimulus were used
to code for the absence/presence of 13 phonetic features (Balota
et al., 2007; Yap et al., 2011, 2012); these were entered as additional
predictors in the regression analysis of NT latencies only.

The measures of semantic richness entered were NW, NF,
NSN, and CD, described in the preceding section2. Z-scores of
LDT and NTs were obtained from the English Lexicon Project
(Balota et al., 2007). Control variables were also obtained from
this dataset; these were entered in the first step of the regres-
sion, while measures of semantic richness were entered in the
second step. Descriptive statistics for each of these variables are
presented in Table 1. All 550 stimulus items were included in the
regression.

Results
As anticipated, NF, NSN, and CD were each found to be
independent predictors of variance in LDT (p < 0.001) even
after variance from control variables had been accounted for.
Table 2 reports correlations between each pair of variables, while
Table 3 reports betas and p-values from the regression analysis.
Consistent with Yap et al. (2011), CD remained a significant pre-
dictor for NTs while NSN dropped out3, although we did not find
our measure of NF to predict NTs.

2Like Yap et al. (2011, 2012), we did not include NoA as a predictor in our
primary regression analyses due to the fact that NoA counts were available for
only some of our stimuli, as this would have reduced the power of our analyses
substantially. When the regressions reported in this paper were repeated with
NoA included as a predictor, NoA was not significant in any analysis.
3Also consistent with Yap et al. was a failure to find any contribution of ortho-
graphic and phonological Levenshtein distance, most likely because of the
overlapping variance accounted for by these two predictors. Indeed, the high
correlation between orthographic and phonological Levenshtein distance gave
the set of control variables a maximum VIF (variance inflation factor) of 8.3,
indicating concerning levels of multicollinearity. However, omitting either (or
both) of these predictors did not change which semantic richness variables
predicted significant levels of variance; the only change in the pattern for con-
trol variables was that log-frequency became a significant predictor of lexical
decision times (p < 0.01), a finding more consistent with the known influence
of frequency on lexical decision times.
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Table 1 | Descriptive statistics for stimulus characteristics (predictors and dependent variables).

All 550 stimulus items Set of 147 abstract items Set of 147 most concrete items

M (SD) M (SD) M (SD)

Rated concreteness (MRC norms) 5.07 (1.37) 3.21 (0.49) 6.24 (0.11)

CONTROL VARIABLES

Log frequency (Brysbaert and New, 2009) 2.75 (0.76) 3.15 (0.82) 2.86 (0.63)

Number of morphemes 1.27 (0.53) 1.48 (0.68) 1.09 (0.31)

Number of syllables 1.78 (0.84) 2.03 (0.98) 1.60 (0.76)

Number of letters (length) 5.85 (1.97) 6.35 (2.09) 5.29 (1.80)

OLD20 (Yarkoni et al., 2008) 2.12 (0.84) 2.18 (0.68) 1.97 (0.79)

PLD20 (Yarkoni et al., 2008) 1.96 (0.94) 2.05 (0.84) 1.76 (0.88)

SEMANTIC RICHNESS VARIABLES

Number of semantic neighbors 150.61 (97.77) 199.59 (91.00) 167.08 (96.40)

Number of features (Analysis 1) 11.08 (3.83) 8.56 (3.78) 13.00 (3.24)

Number of features (McRae et al., 2005) 14.13 (3.64) – 15.40 (3.59)

Number of words (Analysis 1) 32.10 (7.47) 27.36 (7.26) 35.61 (6.33)

Log ctx. dispersion (Brysbaert and New, 2009) 2.51 (0.68) 2.91 (0.67) 2.59 (0.57)

Log number of senses (Miller, 1990) 1.32 (0.82) 1.57 (0.79) 1.26 (0.75)

DEPENDENT MEASURES

Lexical decision task RT (Balota et al., 2007) 653.16 (84.53) 644.35 (78.55) 630.71 (74.49)

Lexical decision task RT, standardized −0.48 (0.28) −0.52 (0.27) −0.56 (0.26)

Pronunciation task RT (Balota et al., 2007) 635.37 (61.17) 634.23 (58.83) 624.97 (49.73)

Pronunciation task RT, standardized −0.42 (0.26) −0.42 (0.26) −0.47 (0.22)

Note: OLD20, Orthographic Levenshtein Distance 20, a measure of orthographic neighborhood density; PLD20, Phonological Levenshtein Distance 20, a measure

of phonological neighborhood density. The number of features measure in the McRae et al. (2005) dataset limited to those concepts that were used as stimuli in

our dataset and which were also members of the McRae norms (first column, N = 281; third column, N = 93). Average rated concreteness for the entire stimulus

set was computed over only the 446 words for which MRC concreteness ratings were available.

Discussion
Despite differences in our stimuli and in our measures for
NF and NSN, we found a pattern of effects consistent with
those reported elsewhere in the literature—particularly for lex-
ical decision—giving us confidence that our measures tap into
semantic richness constructs similar to those investigated by other
researchers. However, this in itself tells us nothing about whether
different types of richness contribute differentially to the process-
ing of abstract vs. concrete concepts, as the majority of our dataset
consisted of concrete concepts. In Analysis 2, we examine whether
the same pattern of effects holds for the most abstract and most
concrete words in our dataset.

