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Non-invasive brain stimulation (NIBS) may enhance motor recovery after neurological injury
through the causal induction of plasticity processes. Neurological injury, such as stroke,
often results in serious long-term physical disabilities, and despite intensive therapy, a
large majority of brain injury survivors fail to regain full motor function. Emerging research
suggests that NIBS techniques, such as transcranial magnetic (TMS) and direct current
(tDCS) stimulation, in association with customarily used neurorehabilitative treatments,
may enhance motor recovery. This paper provides a general review on TMS and tDCS
paradigms, the mechanisms by which they operate and the stimulation techniques used
in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity
underlying the stimulation location and also distant interconnected network activity
throughout the brain. We discuss recent studies that document NIBS effects on global
brain activity measured with various neuroimaging techniques, which help to characterize
better strategies for more accurate NIBS stimulation. These rapidly growing areas of
inquiry may hold potential for improving the effectiveness of NIBS-based interventions
for clinical rehabilitation.
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INTRODUCTION
Stroke is a leading cause of serious long-term adult disability
around the world. Recovery of motor function remains highly
variable despite standardized rehabilitation programs (Kwakkel
et al., 2003; Go et al., 2013). The study of the mechanisms
underlying recovery of motor function after stroke has been
difficult due to the heterogeneity among individual lesion pro-
files, the severity of motor impairment and the differences in
plasticity processes depending on the time passed since the
ictal event.

Non-invasive brain stimulation (NIBS) has been explored
as a possible technical adjuvant of customarily used neurore-
habilitative treatments. NIBS, which employs electrical or
magnetically-induced currents to stimulate the brain through
the scalp, can temporarily excite or inhibit activity in target
brain regions. In this review, we first introduce the use of NIBS
in basic science and clinical neuroscience, focusing on the two
most commonly used NIBS techniques (transcranial magnetic
stimulation, TMS, and transcranial direct current stimulation,
tDCS). We then delve into recent work exploring the effects
of local application of NIBS on activity under the stimulating
site and in distant brain regions. We discuss the evidence for
the application of NIBS techniques in motor rehabilitation
and provide a map of possible future research directions,
including the combined use of NIBS with neuroimaging tech-
niques, and the use of transcranial random noise stimulation
and transcranial alternating current stimulation, among
others.

BACKGROUND
Early studies of “therapeutic electricity” can be traced back to
the late 1800s. Since then, NIBS applications have been used in
a variety of settings (for reviews, see Priori, 2003; Wagner et al.,
2007a,b; Schlaug and Renga, 2008). Scientific research and pub-
lic awareness of these techniques has increased greatly over the
last few decades. While only a handful of papers were published
on the topic in 1988, almost 1400 papers were published in 2012
alone (see Figure 1).

In contrast, the use of NIBS in neurorehabilitative settings
has more recently taken off, starting in the mid-2000s (Elbert
et al., 1981; Ward and Cohen, 2004; Hummel et al., 2005; see
Figure 1). Currently, the most common NIBS techniques are
TMS and transcranial electric stimulation (tES; for a recent
review, see Dayan et al., 2013). NIBS is thought to modulate
neural activity via differing mechanisms, including the induction
of LTP-like protocols (Ziemann and Siebner, 2008; Fritsch et al.,
2010; Muller-Dahlhaus et al., 2010; Ziemann, 2011). It has been
proposed that modulation of these mechanisms induce motor
plasticity, contributing to motor learning (Reis et al., 2009;
Censor et al., 2010; Fritsch et al., 2010; Buch et al., 2011; Dayan
and Cohen, 2011; Schambra et al., 2011; Conde et al., 2013) and
secondarily impacting neurorehabilitative processes (Dimyan
and Cohen, 2010, 2011).

TYPES OF NIBS
NIBS techniques have been tested in a wide array of research
and clinical settings (Dayan and Cohen, 2011; Song et al., 2011;
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Ziemann, 2011; Censor et al., 2013; Sandrini and Cohen, 2013;
Vidal-Dourado et al., 2014), and the testing of NIBS to modulate
learning and memory processes has attracted particular attention
in the last few years (for reviews, see Tanaka et al., 2011; Kandel
et al., 2012; Sandrini and Cohen, 2013). While there is wide
variation in stimulation protocols, traditional TMS and tDCS
mechanisms and protocols are discussed briefly here (see Figure 2
for a summary diagram; see Box 1 for safety considerations).

