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In functional connectivity analyses in BOLD (blood oxygenation level dependent) fMRI
data, there is an ongoing debate on whether to correct global signals in fMRI time
series data. Although the discussion has been ongoing in the fMRI community since the
early days of fMRI data analyses, this subject has gained renewed attention in recent
years due to the surging popularity of functional connectivity analyses, in particular graph
theory-based network analyses. However, the impact of correcting (or not correcting)
for global signals has not been systematically characterized in the context of network
analyses. Thus, in this work, I examined the effect of global signal correction on an fMRI
network analysis. In particular, voxel-based resting-state fMRI networks were constructed
with and without global signal correction. The resulting functional connectivity networks
were compared. Without global signal correction, the distributions of the correlation
coefficients were positively biased. I also found that, without global signal correction,
nodes along the interhemisphic fissure were highly connected whereas some nodes and
subgraphs around white-matter tracts became disconnected from the rest of the network.
These results from this study show differences between the networks with or without
global signal correction.
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INTRODUCTION
Since the early days of fMRI, neuroimaging researchers have doc-
umented highly correlated time courses in distinct brain areas
even when a subject is not engaged in a cognitive task. For exam-
ple, Biswal et al. described strong correlation between the left
and right motor cortices while the subjects were at rest (Biswal
et al., 1995). Another well-documented example is a collection
of brain areas, known as the default mode network (DMN), that
exhibit similar time courses when subjects are at rest (Raichle
and Snyder, 2007). Brain areas following a highly correlated time
course despite the lack of external stimulus or cognitive engage-
ment are often referred as functionally connected. Conversely func-
tional connectivity between distinct brain areas can be assessed
by examining the temporal correlation or coherence between
the recordings from those areas. While early connectivity stud-
ies focused on functional connectivity to/from a particular seed
region in the brain (for example, Greicius et al., 2003; Fox et al.,
2005, 2006), in recent years, functional connectivity among dif-
ferent brain areas is often examined in the form of functional
connectivity networks (Eguiluz et al., 2005; Salvador et al., 2005;
Achard et al., 2006). Such a brain network can be constructed
by examining functional connectivity originating from each dis-
tinct brain area, and organizing such connections from all the
brain areas in the form of a network, with each node representing
a brain area and each edge representing functional connectivity
between two nodes (or brain areas) (Bullmore and Sporns, 2009;
Bullmore et al., 2009; Rubinov and Sporns, 2010).

When constructing a functional brain network, it is important
to process fMRI data in a way that the resulting network does not
include erroneous functional connectivity resulting from con-
founding biases or signals not necessarily of a neurological origin.
Thus, in order to construct a network, it is a common practice to
pre-process fMRI data before assessing functional connectivity. In
particular, a band-pass filter is applied to focus on low frequency
BOLD fluctuations (Cordes et al., 2001; Fox et al., 2005; Van Dijk
et al., 2010). In addition, rigid-body transformation parameters,
generated during motion correction and alignment, are regressed
out from fMRI time series data to lessen the impact of motion in
the connectivity analysis (Fox et al., 2005). Physiologically con-
founding noises also need to be corrected. This is often carried
out by regressing out the average time courses from the ventri-
cles, white matter, and/or the whole-brain (Fox et al., 2005), often
referred as global signals.

Among the pre-processing steps described above, regressing
out global signals is somewhat controversial. The controversy
stems from an argument that regressing out the average whole-
brain signal inherently induces negative correlation, or anti-
correlation (Murphy et al., 2009). There have been a number of
studies supporting or refuting the need for global signal regres-
sion in connectivity analyses (Chang and Glover, 2009; Fox et al.,
2009; Weissenbacher et al., 2009; Van Dijk et al., 2010; Anderson
et al., 2011; Carbonell et al., 2011; Chai et al., 2012; He and Liu,
2012). Interestingly, some of these studies found that the distri-
bution of correlation coefficients is positively biased (Fox et al.,
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2009; Murphy et al., 2009; Chai et al., 2012). Moreover, Fox et al.
(2009) found that extensive brain areas are positively correlated
with the whole-brain signal; this may explain the positive bias in
the correlation coefficients since a large number of brain areas
exhibit correlation to the same signal.