ANALYSIS 2: SEMANTIC RICHNESS PREDICTIONS FOR
CONCRETE vs. ABSTRACT WORDS
Consistent with prior research, Analysis 1 found unique contri-
butions of NF, NSN, and CD in lexical decision. Do we observe
differential effects for concrete and abstract words? If NSN and
NF pattern differently for words of different levels of concrete-
ness, this would lend support to theories that predict differ-
ences in the involvement of language in abstract and concrete
representations.

Two regressions were conducted using the same methods
described in Analysis 1, but were restricted to the abstract
stimuli and an equally sized subset of the most concrete stim-
uli rather than the entire set (Recchia and Jones, 2012). MRC

concreteness ratings were available for 446 of the 550 stimuli
used in the feature generation task. Of these, 147 met the criteria
used by Wiemer-Hastings and Xu (2005) to define abstract-
ness (MRC rating lower than 4.5; see Wiemer-Hastings and Xu,
2005, Appendix A). This set of 147 abstract concepts was con-
trasted with a set of the 147 most concrete concepts (stimuli with
the highest MRC ratings). Table 1 provides descriptive statistics
for the dataset as a whole and for the abstract/concrete sub-
sets. Hierarchical regressions were computed with the same sets
of control and semantic richness variables as in the previous
analysis.

Results
Table 4 reports betas and p-values for the variables predicting lex-
ical decision and naming latencies. For the set of 147 abstract
words, NSN and CD were found to be significant predictors of
LDT (p < 0.05), but NF was not (p = 0.15). In contrast, for
the set of the 147 most concrete items, NF (p < 0.01) and CD
(p < 0.001) were found to be significant predictors of LDT, but
NSN was not (p = 0.14). When LDT regressions were repeated
with one or neither Levenshtein distance predictor, there were no
changes in which semantic richness variables remained signifi-
cant and non-significant predictors. With Levenshtein variables
omitted, variance inflation factors (VIFs) were acceptably low
for both abstract concepts (4.0 and 1.8 for control and seman-
tic variables, respectively) and concrete concepts (3.3 and 3.0).
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Table 3 | Standardized regression coefficients predicting lexical

decision and naming latencies, using number-of-features measure

derived from data collected in Analysis 1.

Variables Betas

LDT NT

STEP 1: ONSETS

Adjusted R2 0.00 0.17***

STEP 2: CONTROL VARIABLES

Log frequency −0.505 −0.352***

Number of morphemes −0.036 −0.065†

Number of syllables 0.071 0.059

Number of letters (length) 0.286*** 0.407***

OLD20 0.105 −0.075

PLD20 −0.009 0.060

Adjusted R2 0.59 0.55

Change in R2 0.59*** 0.38***

STEP 3: SEMANTIC RICHNESS VARIABLES

Number of features −0.114*** −0.036

Number of words 0.027 −0.021

Number of semantic neighbors −0.135*** −0.027

Log contextual dispersion −0.848*** −1.038***

Log number of senses −0.051 0.034

Adjusted R2 0.63 0.58

Change in R2 0.04*** 0.03***

Note: LDT, lexical decision time (z-scored); NT, naming time (z-scored); OLD20,

Orthographic Levenshtein Distance 20, a measure of orthographic neighborhood

density; PLD20, Phonological Levenshtein Distance 20, a measure of phonolog-

ical neighborhood density. Only semantic richness variables are shown in Step 2

for ease of exposition.
†p < 0.10; ***p < 0.001.

We considered the possibility that NSN was not a significant pre-
dictor for the most concrete words merely because the variance
accounted for by NF and NSN overlapped in such a way that
NSN would have been a significant predictor for the most con-
crete words had NF not been part of the analysis. However, NSN
was still not a significant predictor for the set of the most con-
crete words even when NF was omitted from the regression (p =
0.2). Similarly, NF was not a significant predictor for the set of
abstract words even when NSN was omitted from the regression
(p = 0.4).

For NTs, CD was the only significant semantic richness pre-
dictor for abstract and concrete concepts. NF was a marginally
significant predictor for concrete concepts (p = 0.07), but not for
abstract concepts (p = 0.28).

Discussion
As previously described, different theories of concept represen-
tation make different predictions with respect to the role of
language and semantic features for abstract concepts. Internal
experiences (felt experiences of judgments, cognitive operations,
emotional valence, etc.) have been hypothesized to play a special
role in grounding abstract concepts, as have complex situations
involving multiple actors, particularly social actors (Barsalou and

Wiemer-Hastings, 2005; Wiemer-Hastings and Xu, 2005; Borghi
and Cimatti, 2009). Indeed, the set of abstract concepts under
investigation was rich in these categories of features. Abstract con-
cepts were relatively high in several categories of features hypoth-
esized by these researchers to be of particular importance, with
an average NF per concept of 0.66 for communicative acts (vs.
0.07 for concrete concepts), 0.61 for evaluations (vs. 0.34 for con-
crete concepts), 1.35 for social artifacts/actions (vs. 0.26 for con-
crete concepts), and 2.6 for cognitive states/operations/affects—a
higher mean than in any single feature category for the most con-
crete concepts, although concrete concepts elicited more features
overall.

The fact that abstract concepts were so frequently described
in terms of internal and social experiences hints that these may
indeed be important aspects of abstract concept representation.
However, the present analyses suggest that being rich in these
kinds of features likely does not facilitate early processing of
abstract concepts in the same way that being feature-rich facil-
itates early processing of highly concrete concepts. Of course,
it is certainly possible that annotating participants’ descriptions
for other kinds of features would yield different results. It is
also possible that 147 abstract concepts was simply too few to
detect a NF effect. However, the fact that NF was a significant
predictor of the 147 most concrete concepts’ LDT (p < 0.01),
and approached significance in the NT regression 4 (p = 0.07),
implies a stronger role for features in concrete concept represen-
tations.