TMS
First introduced by Barker et al. (1985), TMS used within inter-
national safety guidelines is safe and non-invasive (Kobayashi
et al., 2003; Rossini and Rossi, 2007). TMS produces a time-
varying magnetic field at that flows perpendicular to the stim-
ulating coil, which then induces electric currents that are gen-
erally parallel to the coil in the underlying cortical tissue.
The specific protocol and magnetic coil design allows TMS to

FIGURE 1 | NIBS publications. Graph depicting exponential growth in the number of publications on NIBS from 1988 to 2012, with NIBS publications specific
to stroke depicted at the top, and NIBS publications specific to stroke shown in the context of the general NIBS field at bottom.

FIGURE 2 | NIBS schematic. Chart depicting the general breakdown of NIBS techniques, focusing on TMS and tES. Types of TMS and tES paradigms are describe,
and the divide between physiology and neuromodulatory functions is depicted. Inhibitory and excitatory neuromodulatory techniques are also labeled.
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Box 1 | Safety Considerations for TMS and tDCS

Safety considerations for TMS

Apart from general safety considerations regarding tissue heating, magnetization of ferromagnetic objects, and magnetic field exposure
for both subjects and operators, consideration must be given to potential side effects of TMS, which consist primarily of the rare induction
of seizures, as well more common effects like local transient pain, headaches, and discomfort (Rossi et al., 2009). Consequently, while
there are no specific concerns about single and paired pulse TMS applications, rTMS and patterned rTMS deserve specific attention
in terms of the number of stimuli delivered per unit time. Generally speaking, the safety of high-frequency rTMS protocols is usually
assured by including periods of no stimulation between shorter periods of rTMS. TBS protocols are usually applied by replicating the
original protocol published by Huang et al. (2005), consisting of 3 pulses at 50 Hz applied at 5 Hz for 20 or 40 s, in the case of cTBS. In
contrast, iTBS is obtained by conducting 2-s periods of cTBS, each separated from one another by 8 s. It must be noticed that there are
almost an infinite number of combinations for such protocols, with even small changes possibly having strong impacts on both the effects
and safety of such protocols. Thus, general guidelines for rTMS delivery should be always checked, particularly when applied in clinical
settings. Additionally, it should be considered that the effects of these techniques present interindividual differences.

Safety considerations for tDCS

Compared to TMS, tDCS is relatively safer and easier to use. A vast literature supports the use of low-intensity transcranial stimulation
as safe for use in humans, with only rare and relatively minor adverse effects, such as mild tingling of the scalp, minor fatigue, or itching
of the scalp (Poreisz et al., 2007) and no effects over serum levels of molecular markers of neuronal injury such as neuron-specific
enolase (Nitsche et al., 2003b) or N-acetyl-aspartate (Rango et al., 2008). It must be noticed that all the aforementioned effects of tDCS
are strongly dependent on current density, electrode positioning, and stimulation duration. While differences in such parameters may
be of interest for their consequences over observed behavioral responses, they must also be taken into account for safety purposes.
For instance, caution should be used during monopolar stimulation with extracephalic references due to the hypothetical stimulation of
brainstem regions, thus possibly modulating sympathetic outflow (Cogiamanian et al., 2010). However, such findings are still a matter of
debate. Most importantly, anatomical changes due to central nervous system pathology can significantly modify the current distribution
induced by tDCS. For instance, in subjects with stroke, the affected cortical area is usually replaced by cerebrospinal fluid, which has a
high conductance, and current can accumulate on the edges of cortical stroke lesions (Wagner et al., 2007a,b).

stimulate cortical tissues at variable depths beneath the scalp
(Cohen et al., 1998).

TMS can be used to assess neurophysiological processes and
influence brain function via application of single, paired, or
repetitive stimulation. In single-pulse TMS (spTMS), one single
stimulus is applied, for example, over the primary motor cortex
(M1; Reis et al., 2008). When the intensity of the stimulus is strong
enough (suprathreshold), it will induce a measurable electromyo-
graphic (EMG) response in target hand muscles contralateral to
the stimulated M1, known as a motor-evoked potential (MEP).
spTMS may be used to map M1 corticospinal outputs, study
central motor conduction time, and investigate causal chronom-
etry in brain-behavior relations (for a review, see Dayan et al.,
2013). Due to the relative simplicity of recording with surface
EMG electrodes, spTMS-induced MEPs have become a routine
procedure in clinical neurophysiology for assessing the functional
integrity of corticospinal and corticobulbar motor pathways in a
wide range of neurological disorders (Rossini and Rossi, 2007).
Paired (ppTMS) or triple-pulse TMS (tpTMS) utilize one or
more conditioning stimuli applied prior to a suprathreshold M1
(test) stimulus that induces a measurable MEP (Groppa et al.,
2012). This technique can be used to investigate intra- or cortico-
cortical neuronal interactions depending on the precise latency
and intensity (sub- or supratheshold) of the conditioning pulses,
and depending whether they are applied to the target region or to
an interconnected brain region. For example, ppTMS applied to
M1 has been used to investigate different aspects of local interneu-
ron dynamics with the resulting effect of the conditioning pulse
on the output MEP demonstrating intracortical facilitation (ICF)
or inhibition (ICI), depending on the latency of stimulation
(Chen et al., 1998; Cohen et al., 1998; Boroojerdi et al., 2000).