It should be noted that most of these studies described
above are seed-based functional connectivity studies, in which
correlation coefficients are calculated between the time series
from a particular seed region and each individual voxel in the
brain. On the other hand, in graph-theory-based network anal-
yses, functional connectivity networks are constructed by cal-
culating correlation coefficients in all possible pairs of brain
areas or voxels. Thus, it is still unclear how correcting for
the global signal affects the resulting functional connectivity
networks. During construction of functional connectivity net-
works, emphasis is often placed on highly positive correlations
rather than negative correlations or anti-correlations. Moreover,
investigators routinely select a certain proportion of high cor-
relation coefficients to define edges in their networks; thus a
positive bias in the distribution of correlation coefficients may
not impact the network structure. Therefore, in this report, I
investigate the impact of (not) regressing out global signals in
functional connectivity networks. In particular, I constructed
networks with and without global signal correction using the
resting-state fMRI data from the same set of subjects. Then I
examined how the network organization differed between these
networks. Namely, I focused on the distribution of correlation
coefficients, the locations of high degree nodes—or hubs, and
the modular organization in voxel-based functional connectivity
networks.

MATERIALS AND METHODS
fMRI DATA
I used the same dataset as the study described in Hayasaka and
Laurienti (2010). I used this data set since it has been exten-
sively studied and characterized in my previous work (Hayasaka
and Laurienti, 2010). This data set consisted of fMRI time series
data from 10 normal subjects (5 females, average age 27.7 years
old, SD = 4.7). The fMRI data were acquired while the subjects
were resting using a gradient echo echo-planar imaging (EPI)
protocol with TR/TE = 2500/40 ms on a 1.5 T GE MRI scanner
with a birdcage head coil (GE Medical Systems, Milwaukee, WI).
Other acquisition parameters included: 24 cm field of view, and
64 × 64 acquisition matrix. The time series data included 120
images acquired over 5 min. The acquired images were corrected
for slice timing and motion, and subsequently were realigned.
Then the images were spatially normalized to the MNI (Montreal
Neurological Institute) space and re-sliced to 4 × 4 × 5 mm voxel
size using an in-house processing script based on the SPM pack-
age (Wellcome Trust Centre for Neuroimaging, London, UK).
The resulting fMRI time series data were band-pass filtered
(0.009–0.08 Hz) to attenuate respiratory and other physiological
noises. These processing steps are widely used in fMRI func-
tional connectivity studies (Fox et al., 2005; Van Den Heuvel
et al., 2008). More details on my data pre-processing steps can
be found elsewhere (Hayasaka and Laurienti, 2010; Joyce et al.,
2010).

GLOBAL SIGNAL REGRESSION
I considered four different methods of global signal correction.
Although there are many possible ways of correcting global sig-
nals, examining a large number of such methods may be beyond
the scope of this work. Thus, I focused on the methods that
have been widely used in the literature examining the impact
of global signal correction (Chang and Glover, 2009; Fox et al.,
2009; Murphy et al., 2009; Weissenbacher et al., 2009; Van Dijk
et al., 2010; Anderson et al., 2011; Chai et al., 2012; He and Liu,
2012; Hallquist et al., 2013). Mean time courses from the entire
brain (the average of voxel values within the brain parenchyma
mask including gray and white matter), the deep white matter
(average time course in an 8 mm radius sphere within the ante-
rior portion of the right centrum semiovale composed entirely of
white matter), and the ventricles (average of time courses within
the ventricle mask) were extracted and used in global signal cor-
rection as described below. In the first method, 6 rigid-body
transformation parameters, generated during the realignment
(note: NOT normalization) step, were regressed out from the
fMRI time series data (Fox et al., 2009). This method was referred
as the no correction method (NoCorr), since no global signals,
besides the motion parameters, were regressed out from the data.
This method demonstrated a situation in which global signal
correction is completely omitted. In the second method, in addi-
tion to the motion parameters as described above, the average
time course from the deep white matter and the ventricles were
regressed out, but not the average whole-brain signal (Chang
and Glover, 2009; Fox et al., 2009; Weissenbacher et al., 2009;
Anderson et al., 2011; He and Liu, 2012). This method was
referred as the no whole-brain signal method (NoWB). In the
third method, only the whole-brain signal was regressed out in
addition to the motion parameters (Murphy et al., 2009; Van
Dijk et al., 2010; Anderson et al., 2011; He and Liu, 2012). This
method was referred as the whole-brain only method (WBonly).
Finally, in the fourth method referred as the full method (Full),
the motion parameters as well as the average signals from the
white matter, ventricles, and whole-brain were regressed out (Fox
et al., 2009; Van Dijk et al., 2010; Chai et al., 2012; Hallquist et al.,
2013). The Full networks served as the baseline in this study, char-
acterizing differences in the network organization when one or
more global signal variables are omitted. Figure 1 describes the
overview of the different methods. It was noted by one of the
reviewers that regression after filtering has been criticized by some
studies (Hallquist et al., 2013; Saad et al., 2013).