Another way in which our results differed between abstract
and concrete concepts was in the degree of facilitation provided
by NSN. In cross-task comparisons, semantic neighborhood den-
sity has been shown to facilitate concrete concept processing in
lexical decision, but not in other tasks such as semantic deci-
sion or word naming (Yap et al., 2012). Analysis 1 replicated this
pattern of results: Using a large dataset consisting of primarily
concrete concepts, NSN was found to be a significant predictor
of lexical decision but not NTs. In Analysis 2, however, no effect
of NSN was found on a smaller dataset consisting of only the
most concrete concepts. This may have been due to the loss of
statistical power resulting from the smaller subset of stimuli (147
items). However, the fact that NSN was a significant predictor for
an equally small set of abstract concepts suggests an important
dissociation.

Given that NSN represents the richness of the linguistic con-
texts in which words denoting particular concepts appear, a

4For the regression using naming times of concrete concepts as the depen-
dent variable, two unexpected results were the extraordinarily high amount of
variance accounted for by the phonetic onset variables (adjusted r2 = 0.25)
and the lack of significance for word length (Table 4). Closer inspection of the
data suggested that this was likely the result of a chance correlation between
word length and onset characteristics. Of the 13 dichotomous phonetic onset
variables, the one having the strongest point-biserial correlation with word
length was the approximant variable (rpb = −0.16, p = 0.06); this variable
also accounted for the most variance (compared with other onset variables)
among naming times in the regression (b = −0.46, p = 0.005). In other
words, our concrete stimuli that began with approximants happened to be
particularly short words, which may have caused phonetic onsets to appear to
be stronger predictors of variance than they truly were.
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Table 4 | Standardized regression coefficients predicting lexical decision and naming latencies.

Variables Betas

Set of 147 abstract items Set of 147 most concrete items

LDT NT LDT NT

STEP 1: ONSETS

Adjusted R2 0.00 0.14** 0.00 0.25***

STEP 2: CONTROL VARIABLES

Log frequency −0.413*** 0.331*** −0.514*** −0.291***

Number of morphemes 0.094 −0.013 −0.080 −0.136*

Number of syllables −0.004 −0.195 −0.098 0.025

Number of letters (length) 0.444** 0.575*** 0.223† 0.234

OLD20 0.053 −0.231† 0.066 −0.186

PLD20 −0.119 0.309* 0.238 0.313†

Adjusted R2 0.54 0.54 0.62 0.53

Change in R2 0.54*** 0.40*** 0.62*** 0.28***

STEP 3: SEMANTIC RICHNESS VARIABLES

Number of features −0.089 0.072 −0.168** −0.115†

Number of words 0.024 0.008 0.083 0.006

Number of semantic neighbors −0.147* −0.072 −0.121 −0.060

Log contextual dispersion −0.890* −1.094* −0.944*** −1.069**

Log number of senses −0.043 0.045 −0.024 0.045

Adjusted R2 0.59 0.58 0.67 0.57

Change in R2 0.04*** 0.04*** 0.05*** 0.04***

Note: LDT, lexical decision time (z-scored); NT, naming time (z-scored); OLD20, Orthographic Levenshtein Distance 20, a measure of orthographic neighborhood

density; PLD20, Phonological Levenshtein Distance 20, a measure of phonological neighborhood density. Only semantic richness variables are shown in Step 2 for

ease of exposition.
†p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001.

greater role for NSN in abstract than concrete concept rep-
resentations is consistent with hypotheses that abstract rep-
resentations are more heavily grounded in language than are
concrete representations, whether researchers attribute this to
differences in the process by which abstract concept meanings
are acquired (Della Rosa et al., 2010; Borghi et al., 2011) or
to abstract concept representations’ purported dearth of multi-
modal perceptual information (Plaut and Shallice, 1993; Paivio,
2010). This finding is not necessarily inconsistent with theo-
ries that ground both concrete and abstract concepts in non-
linguistic content (e.g., Barsalou et al., 2008), as long as these
theories can be extended to explain why measures of language-
based richness are more predictive of LDT for abstract words
than for concrete ones. Theories in which abstract concepts are
represented primarily as conceptual metaphors (Lakoff, 2009)
would also require additional scaffolding to accommodate this
result.

So far, these analyses do not tell us which features are facil-
itating the processing of concrete words, nor if there are sub-
sets of features that may be differentially facilitating abstract
word processing. For example, situation properties, social institu-
tions/artifacts (Barsalou and Wiemer-Hastings, 2005), and inter-
nal experiences (Barsalou et al., 2008) have been argued to
be central to abstract word representations, as have aspects of
meaning related to social/communicative function (Borghi and

Cimatti, 2009; Borghi et al., 2011). Does the number of such
specific properties generated in a feature generation task predict
LDT for abstract words? This issue is investigated in the final
analysis.