ppTMS can be applied to different sites to evaluate the effects of
a stimulus on one region over the excitability of a different brain
region. In this form, ppTMS can test cortico-cortical connectivity
between two different regions. For example, connectivity can
be assessed between homologous regions of both M1s (with
this effect referred to as interhemispheric inhibition; Di Lazzaro
et al., 1999; Murase et al., 2004; Duque et al., 2005), between
premotor cortex and M1, between dorsolateral prefrontal cor-
tex (DLPFC) and M1, between the posterior parietal cortex and
M1, and between the cerebellum and M1 (Oliveri et al., 2005;
Koch et al., 2007; Daskalakis et al., 2008; Buch et al., 2010). This
work provides insight into the causal relationship of prefrontal,
frontal, and parietal inputs on M1 corticospinal output within
motor behavioral contexts such as prehension, action selection,
and action reprogramming. Investigations of these dynamics in
patient groups, such as chronic stroke, have revealed relation-
ships between altered cortico-cortical interactions and behavioral
deficits (for example, see Murase et al., 2004; Nowak et al.,
2009).

Repetitive TMS (rTMS) can also be used as a neuromod-
ulatory tool. Low-frequency rTMS (≤1 Hz) can be used to
transiently perturb the stimulated brain region inducing a so-
called “virtual lesion” (Pascual-Leone et al., 1999). This form
of inhibitory rTMS represents an in-vivo non-invasive method
available for demonstrating the causal influence of a given cor-
tical region or its interconnected network on specific behaviors
(Chen et al., 1997; Cohen et al., 1997; Walsh and Cowey, 2000).
rTMS induces frequency- and intensity-specific after-effects, with
low-frequency stimulation (≤1 Hz; Chen et al., 1997) induc-
ing a decrease in cortical excitability as described previously,
while high-frequency stimulation (≥5 Hz) results in an increase
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in MEP amplitude, increasing activation within the region for
at least 30 min (Rossi et al., 2009). Depending on the spe-
cific stimulation protocol used, the neuromodulatory effects of
rTMS can outlast the stimulation period by several minutes to
hours. Paired associative stimulation (PAS) is a related tech-
nique that involves application of a peripheral nerve stimulus
followed by a TMS pulse at varying interstimulus intervals.
Pairs are applied at very low-frequency (0.1 Hz) to M1 and to
a peripheral nerve (Stefan et al., 2000, 2002; Wagner et al.,
2007a,b). By varying the inter-stimulus intervals, PAS can induce
potentiation or inhibition of M1 corticospinal output lasting
for up to 90 min. A modified version of this protocol has been
developed to investigate the induction of associative plasticity
within cortico-cortical pathways (Rizzo et al., 2009; Buch et al.,
2011).

Another form of rTMS is patterned rTMS. It consists of the
repetitive application of short rTMS bursts at a high stimu-
lation frequency. The most common paradigm is theta burst
stimulation (TBS, continuous cTBS or intermittent iTBS), in
which short bursts of 50 Hz rTMS are applied at a rate in the
theta range (5 Hz) (Huang et al., 2005). As with low and high-
frequency rTMS, cTBS, and iTBS induce cortical depression and
facilitate corticospinal excitability, respectively, in healthy sub-
jects for up to 70 min. When applied to prefrontal areas, it
may influence memory processes like reconsolidation of episodic
memories (Sandrini et al., 2013). Of note, the effects of these
different techniques on motor cortical excitability present sub-
stantial interindividual differences, the origin of which are under
investigation. The use of this technique in clinical populations
thus requires further work and a careful approach (Ridding and
Rothwell, 2007).

tDCS
tDCS is applied using a battery-powered direct current (DC)
generator connected to two relatively large anodal and cathodal
sponge-enclosed rubber electrodes (20–35 cm2 in area) posi-
tioned over the scalp. It is thought that low amplitude currents
(ranging from 0.5 to 2.0 mA) applied at the scalp can partially
penetrate and reach cortical tissues (Datta et al., 2009). In con-
trast to TMS, tDCS does not result in the induction of action
potentials. tDCS seem to modify the threshold for discharge of
cortical neurons (Nitsche and Paulus, 2001; Priori, 2003). As
a reference point, the magnitude of tDCS stimulation (0.079–
0.20 A/m2) is far below the range of action potential thresholds
(22–275 A/m2).