NETWORK CONSTRUCTION
Processed in one of the four methods described above, the fMRI
time series data from each subject were then used to construct
a functional brain network, with each node representing a voxel
and each edge representing a strong linear correlation between
two voxel time courses. To ensure all the networks from all
the subjects have the same set of nodes, a binary mask image
was generated comprising 15,996 voxels within the AAL (auto-
mated anatomical labeling) atlas (Tzourio-Mazoyer et al., 2002).
Among these voxels within the mask, a cross-correlation matrix
was calculated, with each element being the correlation coefficient
between two voxel time courses. The resulting correlation matrix
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FIGURE 1 | A schematic of the three global signal correction

methods. Motion corrected and band-pass filtered fMRI time series data
from each subject were processed in four different methods to correct
for global signals. In the first method, only the 6 parameters associated
with a rigid-body transformation were regressed out from the fMRI time
series (NoCorr). In the second method, in addition to the motion

parameters, the mean signals from the deep white matter and the
ventricles were also regressed out (NoWB). In the third method, only the
whole-brain signal is regressed out in addition to the motion parameters
(WBonly). In the fourth method, the motion parameters as well as the
mean signals from the white matter, the ventricles, and the whole-brain
were regressed out (Full).

consisted of 255,856,020 correlation coefficients (excluding the
main diagonal elements, which are 1).

I then examined the distribution of the correlation coefficients
in the correlation matrix. The exact marginal distribution of each
correlation coefficient r is

f (r) = �((t − 1)/2)

π1/2�((t − 2)/2)

(
1 − r2)(t − 4)/2

(1)

where t is the number of time points (Johnson et al., 1995; Cao
and Worsley, 1999). However, correlation coefficients in the cor-
relation matrix are not independent. Rather, collectively they
represent a 6-dimensional “connexel” field (Worsley et al., 1998;
Cao and Worsley, 1999). Consequently the collective distribution
of all the correlation coefficients in this correlation matrix does
not follow (1). Nevertheless, since the marginal distribution (1)
is centered around 0 and symmetric, the histogram of the cor-
relation coefficients should be centered at 0 and symmetric. Any
deviation from mean = 0 can be an indication of a systematic

bias in the correlation matrix. Or, if there is a true global sig-
nal present in all the voxels that also biases the distribution of
correlation coefficients. Let W1 = Y1 + G and W2 = Y2 + G be
two voxel time courses, where Y1 and Y2 indicate intrinsic time
courses in both voxels and G is the global signal present in both
W1 and W2. If the global signal G is uncorrelated with neither
Y1 nor Y2 [i.e., Cov(Y1, G) = 0 and Cov(Y2, G) = 0], then the
covariance between the two voxel time courses W1 and W2 is

Cov (W1, W2) = Cov(Y1 + G, Y2 + G)

= Cov(Y1, Y2) + Cov(G, G)

= Cov(Y1, Y2) + Var(G)

The variance of W1 and W2 are Var(W1) = Var(Y1) + Var(G)

and Var(W2) = Var(Y2) + Var(G), respectively. Thus, even if Y1

and Y2 are uncorrelated [i.e., Cov(Y1, Y2) = 0], the correlation
coefficient between W1 and W2
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Corr (W1, W2) = Cov(W1, W2)√
Var(W1)Var(W2)

= Var(G)√
(Var(Y1) + Var(G))(Var(Y2) + Var(G))

> 0

is always positive since Var(G) is always positive. Because of this,
the distribution of correlation coefficients in this case no longer
follows (1) but follows a non-central form

f (r) = (1 − ρ)(t − 1)/2
(
1 − r2

)(t − 4)/2

π1/2� ((t − 1)/2) � ((t − 2)/2)

∞∑

j = 0

(
�((t − 1 + j)/2)

)2

j! (2ρr) j (2)

where ρ = Corr(W1, W2). This distribution is no longer sym-
metric around 0. In the literature on functional connectivity,
there have been some reports that the distribution of correla-
tion coefficients is positively biased when global signals are not
corrected (Fox et al., 2009; Murphy et al., 2009; Chai et al.,
2012). Thus, to examine whether there is such a systematic bias,
I generated a histogram of the correlation coefficients for each
method (NoCorr, NoWB, WBonly, or Full) for each subject. The
means from the correlation coefficient distribution were com-
pared across different correction methods by paired two-sample
t-tests.