ANALYSIS 3: WHAT TYPES OF FEATURES FACILITATE
PROCESSING OF CONCRETE vs. ABSTRACT WORDS?
Although our composite NF variable did not predict lexical deci-
sion or NTs for the set of abstract concepts considered in Analysis
2, perhaps the number of particular kinds of features would have
proved to be reliable predictors if they had been considered as
separate variables. In addition, it seems likely that not all types
of features are equally important for the NF effects observed
for concrete concepts. Features representing differing knowledge
types have been shown to follow different timecourses of activa-
tion (Amsel, 2011), some of which are protracted enough that
it is unlikely that they would have an influence on lexical deci-
sion. The purpose of Analysis 3 was to investigate what types
of features account for the lion’s share of the variance predicted
by NF, and whether this differed between abstract and concrete
concepts.

ANALYSIS 3a: FINE-GRAINED SEMANTIC CATEGORIES
NF was decomposed into 19 separate variables, each of which rep-
resented the NFs of a particular type (e.g., number of locations,
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number of visual properties, etc.) detailed in Recchia and Jones
(2012), and the regressions from Analyses 1 and 2 were repeated.
Descriptive statistics on the NFs in each category are displayed in
Table 5. Three separate regressions were again conducted on all
stimuli, on abstract stimuli only, and on most-concrete stimuli
only, using the same methods as in Analyses 1 and 2, but with NF
broken into 19 separate predictors representing the NFs of differ-
ent semantic types. VIFs for the set of semantic richness variables
remained low after these transformations, with max VIFs of 2.9,
2.0, and 3.8 for the set of all stimuli, abstract stimuli, and most-
concrete stimuli, respectively, and VIFs of each of the 19 new
predictors less than 1.7. Furthermore, because only LDT showed
a reliable effect of NF in Analyses 1 and 2, NTs were not included
as a dependent measure.

Although we coded our own data according to our own fea-
ture taxonomy, we also wished to take advantage of the fact that
the McRae et al. (2005) feature norms have been similarly anno-
tated with a fine-grained set of semantic relations. Specifically,
the WB_Label field labels each of McRae et al.’s 7259 {concept,
feature} pairs with one of 27 categories nearly identical to those
described in Wu and Barsalou (2009, Appendix A). Because these
norms constitute a separate dataset to which a separate set of
feature codes has been applied by other raters, we hoped that
including a comparable analysis that utilized this dataset might

offer complementary insights as to which feature types most
strongly drive NF effects. We therefore also repeated the regres-
sion conducted in Analysis 1 on the subset of 281 concepts that
occurred in the McRae et al. (2005) norms as well as our own
stimuli, replacing NF with 27 separate variables, each of which
represented the NFs in the McRae et al. norms of a particular
WB_Label type (i.e., internal components, locations, and the 25
other feature types appearing in their WB_Label column). These
were not highly intercorrelated, with semantic richness variables
exhibiting a max VIF of 4.1, and the 27 new variables’ VIFs being
less than 2.0 in all cases.

Results
For the regression conducted on the set of 147 abstract words,
none of the 19 new NF variables accounted for unique variance
in LDT. Similarly, for the set of 147 most concrete words, none of
the 19 NF variables individually accounted for unique variance in
LDT. However, for the full set (analog to Analysis 1), the number
of the following kinds of features accounted for unique variance:
locations (locations in which the concept is found; p < 0.001),
associated entities (objects that tend to co-occur in real-world sit-
uations with the concept; p < 0.05), and larger continuous wholes
(objects that are made out of a material described by the concept;
p < 0.05). No other feature classes were a significant predictor of

Table 5 | Descriptive statistics for type counts of different feature categories.

All 550 stimulus items Set of 147 abstract items Set of 147 most concrete items

M (SD) M (SD) M (SD)

Num. communicative acts (com) 0.28 (1.00) 0.66 (1.31) 0.07 (0.48)

Num. materials (has_material) 0.49 (0.92) 0.01 (0.12) 0.77 (1.24)

Num. components (has_part) 1.17 (1.60) 0.04 (0.23) 1.67 (1.66)

Num. larger continuous wholes (is_material_of) 0.21 (0.76) 0.00 (0.00) 0.56 (1.23)

Num. larger discrete wholes (is_part_of) 0.08 (0.45) 0.01 (0.08) 0.16 (0.67)

Num. visual properties (vis) 0.50 (0.88) 0.09 (0.33) 0.73 (1.06)

Num. non-visual perceptual properties (perc) 1.35 (1.55) 0.05 (0.21) 2.07 (1.54)

Num. cognitive states/operations/affects (cog) 1.00 (1.98) 2.61 (3.05) 0.27 (0.51)

Num. contingencies (conting) 0.07 (0.29) 0.16 (0.42) 0.05 (0.24)

Num. evaluations (eval) 0.42 (0.84) 0.61 (1.16) 0.34 (0.66)

Num. negations (neg) 0.31 (0.52) 0.48 (0.63) 0.21 (0.44)

Num. social artifacts/actions (soc) 0.58 (1.35) 1.35 (2.01) 0.26 (0.59)

Num. events (ev) 0.23 (0.57) 0.19 (0.46) 0.27 (0.71)

Num. locations (loc) 0.85 (1.15) 0.29 (0.80) 1.20 (1.17)

Num. manners (man) 0.05 (0.23) 0.05 (0.21) 0.07 (0.26)

Num. participants (par) 0.64 (0.96) 0.78 (1.05) 0.62 (0.95)

Num. associated entities (ae) 1.48 (1.51) 0.65 (1.09) 1.71 (1.45)

Num. times (time) 0.31 (0.81) 0.39 (1.00) 0.21 (0.43)

Num. super/subordinates (tax) 1.06 (1.20) 0.14 (0.40) 1.75 (1.25)

SUPERCATEGORIES

Num. entity properties 3.80 (3.30) 0.20 (0.51) 5.97 (2.74)

Num. introspective properties 1.79 (2.42) 3.86 (3.40) 0.86 (0.94)

Num. taxonomic properties 1.06 (1.20) 0.14 (0.40) 1.75 (1.25)

Num. concrete situation properties 2.33 (1.89) 0.95 (1.40) 2.91 (1.65)

Num. other situation properties 1.23 (1.47) 1.41 (1.59) 1.18 (1.30)
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unique variance in our data. Betas and significance levels for this
analysis are reported in Recchia and Jones (2012).