tDCS can modulate cortical excitability in a polarity-
dependent fashion. While anodal stimulation increases cortical
excitability, cathodal stimulation is thought to decrease it. It
should be noted though that these effects, as those of facilitatory
and inhibitory TMS, exhibit high interindividual variability
(Ridding and Rothwell, 2007) and depend on the activity lev-
els of the stimulated tissues (Silvanto et al., 2008). Both produce
after-effects lasting 30–40 min, following 15–30 min of stimula-
tion, with the after-effects strongly dependent on the duration
and intensity of the stimulation (see Nitsche and Paulus, 2001).
In addition, the direction of such polarization strictly depends
on the orientation of axons and dendrites in the induced electric

field. While tDCS has been initially shown to modulate activity
in both the motor and visual cortices (Nitsche and Paulus, 2011),
recent evidence has suggested that it is also efficacious in mod-
ulating higher-order cognitive processes through its applications
over prefrontal and parietal regions (Nitsche et al., 2012; Monti
et al., 2013; Santarnecchi et al., 2013).

Special consideration should be given to the placement of the
electrodes and the focality of tDCS interventions. Newer tDCS
montages include bipolar and monopolar scalp stimulation, with
the former consisting of both cathode and anode placed on the
scalp surface, while the latter positions the “active” electrode on
the scalp, with the “reference” placed on an extracephalic target
(shoulder, leg, arm, etc.; Schambra et al., 2011). Different elec-
trode configurations may result in different patterns of current
spreading over the scalp and consequently on the cortex; it is
feasible that the typical “reference” position over the supraor-
bital region may produce undesired stimulation in non-target
regions, thus newer monopolar stimulation montages attempt to
avoid this problem (DaSilva et al., 2011). In addition, it has been
proposed that high-resolution tDCS may improve this form of
stimulation’s focality (high-definition tDCS, or HD-tDCS; Datta
et al., 2009). From an instrumental point of view, HD-tDCS uses
multiple sites of anodal and cathodal stimulation to target a spe-
cific region. While substantial work is under way to model the
fields induced by these different montages, clear behavioral or
physiological data is lacking on the differences between these
approaches.

While tDCS-induced changes in cortical excitability have been
related to changes in the underlying cortical neuronal activity, less
is known about the specific mechanisms mediating these effects.
It has been reported that carbamazepine, dextromethorphan, and
the calcium channel blocker flunarizine diminish the effects of
anodal tDCS on motor cortical excitability (Nitsche et al., 2003a).
On the contrary, the partial NMDA agonist D-cylcoserine pro-
longs the effects of anodal tDCS on cortical excitability (Nitsche
et al., 2004). Anodal tDCS applied to a slice preparation of
rodent M1 induced LTP-like effects. This effect was NMDA-
receptor dependent and mediated by secretion of brain-derived
neurotrophic factor (BDNF; Fritsch et al., 2010). Overall, these
findings suggest that the magnitude of membrane polarization,
the conductance of sodium and calcium channels, the magnitude
of NMDA receptor activity as well as BDNF secretion contribute
to different extents to the tDCS after-effects. These findings open
the possibility of pharmacologically modulating tDCS effects.

tDCS has also been tested in small clinical trials evaluat-
ing corticospinal excitability, neurophysiological changes, and
the modulation of behavioral variables in neurological and
psychiatric diseases such as depression, chronic pain, epilepsy,
neuropsychiatric disorders, and stroke, with mixed results (for
reviews, see Nitsche and Paulus, 2011; Rothwell, 2012).

NETWORK EFFECTS OF NIBS
Recently, a wealth of studies have begun to demonstrate that brain
stimulation leads not only to local changes in activity under the
stimulated coil or electrodes, but also to distant changes in inter-
connected brain regions throughout the brain (for reviews, see
Siebner et al., 2009; Siebner and Ziemann, 2010).
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Successful behavior requires the concerted action of multiple
brain regions. Neuroimaging studies started to provide impor-
tant information on the activity of these different networks. In
this setting, regions in communication with one another are
thought to be highly synchronized (Biswal et al., 1995; Fries,
2005). Interregional connectivity can be analyzed as simple corre-
lations between regions’ activations and phase-locked coherence
in neural oscillations, or can be modeled with more complex
approaches that include a priori hypotheses (e.g., using dynamic
causal modeling, DCM). It is now known that patterns of func-
tional connectivity are predictive of successful motor behaviors
and motor recovery in healthy individuals and in patients with
stroke (for reviews, see Grefkes and Fink, 2011, 2012). Thus, while
individual regions perform specific functions, the sharing of this
information amongst a wide array of interconnected regions is
critical for successful behavior. Given this information, the ability
of NIBS to modulate activity locally and in interconnected net-
works seems valuable. There is substantial research activity in this
area.