The correlation matrix from each subject and each correction
method was then used to construct a functional connectivity net-
work. In particular, the correlation matrix was thresholded to
generate a binary adjacency matrix with 1 indicating the pres-
ence and 0 indicating the absence of an edge between two nodes,
with each edge representing a strong positive correlation. I chose
a positive threshold in a way to control the number of nodes N
and the average node degree K in the resulting network. In par-
ticular, I selected a correlation threshold such that the ratio S =
log(N)/ log(K) is the same across subjects. I chose S = 3.0 since it
has been shown to capture the network characteristics effectively
(Hayasaka and Laurienti, 2010) and the resulting edge density is
comparable to that of a self-organized network of a similar size
(Laurienti et al., 2011). I examined the results with different val-
ues of S ranging between 2.5 and 3.5, and the results were similar
across S-values in comparisons of network characteristics across
the methods (results not shown). Thus, throughout this paper,
only the results for the networks with S = 3.0 are shown.

Once the network was generated, various network character-
istics were compared. This includes whole-network metrics such
as clustering coefficients C and path length L (Watts and Strogatz,
1998; Stam and Reijneveld, 2007). While C represents the prob-
ability that a node’s neighbors are also neighbors to each other,
L is the average of shortest distances between any two nodes in a
network, in terms of the number of edges separating them or the
geodesic distance. These metrics were compared across different
methods by paired two-sample tests. Moreover, I examined the
consistency of high degree nodes, or hubs, across subjects. This
was done by examining the spatial overlap of top 20% highest
degree nodes across subjects (Hayasaka and Laurienti, 2010). The

resulting overlap images were compared across different correc-
tion methods. If global signal correction does not influence the
overall structure of the network, then the overlap maps should
appear similar across different correction methods. On the other
hands, if systematic biases are introduced by global signal correc-
tion, or by the lack thereof, then the overlap maps may appear
different across the correction methods.

MODULAR ORGANIZATION
In a network, some groups of nodes may have a large num-
ber of connections among themselves compared to connections
between such groups. These highly interconnected sets of nodes
are often referred as modules. If a network has a modular struc-
ture, then its nodes can be grouped into a number of modules,
with each node belonging to a single module. The human brain
networks have been shown to have modular organization (He
et al., 2009; Meunier et al., 2009; Power et al., 2011; Rubinov
and Sporns, 2011). Despite the difference in the number of nodes
in these previous studies, the number of modules is similar and
the modular parcellation is comparable (Moussa et al., 2012).
Thus, I hypothesize that, if a lack of global signal correction alters
the macro-scale organization of a functional brain network, such
altered organization may manifest as changes in the modular
organization.

To investigate the modular organization, I applied an algo-
rithm called Qcut (Ruan and Zhang, 2008). Qcut is an iterative
algorithm to find a near optimal modular parcellation of a net-
work, by maximizing modularity Q, a metric that quantifies how
parcellated a network is relative to a random network of a com-
parable size. Q is zero if the network exhibits no community
structure, whereas a large Q is a strong indicator of community
structure in a network (Clauset et al., 2004). The upper limit of
Q is 1. For each fMRI network, before running Qcut, I identified
sub-networks that were isolated from the largest connected net-
work component (or the giant component), and grouped such
nodes into a “junk” module. Then the giant component was ana-
lyzed by Qcut, resulting in a modular parcellation. The resulting
Q was compared across different correction methods, and the
consistency of some modules was examined.

RESULTS
CORRELATION COEFFICIENT DISTRIBUTION
Figure 2 shows distributions of correlation coefficients for all the
subjects under different correction methods. While the distribu-
tion was centered at 0 for all the subjects for the Full and WBonly
methods, the distribution was positively skewed in some sub-
jects for the NoWB and NoCorr methods. Between NoWB and
NoCorr, the distribution appeared more skewed for NoCorr. This
was confirmed by the mean of these distributions. The mean (SD)
of the mean correlation coefficient across subjects was 0.00006
(0.0004) under the Full method, 0.00006 (0.0004) under the
WBonly method, 0.050 (0.035) under the NoWB method, and
0.086 (0.056) under the NoCorr method. I compared the mean
correlation coefficient between different methods by paired two
sample t-tests (since the networks originate from the same set
of subjects). I found a significant difference between the Full
and NoWB methods (p = 0.001), as well as between the Full
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and NoCorr methods (p < 0.001). However, no significant dif-
ference was found between the Full and WBonly methods (p =
0.70). Significant differences were also found between WBonly
and NoWB methods (p = 0.001) as well as between the WBonly
and NoCorr methods (p < 0.001). These results indicate that the
correlation matrix may be systematically biased when the whole-
brain signal is not regressed out. These results are consistent with
previous reports on seed-based connectivity studies (Fox et al.,
2009; Murphy et al., 2009; Chai et al., 2012).