For the regression using the feature counts, semantic classes,
and data from McRae et al. (2005), locations (p < 0.05) and
associated entities (p < 0.001) were the only two variables that
explained significant unique variance. No other feature classes
accounted for unique variance in this dataset. The full set of betas
and significance levels for this analysis are listed in Recchia and
Jones (2012).

Discussion
Our replications of Analysis 2 with specific feature types proved
inconclusive: When restricting the regressions to 147-concept
subsets and dividing NF into 19 variables, none of the variables
accounted for significant levels of variance in LDTs, although
this could be due to data sparsity. However, on the two replica-
tions of Analysis 1 using our data and the data from McRae et al.
(2005), there was converging evidence that NF effects for concrete
words are primarily driven by locations and associated entities.
Although both location and associated entity features were rel-
atively common, their predictive power does not seem to derive
solely from their overall high frequency. For example, several
classes of properties (non-visual perceptual properties, compo-
nents, subordinates/superordinates, cognitive states/operations)
were more frequent than locations.

The finding that locations and associated entities were pre-
dictive in both datasets is especially striking, considering the
substantial differences in the process according to which features
were coded in each. As previously described, the NF measure in
the McRae et al. norms is a count of the number of distinct pred-
icates used to describe each concept, whereas our measure of NF
was obtained for each concept by counting the number of distinct
{concept → word} pairs that matched a set of predefined seman-
tic relations. Although an investigation of three publicly available
sets of properties (Howell et al., 2005; McRae et al., 2005; Vinson
and Vigliocco, 2008) and two sets of associates (Kiss et al., 1973;
Nelson et al., 1998) indicated that our concept vectors were more
highly correlated with those of the McRae norms than were those
of the other datasets (Recchia et al., 2011), the correlation between
the number of associated entity variables in the two regressions
conducted in Analysis 3a is weak (r = 0.24). This is likely due to
differences in the way the category of associated entity was defined
in our coding categories vs. the Wu and Barsalou (2009) cate-
gories used in the McRae norms (see General Discussion). Thus,
one might reasonably argue that the number of associated entity
variables in these regressions tap different constructs, although
the fact that both are estimates of the number of distinct objects
that occur together with the concept in real-world situations is
suggestive. However, the location categories in the two coding sys-
tems have very similar definitions, and the correlation between
the number of location variables is substantially higher (r = 0.44).
The fact that number of locations accounts for unique variance
across multiple datasets and coding schemas suggests that being
associated with many physical contexts facilitates lexical decision
latencies for concrete concepts.

Surprisingly, variables such as number of visual properties
did not predict LDT, even though shared visual form/surface

properties have predicted LDT in at least one previous study
(Grondin et al., 2009). Our failure to detect an effect may have
been due in part to the high fractionation in feature types, result-
ing in low statistical power. Our final analysis again replicates
Analysis 1, but groups features into the four supercategories pro-
posed by Wu and Barsalou (2009): entity properties (physical
or systemic properties of the entity itself, such as visual prop-
erties), situation properties (properties of situations in which
the entity occurs), introspective properties (properties of men-
tal states associated with the concept), and taxonomic proper-
ties (hypernyms, hyponyms, etc.). The two feature types that
predicted unique variance in Analysis 3 (locations and asso-
ciated entities) are unique among situation properties in that
they pick out concrete objects—i.e., they answer the question,
“what things co-occur with this concept?” As such, they are
distinguished from other situation properties in the following
analysis.

ANALYSIS 3b: COARSE-GRAINED SEMANTIC CATEGORIES
All regressions performed in Analysis 3a were repeated, with two
differences: First, the 27 NF variables corresponding to feature
subtypes in the McRae norms were grouped into five supercat-
egories representing the number of entity properties, introspec-
tive properties, taxonomic properties, concrete situation properties
(associated entities and locations), and other situation proper-
ties. See Wu and Barsalou (2009) for the taxonomy of which
subtypes belong in which supercategories. Second, the feature
subtypes in our own norms were similarly reclassified according
to their reference number in Recchia and Jones (2012) as entity
properties (2, 3, 4, 5, 6, 7), introspective properties (8, 9, 10, 11),
taxonomic properties (19), concrete situation properties (14, 17),
and other situation properties (13, 15, 16, 18). Means and stan-
dard deviations for the NFs in each supercategory are reported in
Table 5.

Results
In our own norms, the supercategory variables that predicted lex-
ical decision latency were number of entity properties (p < 0.05),
number of concrete situation properties (p < 0.01), and number
of other situation properties (p < 0.05). Predictive supercategory
variables for the McRae subset were number of entity properties
(p < 0.05) and number of concrete situation properties (p < 0.01).
The correlation between number of entity properties variables cal-
culated using the McRae data/codes vs. our own data/codes was
0.41. Tables 6 and 7 report betas and significance levels for these
analyses.