TMS AND CONNECTIVITY
Early studies demonstrated it is possible to evaluate changes
in brain activity after TMS using single-photon emission com-
puterized tomography (SPECT) (Shafran et al., 1989; Dressler
et al., 1990). Several groups performed similar evaluations using
positron emission tomography (PET) while participants under-
went TMS stimulation (Fox et al., 1997; Paus et al., 1997; Paus,
1999). Other studies evaluated neurophysiological rather than
blood flow changes induced by TMS using electroencephalogram
(EEG) (Amassian et al., 1992). In the late 1990s, Bohning et al.
(1997, 1998) demonstrated the feasibility of recording blood-
oxygen-level dependent (BOLD) signal activity changes using
fMRI in close temporal proximity to TMS. This early work docu-
mented local and distant changes in regional cerebral blood flow
and in physiological activity associated with focal TMS stimula-
tion. In the two decades since this pioneering work, researchers
have developed new paradigms of combined brain imaging and
brain stimulation to explore the effects of focal stimulation on
global brain activity (see Table 1).

In healthy volunteers, Bestmann and colleagues demonstrated
that suprathreshold high-frequency rTMS stimulation over M1
induces BOLD signal changes in distant cortical and subcor-
tical regions, including the primary sensorimotor, supplemen-
tary and premotor cortices, as well as in the putamen and
thalamus (Bestmann et al., 2004). Consistently, high-frequency
suprathreshold rTMS over M1 enhanced connectivity with the
supplementary motor area (SMA) (Bestmann et al., 2003). More
recently, it was shown that low-frequency inhibitory rTMS over
M1 also modified connectivity between M1, SMA, and the ante-
rior cerebellum, and more importantly, showed that modulation
of such connectivity correlated with the ability of healthy humans
to modify a previously consolidated motor memory (Censor
et al., 2013).

Application of rTMS over regions other than M1 also mod-
ulates functional activity. Suprathreshold rTMS over the left
dorsal premotor cortex (PMd) for example increases BOLD sig-
nal locally, under the stimulating coil, and in distant regions like

the right PMd, bilateral ventral premotor cortex, SMA (Bestmann
et al., 2005).

In patients with chronic stroke, subthreshold rTMS over the
ipsilesional M1 modulates interhemispheric and effective con-
nectivity between this region, the basal ganglia and the thalamus
(Chouinard et al., 2006). Inhibitory rTMS over the contralesional
M1 resulted in increased connectivity between the ipsilesional
M1 and SMA (Grefkes et al., 2010). These results suggest that
reducing excitability and connectivity of the contralesional M1
may result in increased connectivity of the ipsilesional M1. The
finding that modulation of ipsilesional and contralesional M1
effective connectivity correlated with motor function in these
patients (Grefkes et al., 2010), in concordance with Chouinard
et al. (2006) work, is suggestive of a causal link between changes
in connectivity and behavior.

Stimulation of the contralesional PMd in chronic stroke
patients induced stronger connectivity between this region and
the ipsilesional primary sensorimotor cortex in individuals with
greater motor impairments (Bestmann et al., 2010), suggesting
that contralesional influences from regions other than M1 are also
relevant to behavior, particularly for patients with greater motor
impairment. Future work is needed to examine these effects in
greater detail.

Altogether, these studies suggest that facilitatory stimulation of
ipsilesional M1 increases M1-SMA functional connectivity while
inhibitory stimulation of contralesional M1 decreases contrale-
sional but strengthens ipsilesional connectivity—a pattern that is
associated with improved motor performance (Ward et al., 2003;
Rehme et al., 2011). Additionally, stimulation of regions other
than M1 also induces substantial connectivity changes in inter-
connected brain regions. See Bestmann et al. (2008), Ruff et al.
(2009), Ferreri and Rossini (2013) for additional information on
this issue.

tDCS AND CONNECTIVITY
tDCS also induces changes in connectivity between different
brain regions, both at rest and during task performance. Initial
evaluations of the influence of tDCS on cortical connectivity have
primarily focused on the primary motor cortex (M1) and the
DLPFC in healthy individuals (see Table 2). Functional connec-
tivity before, during, and after tDCS application has been studied
with EEG (for a review, see Miniussi et al., 2012), fMRI, arterial
spin labeling (ASL) and, most recently, magnetoencephalography
(MEG) (see Figure 3, Soekadar et al., 2013a,b).