NETWORK METRICS
Table 1 shows the average C and L for the four different meth-
ods. While clustering coefficient C appeared similar across dif-
ferent correction methods, path length L was somewhat larger
for the NoWB and NoCorr networks, in comparison to the
Full and WBonly networks. Paired two-sample t-tests revealed
that the path lengths were marginally larger for the NoWB,
WBonly, and NoCorr networks when compared to that of the
Full networks (p = 0.09, p = 0.03, and p = 0.05, respectively).
This may be because the NoWB, WBonly, and NoCorr net-
works fragmented more than the Full networks. In fact, the size
of the largest connected network component Nc, or the size of
the giant component, was smaller in the NoWB, WBonly, and
NoCorr networks compared to the Full networks (paired t-test
p = 0.03, p = 0.02, and p = 0.006, respectively) (see Table 1).
Since my method of path length calculation was based on the
reciprocal mean of the geodesic distance between nodes (Latora
and Marchiori, 2001; Hayasaka and Laurienti, 2010), discon-
nected network components were accounted as increased path
length. Furthermore, the proportion of connected nodes (i.e.,
nodes with at least one connection) was much lower in the
NoWB and NoCorr networks compared to the Full networks
(paired t-test p = 0.04 and p = 0.01, respectively) (see Table 1).
However, the proportion of connected nodes was only marginally
smaller in the WBonly networks compared to the Full networks

FIGURE 2 | Distributions of correlation coefficients. Distributions of
correlation coefficients from different subjects’ networks under different
global signal correction methods. While the distributions are centered at
zero for the Full and WBonly methods, the distributions are positively
skewed for some subjects for the NoWB and NoCorr methods.

(paired t-test p = 0.08). It should be noted that the differ-
ence in the path length L as described above cannot be simply
attributed to the differences in the distribution of correlation
coefficients. This is because a distribution of correlation coef-
ficients does not describe the network structure or topology,
as it lacks information on how nodes are connected to each
other.

NODE DEGREE DISTRIBUTION
Figure 3 shows the degree distributions for the networks con-
structed with different correction methods. In all the methods,
the degree distributions seem to follow an exponentially trun-
cated power-law distribution, as I previously reported (Hayasaka
and Laurienti, 2010). However, the shape of the distribu-
tions appeared more variables in the NoWB and NoCorr
networks. To confirm this, the variance of the largest node
degree was compared across different correction methods by
an F-test. The variability was significantly larger in the NoWB

Table 1 | Average network metrics.

Correction C L Nc Proportion

method Mean (SD) Mean (SD) Mean (SD) of connected

nodes

Mean% (SD%)

Full 0.230 (0.039) 5.29 (1.01) 14897 (916) 94 (4)

NoWB 0.223 (0.031) 7.35 (3.90) 13246 (2430) 86 (13)

WBonly 0.236 (0.039) 5.49 (1.18) 14699 (1095) 94 (5)

NoCorr 0.224 (0.032) 8.72 (5.11) 12245 (2616) 81 (15)

The average network metrics across subjects were calculated for the networks

with different global signal correction methods. Clustering coefficient C and path

length L, as well as the size of the giant component Nc and the proportion of

nodes with at least one connection are presented.

FIGURE 3 | Degree distributions. Degree distributions of the Full, NoWB,
WBonly, and NoCorr networks are shown. Although all the distributions
seem to follow an exponentially truncated power-law distribution, the
degree distributions appear more variable across subjects in the NoWB and
NoCorr networks.
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and NoCorr networks compared to the Full networks (F-test
p = 0.008 and p = 0.005, respectively), or compared to the
WBonly networks (F-test p = 0.01 and p = 0.008, respectively).
However, no significant difference in variability was found
between the Full networks and the WBonly networks (F-test
p = 0.82).

NETWORK HUBS
Next, I examined the locations of high-degree nodes, or hubs, in
the networks with different correction methods. In particular, the
consistency of hub locations was examined by an overlay image
of top 20% highest degree nodes (see Figure 4). All the methods
yielded a concentration of network hubs in the posterior cingu-
late cortex and the precuneus. This finding was consistent with
my previous results (Hayasaka and Laurienti, 2010) as well as the
other voxel-based network studies (Eguiluz et al., 2005; Van Den
Heuvel et al., 2008; Buckner et al., 2009). However, the NoWB and
NoCorr networks also showed a concentration of hub nodes near
the superior edge of the interhemispheric fissure while such con-
centration was not observed in the Full and WBonly networks.
To the best of my knowledge, this area has not been reported as
the hub area of the brain in voxel-level fMRI networks. Moreover,
resting-state MEG (magnetoencephalography) networks often do
not exhibit concentration of hubs along the interhemispheric fis-
sure (Bassett et al., 2006; Deuker et al., 2009; Jin et al., 2013; Rutter
et al., 2013). The concentration of hub nodes in this area was more
consistent and extensive in the NoCorr networks than the NoWB
networks. Thus, it is possible that this concentration is an arti-
fact of not correcting for the whole-brain signal. It should also
be noted that, while the Full networks showed a concentration of
hub nodes in the anterior cingulate cortex, the NoWB, WBonly,
and NoCorr networks did not show such a concentration in the
same area.