As before, no supercategory variables predicted lexical deci-
sion latencies for the set of 147 abstract stimuli. In contrast,
number of entity properties predicted lexical decision laten-
cies for the set of the 147 most concrete nouns, b = −0.167,
p = 0.002.

Discussion
As expected from the results of Analysis 3a, the number of con-
crete situation properties (associated entities and locations) was
a strong predictor of lexical decision latency in both datasets.
In addition, the number of entity properties facilitated lexi-
cal decision, a fact obscured by the many subcategories in
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Table 6 | Standardized regression coefficients predicting lexical

decision latencies, using feature counts and codes from data

collected in Analysis 1.

Variables Betas

STEP 1: CONTROL VARIABLES

Log frequency −0.505***

Number of morphemes −0.036

Number of syllables 0.071

Number of letters (length) 0.286***

OLD20 0.105

PLD20 −0.009

Adjusted R2 0.59

STEP 2: SEMANTIC RICHNESS VARIABLES

Number of words 0.056†

Number of semantic neighbors −0.130***

Log contextual dispersion −0.940***

Log number of senses −0.045

Num. entity properties −0.074*

Num. introspective properties −0.037

Num. taxonomic properties −0.051

Num. concrete situation properties −0.098**

Num. other situation properties −0.060*

Adjusted R2 0.63

Change in R2 0.04***

Note: OLD20, Orthographic Levenshtein Distance 20, a measure of ortho-

graphic neighborhood density; PLD20, Phonological Levenshtein Distance 20,

a measure of phonological neighborhood density. Only semantic richness vari-

ables are shown in Step 2 for ease of exposition.
†p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001.

the previous analysis. Entity properties are properties of the
concept itself, both physical (visual, auditory, etc.) and sys-
temic (e.g., the concept’s components, or entities of which it
is a component); they are extremely infrequent for abstract
concepts–see the General Discussion and Recchia and Jones
(2012), categories 2–7 for examples. One might argue that
number of entity properties reached significance merely because
it was the most frequent property type. However, number
of introspective properties did not predict unique variance for
the 147 abstract stimuli, despite the fact that introspective
properties were more frequent for this group than number
of entity properties were for the group of the most con-
crete stimuli (Table 5). In contrast, number of entity proper-
ties did predict unique variance for the most concrete stim-
uli (p = 0.002). Overall, entity and concrete situation proper-
ties appear to drive NF effects, consistent with the finding
of Analysis 2 that NF predicted LDT for concrete but not
abstract words.

GENERAL DISCUSSION
We replicated the general findings from Pexman et al. (2008)
and Yap et al. (2011) that NSN, NF, and CD all account for
unique variance in LDT. However, repeating this analysis for
only the abstract words and for an equally sized subset of the

Table 7 | Standardized regression coefficients predicting lexical

decision latencies, for all stimuli used in Analyses 1–2 that occur in

the McRae et al. (2005) norms, using feature counts and codes from

the McRae et al. (2005) dataset.

Variables Betas

STEP 1: CONTROL VARIABLES

Log frequency −0.538***

Number of morphemes −0.081†

Number of syllables 0.083

Number of letters (length) 0.299**

OLD20 −0.006

PLD20 0.051

Adjusted R2 0.62

STEP 2: SEMANTIC RICHNESS VARIABLES

Number of words −0.007

Number of semantic neighbors −0.021

Log contextual dispersion −0.450†

Log number of senses −0.075

Num. entity properties −0.083*

Num. introspective properties −0.002

Num. taxonomic properties −0.005

Num. concrete situation properties −0.101**

Num. other situation properties 0.017

Adjusted R2 0.64

Change in R2 0.02***

Note: OLD20, Orthographic Levenshtein Distance 20, a measure of ortho-

graphic neighborhood density; PLD20, Phonological Levenshtein Distance 20,

a measure of phonological neighborhood density. Only semantic richness vari-

ables are shown in Step 2 for ease of exposition.
†p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001.

most concrete words, NSN (but not NF) facilitated processing
for abstract words, while NF (but not NSN) facilitated process-
ing for the most concrete words. As Yap et al., (2011, 2012)
noted, results for NTs were generally attenuated and did not show
reliable effects of NF or NSN. However, length, log frequency, and
CD generally predicted significant levels of variance for naming
as well as LDT. Due to the correlation that Levenshtein distance
measures (OLD20, PLD20) shared with each other and with log
frequency, log frequency was not always a reliable predictor of
LDT when these variables were included in the regression, but
it was a consistent predictor when one or both of these variables
were omitted.