Polania and colleagues demonstrated that tDCS applied
over M1 influences cortical connectivity measured with EEG,
with effects more evident when studying connectivity during
voluntary hand movements than during rest (Polania et al.,
2011a,b, 2012b). Anodal tDCS over left M1, with the cathode
positioned over the contralateral supraorbital area increased syn-
chronization in alpha and lower frequency bands in frontal and
parieto-occipital regions, and in the high gamma frequency (60–
90 Hz) band in motor-related regions (Polania et al., 2011a)
during voluntary hand movements, with fewer changes during
rest (Polania et al., 2011a). The same group studied the influence
of tDCS on activity measured with fMRI, which consistently was
more evident during hand movements than at rest (Antal et al.,
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FIGURE 3 | Example of combined tDCS, MEG, and BCI

experimental setup. This design uses a 275-sensor whole-head MEG
to record neuromagnetic brain activity during tDCS stimulation, with
electrodes placed in the classic unilateral M1 montage (anode placed
above the area of the right M1 and reference electrode above the

left supraorbital area). This set-up is used in conjunction with BCI
visual feedback in the form of a computer game and sensorimotor
feedback via a robotic hand orthosis that opened as target oscillations
increased. Image courtesy of S. Soekadar (Soekadar et al., under
review).

2011). Another EEG study showed that anodal tDCS over left M1
during rest in healthy volunteers only increased the power density
of low frequency oscillations (theta, alpha; Pellicciari et al., 2013).
These results suggest that substantial changes in brain activity
associated with tDCS are augmented by its combination with per-
formance of an active behavioral task, as predicted from basic
science studies (Fritsch et al., 2010).

The effects of tDCS on fMRI connectivity have also been
studied using a graph theoretical approach. This analytical tool
showed that anodal tDCS over M1 reduced the functional con-
nectivity between the stimulated M1 and more distant regions but
increased connectivity between the stimulated M1 and premotor
and superior parietal regions (Polania et al., 2011b). In a different
study, these authors demonstrated that anodal tDCS over M1 also
increases connectivity between the stimulated region and subcor-
tical structures on the same hemisphere, including the ipsilateral
thalamus (Polania et al., 2012a,b). These findings are supported
by Stagg et al. (2013), who demonstrated increases in perfusion
MRI during anodal tDCS in regions anatomically-interconnected
to the stimulated site. Thus, tDCS likely increases blood perfusion
in the target site as well as in anatomically interconnected net-
works. While still speculative, these studies suggest that increasing
M1 excitability through anodal tDCS exerts its greatest effects
in high frequency bands during active task performance, and
reduces distant connectivity, increasing local, intrahemispheric
connectivity (both cortical and subcortical). Stimulation during
rest appears to primarily influence low frequency bands, such as
theta and alpha bands, while stimulation during active movement
may additionally influence high gamma bands (Polania et al.,
2011a, 2012b; Pellicciari et al., 2013).

Studies of effects of tDCS on cortical connectivity also
examined the use of different stimulating montages. A direct

comparison of the effects of bilateral (with the anode over right
M1 and cathode over left M1) vs. unilateral tDCS (with the anode
over over right M1 and cathode over left supraorbital region)
with fMRI was done in healthy volunteers (Sehm et al., 2012).
Bilateral tDCS resulted in resting state changes in both primary
and secondary motor areas, as well as in the prefrontal cortex,
while unilateral M1 stimulation (with the anode over right M1
and cathode over the left supraorbital region) only influenced
prefrontal, parietal, and cerebellar areas. Using seed-based con-
nectivity metrics with a seed in the stimulated right M1, Sehm
et al. (2013) showed that bilateral tDCS resulted in increased
intracortical connectivity with right M1 after stimulation, which
did not occur with unilateral stimulation. Both bilateral and uni-
lateral tDCS resulted in decreased interhemispheric connectivity,
however. This suggests that while tDCS over bilateral M1 (e.g.,
anode over left M1, cathode over right M1) increases connectiv-
ity within and between primary motor regions of the stimulated
hemisphere, unilateral tDCS stimulation of only one hemisphere
(e.g., anode over M1, cathode over a supraorbital region) only
increases connectivity with other regions, such as parietal cortex
and cerebellum. Some studies started to examine the effects of
tDCS over other cortical areas, such as the left DLPFC. Results
from these investigations are to some extent contradictory and
require further exploration (Keeser et al., 2011; Pena-Gomez
et al., 2012).

In summary, tDCS applied over a specific region induces
distant effects on network connectivity, which may conceiv-
ably impact behavior. Modulation of distant neural regions
via location-specific stimulation holds intriguing possibilities.
However, caution is urged when interpreting these preliminary
results, since within this handful of studies, there is great vari-
ability in the experimental designs used (e.g., in the stimulation
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montage, period of stimulation, recording method, time of
recording, type of analysis performed). In addition, there is sig-
nificant interindividual variability in results depending on the
state of the subject’s or network’s activity (state-dependency),
and the task performed. Evaluation of connectivity effects of
tDCS in clinical populations may contribute to the understand-
ing of behavioral deficits in these patients (for example, O’Shea
et al., 2014). To this end, there is a need for studies that examine
connectivity effects of tDCS in stroke patients at different time
points (acute, subacute, chronic), with different lesion locations
(cortical, subcortical), and with different levels of impairment.