MODULAR ORGANIZATION
Table 2 shows the mean modularity Q of the networks under
different correction methods, as well as the mean number of
modules found in these networks. Compared to the Full net-
works, modularity Q did not differ significantly in the NoWB,
WBonly, and NoCorr networks (paired t-test p-values, p = 0.12,
p = 0.20, and p = 0.05, respectively). However, there were sig-
nificantly more modules in the NoWB and NoCorr networks
compared to the Full networks (paired t-test p = 0.02 and p =
0.004, respectively). Compared to the WBonly networks, the
NoWB and NoCorr networks had significantly more modules
as well (paired t-test p = 0.03 and p = 0.01, respectively). There
was no significant difference in the number of modules between
the Full and WBonly networks (p = 0.08). These results indi-
cate that the brain network is parcellated into a larger number
of communities when the whole-brain signal is not corrected.

I examined the consistency of the default mode network DMN
module across subjects under different correction methods. In
particular, for each method, I generated an overlap image of the
DMN module, identified manually as the module comprising

Table 2 | Modularity Q and the number of modules.

Correction method Modularity Q Number of modules

Mean (SD) Mean (SD)

Full 0.658 (0.050) 12.5 (5.4)

NoWB 0.596 (0.077) 25.2 (15.2)

WBonly 0.675 (0.043) 14.8 (7.11)

NoCorr 0.565 (0.098) 27.4 (10.6)

The mean modularity Q from the networks under different correction methods,

as well as the mean number of modules are shown.

FIGURE 4 | Consistency of hub nodes. The overlap of hub nodes (top
20% highest degree nodes) across subjects is shown for the networks
with different correction methods. Hub nodes were consistently
concentrated in the posterior cingulate cortex and the precuneus.

However, the NoWB and NoCorr networks also showed a concentration
of hub nodes along the superior edge of the interhemispheric fissure,
while such a concentration was not observed among the Full and
WBonly networks.

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 880 | 6

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hayasaka fMRI networks and global signals

a large portion of the posterior cingulate cortex and the pre-
cuneus, the areas known to be part of the DMN. Figure 5 shows
the overlap images demonstrating the consistency of the DMN.
Surprisingly, the DMN overlap images were similar across differ-
ent methods. This result indicates that the difference in correction
methods did not impact the DMN module.

I also examined the consistency of the junk module, the mod-
ule consisting of nodes and subgraphs disconnected from the

giant component of the brain network. Figure 6 shows the over-
lap images of the junk module across subjects under different
correction methods. While the junk module was not spatially con-
sistent across subjects in the Full and WBonly networks, the junk
module consistently included nodes around the major white mat-
ter tracts in the NoWB and NoCorr networks. It should be noted
that, my network data only consisted of gray matter nodes defined
by the AAL atlas. Between the NoWB and NoCorr networks,

FIGURE 5 | Consistency of the default mode network module. The overlap of the default mode network module across subjects is shown for the networks
with different correction methods. The areas of overlap appear similar across different methods.

FIGURE 6 | Consistency of the junk module. The junk module in each
network consists of nodes and subgraphs that are disconnected from
the giant component. Under each global signal correction method, the
consistency of such junk modules across subjects was examined by
generating an overlap image. While the junk module showed only

isolated signs of consistency in the Full and WBonly networks, the junk
module consistently included nodes around the major white matter
tracts in the NoWB and NoCorr networks. Between the NoWB and
NoCorr networks, the overlap was more consistent and extensive in the
NoCorr networks.

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 880 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hayasaka fMRI networks and global signals

the overlap was more consistent and extensive in the NoCorr
networks. To further investigate these differences, I counted the
number of nodes in the junk module (i.e., isolated nodes and sub-
graphs) that are adjacent to major white matter tracts. Such nodes
adjacent to white matter tracts were identified from the gray
matter voxels constituting a brain network (Figure 7A). Among
these voxels, ones with white matter probability greater than 40%
were identified using the white matter probability map from the
SPM package; the resulting mask included nodes that were adja-
cent to white matter tracts, as it can be seen in Figure 7B. The
average numbers of junk module nodes within this mask for dif-
ferent correction methods are shown in Table 3. Compared to
the Full networks, there were more junk module nodes (i.e., iso-
lated nodes and subgraphs) adjacent to white matter tracts in the
NoWB, WBonly and NoCorr networks (paired t-test p = 0.02,
p = 0.02, and p = 0.002, respectively). Compared to the WBonly
networks, the NoWB and NoCorr networks had significantly
more junk module nodes adjacent to white matter tracts (paired
t-test p = 0.02, and p = 0.003, respectively). These results indi-
cated that, without regressing out the whole-brain signal, some
nodes may be systematically disconnected from the rest of the
network, especially around white matter tracts.