With respect to the types of features that drive NF effects in
lexical decision, we did not find evidence to suggest that hav-
ing a high number of introspective, situation properties, social,
or communication-related properties facilitated the processing
of abstract or concrete words. This may have simply been due
to data sparsity, as no fine-grained feature type predicted LDT
in the analyses that were restricted to the 147 abstract or the
147 most concrete stimuli in the dataset. However, when ana-
lyzing our entire set of stimuli, we found a similar pattern of
effects across two sets of feature norms—ours and those of McRae
et al. (2005)—showing in each case, that the number of entity
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properties and concrete situation properties (locations and asso-
ciated entities) that were attributed to a concept predicted its
lexical decision latency. Entity properties generally refer to physical
characteristics of objects, and are far more frequent for concrete
words (M = 3.80, SD = 3.30) than for abstract words (M =
0.20, SD = 0.51). Generally speaking, entity properties were only
attributed to abstract words that were capable of being visual-
ized or audiated despite being rated as abstract (e.g., hell →
brimstone; crash → loud), or which had structured components
(story → plot). Locations are references to places in which the
concept might be located; examples from our data include heli-
copter → air, raisin → box, pigeon → city, cancer → lung,
etc. These, too, were quite frequent for concrete nouns (Table 5).
Examples for abstract concepts were rare, but did occur, e.g.,
ache → tooth, thought → head, heaven → clouds, plea →
court, etc.

Associated entities are similar to locations in that they pick
out entities that co-occur with the concept in real-world situa-
tions. However, the category is significantly broader: an associated
entity need not be the location in which the concept is located,
but it may occur in the same location as the concept in the real-
world. Examples include squirrel → acorns, beach → castles,
etc. Note that in these particular examples, there is no similar-
ity relation: squirrels are not similar to acorns, and beaches are
not similar to castles. However, our raters found that in many
cases, it was extremely difficult to disentangle these notions, as
many items that are similar to each other also tend to occur in
similar contexts (comb → brush, broccoli → cauliflower, wall
→ ceiling, spoon → fork, etc.). Therefore, we did not attempt
to distinguish the two types of relation, but collapsed them both
under a single category: as noted in Recchia and Jones (2012), we
defined code 17 as “An object similar to the entity, or tending to
co-occur with the concept in real-world situations.” The defini-
tion of associated entity in the Wu and Barsalou coding scheme
that was used to code the McRae norms is considerably nar-
rower: “an entity in a situation that contains the focal concept”
(Wu and Barsalou, 2009, p. 187). Despite these differing defi-
nitions, the number of associated entities per concept predicted
LDT when analyzing both our data/codes and the data/codes of
McRae et al.

Given that NF facilitated processing for the set of the 147
most concrete concepts, but not for the set of 147 abstract con-
cepts, and that the full dataset consisted primarily of concrete
concepts, it seems likely that being rich in locations, associ-
ated objects, and salient physical characteristics (entity prop-
erties) facilitates lexical decision for concrete concepts. It is
inconclusive whether this is the case for abstract concepts. One
intriguing similarity between locations and associated entities
is that each picks out concrete entities (places or objects) that
co-occur with the concept in day-to-day situations. This sug-
gests that the features that facilitate concrete concept processing
include those that pick out a concept’s real-world contexts (cf.
Hare et al., 2009). The consistency in the pattern of effects
observed suggests that NF’s ability to predict unique LDT vari-
ance owes at least in part to the fact that it captures the number
of places and objects associated with a concept in the real-
world.

In contrast, rich linguistic contexts (many semantic neigh-
bors) appear to facilitate early activation of abstract concepts,
as demonstrated in Analysis 2. This may be due to the fact that
we acquire and use abstract words primarily in social situations
in which language is highly salient (Borghi and Cimatti, 2009),
or that we have no choice but to ground abstract words in
language definitions because they have no perceptual referents
(Paivio, 1986), or because language use encodes information
about both abstract and concrete words (Louwerse, 2008) and
the information so encoded is simply more relevant to abstract
concept semantics. Given that NSN predicted LDTs for the entire
dataset—composed primarily of concrete words—semantic den-
sity certainly seems to have a role to play for concrete concepts.
However, Analysis 2 demonstrates that the relative influence of
NF appears to be greater than that of NSN for the most con-
crete words, whereas the reverse appears to be true for abstract
words. Furthermore, this dissociation does not seem to be an
artifact of overlapping variance: For the most concrete words,
NSN remained insignificant even when NF was removed from
the regression, whereas for the most abstract words, NF remained
insignificant even when NSN was removed from the regres-
sion. This was as expected, given the low correlation between
NF and NSN.

While these results do not rule out the possibility that abstract
words are simply grounded in different sorts of features than
are concrete words, it appears that features of the kind we have
investigated in this study do not provide the same sort of pro-
cessing advantage for abstract as for concrete words. This is
perhaps not surprising, given the shallowness of processing that
is required for lexical decision—simulation of emotions, inter-
nal states, communication-related words, etc., may indeed prove
facilitative in tasks requiring deeper processing. Future directions
will investigate the influence of NF and NSN on tasks requir-
ing greater depth of processing, such as semantic decision, and
test alternative coding schemes for the classification of abstract
features.

ALTERNATIVE TASKS
Although semantic richness effects can be detected across a vari-
ety of tasks, task-specific differences can reveal important insights
into the structure of semantic memory. In studies using con-
crete stimuli, NF effects have been observed for standard lex-
ical decision, go/no-go lexical decision, progressive demasking,
and semantic classification, while semantic neighborhood den-
sity only accounts for unique variance in standard and go/no-go
lexical decision (Pexman et al., 2008; Yap et al., 2011, 2012). This
difference has been attributed to feedback from orthography, as
well as to differences in task demands. Because lexical decision
requires only a familiarity judgment, the more neighbors the bet-
ter: every additional neighbor serves as evidence that the target is
in fact a word, and the combined activation of many such neigh-
bors speeds the decision (as long as such neighbors are sufficiently
distant, cf. Mirman and Magnuson, 2008). If linguistic associates
are a core part of the representations of abstract concepts in a
way that they are not for concrete ones, NSN may pattern differ-
ently for abstract words on deep processing tasks such as semantic
classification.
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Alternatively, if features represent ad-hoc verbal descriptions
of the content of simulations and simulations for abstract con-
cepts are activated relatively slowly due to their greater complexity
(Barsalou and Wiemer-Hastings, 2005), this could provide an
alternate explanation of why NF facilitates lexical decision for
concrete but not abstract stimuli. If this is the case, then NF might
facilitate semantic classification of abstract concepts, even though
it had no measurable effect on abstract concept LDTs. Further
study with a greater variety of semantic tasks could shed light on
these intriguing questions.