It is possible that new NIBS stimulation paradigms using time-
varying waveforms, periodical as in the case of alternating current
stimulation (tACS) (Herrmann et al., 2013), or random as for
random noise (tRNS) (Terney et al., 2008) may contribute in the
future to more effective neurorehabilitative efforts. Preliminary
studies show similar modulation of excitability in the sensori-
motor cortices (Kanai et al., 2008; Feurra et al., 2011) and on
cognitive functions (Polania et al., 2012a; Cappelletti et al., 2013;
Santarnecchi et al., 2013) using these techniques.

While tDCS influences neuronal firing rates in a bimodal
manner depending on its polarity, tACS seems to up- and
down-regulate the firing rate affecting neuronal spike timing
(Reato et al., 2010). tACS generates an alternating current at a
specific frequency, with the potential to synchronize or desyn-
chronize activity between targeted brain regions. tACS follows
models of phase-locking communication and communication
through coherence that suggest that neural populations commu-
nicate through time-locked oscillations (Fries, 2005), making it
a potential way to modulate neural communication across brain
regions. Such a feature may be used for tailoring individualized
interventions aimed at coupling or decoupling activity between
specific brain regions depending on the subject/patient if this is
proved at some point to be desirable or therapeutically useful.

In contrast, tRNS involves the application of alternating cur-
rents at different, random frequencies to the scalp. Due to
its oscillatory, rather than direct current, nature, it has been
proposed that tRNS ensures the application of stimulation is
polarity-independent (i.e., neither anodal or cathodal; Miniussi
et al., 2013). High-frequency tRNS (100–640 Hz) has been shown
to elicit powerful cortical excitability modulations with even
longer after-effects than tDCS, reaching 70 min following 10 min
of stimulation (Chaieb et al., 2011). These newer methods provide
promising new ways to modulate excitability in the brain both
locally and across neural networks.

NIBS AND CORTICAL REORGANIZATION AFTER STROKE
Following stroke, patients with the most successful recovery of
motor function are those whose patterns of brain activity as mea-
sured by fMRI most resemble those present in healthy volunteers
(Johansen-Berg et al., 2002; Ward et al., 2003; Lotze et al., 2006;
Nair et al., 2007; Grefkes and Fink, 2011). While healthy indi-
viduals show greater activity in the hemisphere contralateral to
the hand they are moving, individuals with chronic stroke show
in general a more bilateral pattern. Patients with greater motor
impairment display increased fMRI activity in the contralesional
hemisphere during attempted movement of the impaired hand

(Johansen-Berg et al., 2002; Ward et al., 2003; Fridman et al.,
2004; Lotze et al., 2006). In contrast, patients with better motor
function show more normal patterns of ipsilesional motor activ-
ity, similar to the patterns one might see in healthy controls
(Ward et al., 2003; Rehme et al., 2011). However, it is unclear
which patients could benefit more from contralesional activity,
if it serves an adaptive role (see for example Lotze et al., 2006).

Given these neuroimaging patterns after stroke, it has been
proposed that upregulation of activity in the ipsilesional M1 or
downregulation in the contralesional M1 might contribute to
improved motor control (Ward and Cohen, 2004). Numerous
proof of principle studies have now been done with some report-
ing that increasing excitability in ipsilesional M1 through high-
frequency rTMS or anodal tDCS may yield improvements in
motor performance or motor learning in healthy subjects (for
example, Nitsche et al., 2003a,b,c; Reis et al., 2009) and small
clinical studies have demonstrated modest, yet variable, improve-
ments in individuals with stroke (Hummel and Cohen, 2005,
2006; Khedr et al., 2005; Kim et al., 2006; Pomeroy et al., 2007; for
a review, see Sandrini and Cohen, 2013). Importantly for rehabil-
itation, it has been proposed that some of these changes outlast
the period of stimulation (Khedr et al., 2010; Krawczyk, 2012).

Similarly, downregulating excitability in the contralesional
motor cortex in chronic stroke patients was also associated with
improvements in motor function, along with increased cortical
motor excitability in the ipsilesional M1 and decreased cortical
excitability in the contralesional M1 (Fregni et al., 2005; Takeuchi
et al., 2005, 2008). Consistently, low-frequency rTMS or cathodal
tDCS applied to downregulate excitability in the contralesional
hemisphere resulted in motor gains. When applied for this pur-
pose, single sessions of 10–25 min of rTMS over the contralesional
M1 were reported to induce improvements in movement kine-
matics (Mansur et al., 2005; Takeuchi et al., 2005; Boggio et al.,
2006; Liepert et al., 2007; Dafotakis et al., 2008; Nowak et al.,
2008). When applied over several days, with or without motor
training, some improvements were reported in grip strength and
upper extremity function as measured by the Fugl-Meyer score
and other assessments (Kirton et al., 2008; Kakuda et al., 2011).