Next, I examined the accuracy of the gray matter mask
used in this study [i.e., voxels belonging to areas identified by
the AAL atlas (Tzourio-Mazoyer et al., 2002)]. This was done
by first eliminating the nodes adjacent to major white matter
tracts (Figure 7B) from the whole-brain networks, and then by
comparing path length L of the resulting networks to that of

FIGURE 7 | Nodes surrounding white matter tracts. Among the gray
matter voxels included as part of a brain network (A), voxels adjacent to the
major white matter tracts were identified (B). These voxels were identified
from a white matter mask image from the SPM package, with at least 40%
white matter probability.

the whole-brain networks, as suggested by one of the review-
ers. As mentioned above, the whole-brain network consisted of
15,996 nodes, whereas the networks without nodes adjacent to
white matter tracts consisted of 12,660 nodes. In other words,
the network size was reduced by 20%. The path lengths L for
the network with and without the nodes adjacent to white mat-
ter tracts are shown in Table 4, along with the p-values from a
paired t-test comparing them. While the path length L was signif-
icantly shorter without nodes adjacent to white matter tracts in
the NoCorr networks (p = 0.038), no significant difference was
found in the other correction methods. The difference may simply
be a result of a reduced network size, or there may be a systematic
connectivity difference in nodes adjacent to white matter tracts.

DISCUSSION
I have constructed voxel-based functional brain connectivity net-
works from the same set of resting-state fMRI data but with
four different methods of global signal correction. I found that
the correlation coefficients were positively biased in the methods
without the whole-brain signal correction. The bias was stronger
if no global signal was corrected at all. I also found that, with-
out correcting the whole-brain signal, the resulting networks may
include a large number of isolated nodes and subgraphs discon-
nected from the giant component. This resulted in increased path
length L, with a stronger effect on the NoCorr networks than
the NoWB networks. While high degree nodes, or hub nodes,
were consistently observed in the posterior cingulate cortex as

Table 3 | The number of junk module nodes adjacent to white matter

tracts.

Correction method Number of junk module nodes

adjacent to white matter tracts

Mean (SD)

Full 384 (324)

NoWB 865 (684)

WBonly 448 (377)

NoCorr 1146 (675)

The number of nodes within the junk modules which are within the white matter

adjacency mask (Figure 7, right) is listed for different correction methods.

Table 4 | The path length L of the networks with and without nodes

adjacent to major white matter tracts.

Correction Path Length l, Path Length l, P-value,

method networks with networks without paired T -test

nodes adjacent to nodes adjacent to

white matter tracts white matter tracts

Mean (SD) Mean (SD)

Full 5.29 (1.01) 5.24 (0.88) 0.365

NoWB 7.35 (3.90) 6.94 (3.34) 0.053

WBonly 5.49 (1.18) 5.40 (1.01) 0.175

NoCorr 8.72 (5.11) 8.05 (4.27) 0.038

The path length L was compared between the two types of networks by a paired

t-test. The resulting p-values are also shown.
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previously reported regardless of the correction method, the net-
works without whole-brain signal correction exhibited consistent
concentration of hub nodes along the superior portion of the
interhemispheric fissure. Since this area has not been reported
as the hub region in previous research, especially the ones based
on neuromagnetic activities observed by MEG, it is likely that
such a concentration of hub nodes may be an artifact resulting
from a lack of whole-brain signal correction. I also examined the
modular organization of the networks with different correction
methods, and found that the networks without whole-brain sig-
nal correction were parcellated into a larger number of modules.
Despite the difference in global signal correction, the DMN mod-
ule was observed consistently across subjects. I also found that, in
the networks without full global signal correction (whole-brain
signal in particular), nodes near the major white matter tracts
were systematically disconnected from the rest of the network.
This was particularly apparent in the NoCorr networks.