ALTERNATIVE CODES
Any classification scheme that attempts to shoehorn a rich con-
ceptual space into a set of discrete and non-overlapping cate-
gories faces significant limitations, and ours is no exception. For
example, in the property generation task conducted by Barsalou
and Wiemer-Hastings (2005), utterances tagged with code EVC
(“any act of communication,” p. 159) were far more frequent
in participants’ descriptions of abstract concepts, and there is
some evidence to suggest that abstract concepts may be primar-
ily grounded in acts of communication (Borghi and Cimatti,
2009; Della Rosa et al., 2010; Borghi et al., 2011). Therefore,
we wished to include a category (Code 1) encompassing com-
municative acts (e.g., explain, demand, call, shout) and entities
with a communicative purpose (e.g., instructions, messages, con-
versation, recommendation, argument), as this seemed likely to
be a type of feature that might participate in abstract concept
representations. As many abstract concepts are themselves com-
municative terms, this category often overlapped with code 19:
taxonomic superordinates/subordinates. Due to the taxonomic
ambiguity of these terms (is an inquiry a kind of request?) and
the relatively low theoretical relevance of taxonomic relationships
to abstract concept representations, such conflicts were resolved
by defining code 19 as “hypernyms and hyponyms not otherwise
coded.” These were seemingly sensible decisions that resulted in
high interrater reliability due to ease of coding: All words that
described communicative acts or entities with a communicative
purpose were tagged with code 1. However, it also meant that the
communication category became populated with a mishmash of
synonyms (yell → holler), hypernyms (rule → decree), functions
(phone → communicate), terms that occur when participants
describe situations relevant to the concept or its opposite (truth
→ lie), etc. This example alone should make it clear that many
possible alternative coding schemes are possible. Although we
found no influence of NF on lexical decision for abstract words,
alternative methods of subdividing the feature space may reveal
feature categories for which a higher NFs does facilitate abstract
LDTs.

ALTERNATIVE APPROACHES
While it is possible that we did not detect NF effects for
abstract concepts due to the wrong task or the wrong codes,
it is also possible that counting features is simply not a use-
ful method for uncovering the structure of abstract concepts.
Indeed, our finding that rich linguistic contexts facilitate LDT
moreso for abstract words than for highly concrete words is

consistent with theoretical claims that language plays a central
role in abstract concept representations (Paivio, 1986; Crutch
and Warrington, 2005; Borghi et al., 2011), as well as with
neuroimaging meta-analyses showing greater activation in lan-
guage areas during abstract concept processing (Binder et al.,
2009; Wang et al., 2010). What might such language-based
representations look like? One promising answer comes from
corpus-based models of semantic memory such as LSA (Landauer
and Dumais, 1997), which construct semantic representations
on the basis of distributional statistics. Several computational
modelers have demonstrated that superior performance can be
achieved on various tasks by extending distributional models
with sensorimotor information for concrete concepts (Howell
et al., 2005; Jones and Recchia, 2010; Steyvers, 2010; Johns
and Jones, 2012); abstract concepts are indirectly grounded
in such models by virtue of their linguistic relationships with
(grounded) concrete concepts. Alternatively, the corpus-based
model of Vigliocco et al. (2009) directly grounds abstract con-
cepts in a combination of linguistic and affective informa-
tion.

Other approaches include the work of Schmid (2000), who
conducted an intensive corpus-based study that elucidates con-
nections between the syntactic and semantic properties of a wide
range of abstract nouns and presents an in-depth taxonomy of
abstract concept types. Yet others have investigated abstract con-
cepts using such diverse lenses as metaphor (Lakoff, 2009), force
dynamics (Talmy, 1988), and many others (see Pecher et al., 2011,
for a review). Feature generation should be considered merely
one of many possible tools for investigating the nature of abstract
concept representations.

CONCLUSION
Questions about the role of context in abstract concept repre-
sentation go back at least as far as Schwanenflugel and Shoben
(1983). Ultimately, the greatest benefit of feature norms for a
large set of abstract and concrete concepts may be a better
understanding of the precise role that context plays in scaffold-
ing word meaning. The present studies suggest that, at least in
lexical decision, NSN facilitates activation of abstract concepts,
while NFs facilitates activation of concrete concepts. Analysis of
two datasets of feature generation data provided converging evi-
dence that the number of entity properties and concrete situation
properties (i.e., locations and associated entities) primarily drove
our NF effects. A broad interpretation of these results consis-
tent with some theories of concept representation is that while
rich language contexts facilitate abstract concept recognition, rich
physical characteristics, and contexts facilitate concrete concept
recognition. Similar investigations using different tasks are likely
to add further nuance to our understanding of different forms
of semantic richness and the conceptual representations they
support.
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