It is also possible to use simultaneous stimulation of the ipsile-
sional cortex, with inhibition of the contralesional M1. This
appears to also produce motor gains when combined with phys-
iotherapy which last for 1 week (Lindenberg et al., 2010), but
which seem to plateau after 2 weeks (Lindenberg et al., 2012).
Bilateral stimulation over M1 with constraint-induced movement
therapy also led to reported functional gains in the Fugl-Meyer
test and handgrip strength. However, one recent study compared
the differences between anodal, cathodal, and bilateral stimula-
tion in stroke patients and demonstrated that anodal and cathodal
stimulation had greater effects on motor output (via MEPs) than
bilateral stimulation (O’Shea et al., 2014). Moreover, the effects
of high-frequency rTMS over M1 may be more pronounced in
individuals with subcortical, compared to cortical, stroke, sug-
gesting that different patients may be differentially susceptible to
beneficial effects of these techniques (Ameli et al., 2009).

To this end, it should be kept in mind that there is by no means
agreement on the extent or universality of these beneficial effects
and that well-controlled multicenter clinical trials are required
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to assess this issue (Wallace et al., 2010; Talelli et al., 2012).
Further research should be done to determine the most effective
paradigms for brain stimulation and to factor in the lesion loca-
tion, specific genetic markers if any (e.g., BDNF), levels of motor
or cognitive impairment or neuroimaging patterns as predictors
of responsiveness to NIBS. More insight into this topic and great
caution is required until results from well-designed multicenter
clinical trials are available (Ridding and Rothwell, 2007; Kandel
et al., 2012; Rothwell, 2012; Sandrini and Cohen, 2013).

FUTURE DIRECTIONS FOR NIBS RESEARCH IN
NEUROREHABILITATION
NIBS represents a novel and exciting tool to modulate corti-
cal excitability, in specific local and distant brain regions and
has been shown to alter connectivity with areas interconnected
with the stimulated site. One exciting new application of NIBS
is this ability to modulate functional connectivity between differ-
ent interconnected regions and its proposed impact on behavior.
For instance, dual-site stimulation paradigms, such as paired
pulse stimulation applied repetitively could potentially modulate
connectivity between two specific regions (Buch et al., 2011).

Another line of research is based on the ability of NIBS to
modulate brain intrinsic oscillatory activity as in the framework
of brain-computer interface applications (Soekadar et al., 2011),
through the use of frequency-specific entrainment (Thut et al.,
2012). To this effect, paradigms can be designed to enhance
or decrease activity within the range of physiologically-relevant,
region-specific frequencies, for instance, resonance phenomena
with endogenous brain rhythms. Newer methods of brain stim-
ulation, such as tACS and tRNS mentioned previously, may also
prove useful toward this effort.

A recent feasibility study demonstrated that it was possible to
combine tDCS with MEG recording, and in addition, provide a
chronic stroke patient with neurofeedback about her brain activ-
ity in motor regions in the form of a visual stimulus and a robotic
orthosis that opened and closed as her hand moved (Figure 3;
Soekadar et al., 2013a,b, 2014a,b). This preliminary work showed
that stimulation with online neural recording and feedback was
feasible in the MEG environment, and results in enhanced per-
formance after stimulation. The use of NIBS with other forms of
brain-computer interfaces, robotic prosthetics, or with enhance-
ment of pharmacological treatment may yield greater gains, due
to the influence of NIBS by specific neurotransmitters as men-
tioned previously.

The use of NIBS in conjunction with other methods like neu-
roimaging or genetic analyses may prove particularly useful, not
only to study what NIBS does to distributed brain activity, but
also to identify predictors of response to NIBS interventions. For
instance, O’Shea et al. (2014) used MR spectroscopy and behav-
ioral measures to identify who responders to tDCS interventions.
They found that GABA concentration in the stimulated region
could predict the magnitude of behavioral changes after anodal
tDCS.

Finally, emerging combinations of new methods are afforded
by improvements in technology, computing, and mathematical
modeling, such as simultaneous tDCS stimulation with MEG
recordings (Soekadar et al., 2013a,b). NIBS in conjunction with

biofeedback training designed to help individuals control their
own brain activity may also contribute to neurorehabilitation
(Buch et al., 2012). Using these methods in conjunction with
brain-computer interfaces, virtual reality displays, or other feed-
back paradigms may contribute new insights to improve neurore-
habilitative efforts using NIBS.
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