As described above, there are some different characteristics
between the networks with and without whole-brain signal cor-
rection. One possible explanation for such differences is the
highly connected area along the superior edge of the interhemi-
spheric fissure in the NoWB and NoCorr networks, in compari-
son to the Full or WBonly networks. Since the number of edges
in a network is indirectly controlled by the way the correlation
matrix is thresholded (see Network Construction), an abundance
of edges in one area of the network can result in reduced edges
in other areas of the network. From Figure 4, I can infer that
extra edges were allocated near the interhemispheric fissure in
the NoWB and NoCorr networks, and these extra edges would
deprive connections in other areas of the brain. This resulted
in a larger number of disconnected nodes and subgraphs in the
NoWB and NoCorr networks compared to the Full or WBonly
networks. Such disconnected components concentrate around
the white matter tracts, as it can be seen in Figure 6. These alter-
ations appeared more pronounced in the NoCorr networks than
the NoWB networks. This may be because the NoWB networks
are corrected by global signals to a certain degree, while the
NoCorr networks are not adjusted by any global signals at all.
Such a systematic fragmentation around white matter tracts can
be observed even in the WBonly networks, when compared to the
Full networks. Despite the alterations in the number of connec-
tions as described above, the modular organization of the NoWB
and NoCorr networks was not completely altered. In fact, possibly
because of the modular nature of the brain networks, the DMN
module in the NoWB and NoCorr networks was surprisingly
similar to that of the Full or WBonly networks (see Figure 5).

In this study, I focused on alterations in various network char-
acteristics when resting-state fMRI data were not corrected for
global signals, compared to that of the networks constructed
with a global signal correction method regressing out whole-
brain, white matter, and ventricle signals (Fox et al., 2006, 2009).
However, global signal correction method used for the Full net-
works is far from perfect. This correction method entails simply
regressing out mean signals from the fMRI time series, which
is more simplistic than methods using the physiological signals
recorded during the fMRI data acquisition (Chang and Glover,
2009). Rather than regressing out the global signals, perhaps a

more sophisticated approach, such as principal component anal-
ysis (PCA) or independent component analysis (ICA), may be
effective in extracting neurologically relevant data from physio-
logical noises (Chai et al., 2012). Although these shortcomings
exist, regression-based methods are easy to implement as a part of
cross-correlation calculation, since it only involves regressing out
a number of nuisance covariates from the fMRI time series. These
global covariates can be calculated from the fMRI data itself; thus
this would be ideal for re-analyzing fMRI data acquired with-
out the accompanying physiological recording. Thus, this type of
global signal correction method would be amenable to various
types of existing fMRI data, even those that are publicly available
for downloading.

It should be noted that there are infinitely many ways of
correcting for global signals, and the four methods presented
in this work simply represent popular methods used among
neuroimaging researchers. It is possible that there are other cor-
rection methods suitable for constructing functional connectivity
network. However, the goal of this paper is to evaluate exist-
ing methods; my intention is not to develop better correction
methods. With increased interests in this field in recent years,
it is possible that some brain network researchers will develop
methods more suitable than the ones examined in this work.

One limitation in this work is the lack of ground truth in eval-
uating different correction methods. This is due to computational
challenges arising from generating a gold standard with thou-
sands of time series (each corresponding to a voxel time course)
with a small number of known correlations among them repre-
senting the “true” connectivity in an adjacency matrix. This is a
very difficult mathematical problem, as if there were thousands of
simulated regions in the simulation described in Saad et al. (2012)
and each region’s connectivity would have to exactly match the
ground truth adjacency matrix.

I also would like to emphasize that this study does not answer
whether or not there is a genuine “global signal” that is present
throughout the brain. This study only outlines the differences in
network organization arising from correcting/not correcting for
global signals. There are a number of papers describing the exis-
tence of such global signals and consequently discouraging the use
of global signal correction (Murphy et al., 2009; Scholvinck et al.,
2010; Saad et al., 2012, 2013; Hallquist et al., 2013). Because of
the limitations listed above, I cannot conclude which correction
method should be used, if used at all. So I will leave that determi-
nation up to each reader. If one suspects that there exists a true
“global signal” that covers extensive cortical areas due to a brain-
wide synchronized neurological processing, then a global signal
regression is not necessary. However, I would like to reiterate that,
without global signal correction, a concentration of hubs appears
at the superior portion of the interhemispheric fissure, which can-
not be detected by MEG. Moreover, nodes around white matter
tracts tend to systematically disconnect from the rest of the brain
network if the whole-brain signal is not corrected.

In summary, I demonstrated alterations in networks charac-
teristics resulting from not correcting for global signals. Such
alterations include increased connections along the interhemi-
spheric fissure and isolated nodes and subgraphs around the
white-matter tracts. However, incomplete global signal correction
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or lack thereof may not alter some brain network modules, such
as DMN. Thus, each practitioner of brain network analysis, espe-
cially dealing with networks in voxel-level, should consider the
results presented in this work and select an appropriate correction
method that is suitable for his/her study.
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