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Schizophrenia (SZ) and bipolar disorder (BP) share significant overlap in clinical symptoms,
brain characteristics, and risk genes, and both are associated with dysconnectivity among
large-scale brain networks. Resting state functional magnetic resonance imaging (rsfMRI)
data facilitates studying macroscopic connectivity among distant brain regions. Standard
approaches to identifying such connectivity include seed-based correlation and data-driven
clustering methods such as independent component analysis (ICA) but typically focus
on average connectivity. In this study, we utilize ICA on rsfMRI data to obtain intrinsic
connectivity networks (ICNs) in cohorts of healthy controls (HCs) and age matched SZ and
BP patients. Subsequently, we investigated difference in functional network connectivity,
defined as pairwise correlations among the timecourses of ICNs, between HCs and
patients. We quantified differences in both static (average) and dynamic (windowed)
connectivity during the entire scan duration. Disease-specific differences were identified in
connectivity within different dynamic states. Notably, results suggest that patients make
fewer transitions to some states (states 1, 2, and 4) compared to HCs, with most such
differences confined to a single state. SZ patients showed more differences from healthy
subjects than did bipolars, including both hyper and hypo connectivity in one common
connectivity state (dynamic state 3). Also group differences between SZ and bipolar
patients were identified in patterns (states) of connectivity involving the frontal (dynamic
state 1) and frontal-parietal regions (dynamic state 3). Our results provide new information
about these illnesses and strongly suggest that state-based analyses are critical to avoid
averaging together important factors that can help distinguish these clinical groups.
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INTRODUCTION
Schizophrenia (SZ) and bipolar disorder (BP) are two common
psychiatric conditions characterized by gray and white matter
abnormalities and disrupted connectivity across large-scale brain
networks (Mohamed et al., 1999; Kubicki et al., 2007). Such
dysconnectivity includes disruption of both structural (Kubicki
et al., 2007; Rotarska-Jagiela et al., 2008, 2009) and functional
connectivity (FC; Meyer-Lindenberg et al., 2001; Uhlhaas and
Singer, 2006; Garrity et al., 2007; Calhoun et al., 2008a, 2011)
that may be related to clinical symptoms, including cogni-
tive dysfunction. SZ is often referred to as a dysconnection
syndrome, where the term “dysconnection” refers to over- or
under-connection of neural circuits with respect to a healthy
control group (Friston et al., 1993). Because changes in the
function of a single brain region cannot explain the range of
impairments observed in SZ or BP (Achim and Lepage, 2005;
Van Snellenberg et al., 2006; Minzenberg et al., 2009; Ragland
et al., 2009; Wang et al., 2009; Chepenik et al., 2010), researchers

need to identify altered connectivity in relevant core brain
networks.

Recently, FC has been used to examine the functional orga-
nization of brain networks in various psychiatric illnesses,
where FC is defined as the temporal covariance of neu-
ral signals between multiple spatially distinct brain regions
(Friston et al., 1993). Different analytic tools have been applied
to resting-state fMRI data to describe brain FC, including
seed-based analysis (Biswal et al., 1995; Greicius et al., 2003),
data-driven methods, such as independent component analy-
sis (ICA; Hyvärinen and Oja, 2000; Calhoun et al., 2001b, 2009;
Damoiseaux et al., 2006; Fox and Raichle, 2007; Calhoun and
Adali, 2012), clustering (Cordes et al., 2002), multivariate pat-
tern analysis (MVPA; Norman et al., 2006; Zhu et al., 2008;
Zeng et al., 2012), graph theory (Achard et al., 2006; Buckner
et al., 2009) and centrality (Lohmann et al., 2010). In seed-based
approach, the connectivity patterns are based on a selected
seed region of interest (ROI), while ICA-based methods do not
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require prior knowledge of brain activity or seed ROI selection
(Erhardt et al., 2011a).

Until recently, most fMRI studies assumed that FC is station-
ary throughout the entire scan period (or at least static during
a giving task or condition such as rest). This assumption of
stationarity is likely an oversimplification since it is likely that
individuals are engaged in slightly different mental activities at
different points in time. In addition, previous works showing
evidence of fluctuation in FC (Arieli et al., 1996; Makeig et al.,
2004; Onton and Makeig, 2006) are consistent with the idea
that dynamic changes in FC occur during the course of the
experiment. Recent studies show that connectivity dynamics can
capture uncontrolled but reoccurring patterns of interactions
among intrinsic networks during a task or at rest (Sakoǧlu et al.,
2010; Allen et al., 2012; Hutchison et al., 2013; Calhoun et al.,
2014). These studies provide results that cannot be detected with
static FC analyses. In a dynamic connectivity study using wavelet-
based time-frequency coherence analysis, significant results were
observed for resting state connectivity variation between poste-
rior cingulate cortex and an anti-correlated network (Chang and
Glover, 2010). Another approach for studying dynamic connectiv-
ity is the sliding-window correlation technique (Allen et al., 2012;
Hutchison et al., 2013).

Resting state BOLD studies have proven useful recently to inves-
tigate abnormal FC, as the absence of a specific task complements
task-specific study by measuring intrinsic functional brain orga-
nization without any differential behavioral performance and task
activity between diagnostic groups, and thus makes it easier for
cognitively compromised patients to participate in such studies.
Resting-state fMRI connectivity has been used to identify dif-
ferences in multiple patient groups including SZ (Calhoun et al.,
2009, 2011; Sakoǧlu et al., 2010; Damaraju et al., 2014), BP (Cal-
houn et al., 2011), Alzheimer’s disease (Greicius et al., 2004; Sorg
et al., 2007), autism (Starck et al., 2013), and others. However, to
our knowledge, no study to date has evaluated changes in connec-
tivity patterns over time in fMRI in patient groups versus controls.
It is not yet known how spatial and temporal dynamics of rest-
ing state networks contribute to individual psychopathological
disorders. Both SZ and BP are diagnosed using cross-sectional
clinical symptoms along with longitudinal course and outcome
measures. There are significant overlaps in symptoms and dis-
ease progression between these two disorders that can make it
difficult to differentiate them without repeated clinical diagnos-
tic assessment (Keshavan et al., 2011). By determining a reliable
diagnostic indicator (‘biomarker’) based on biological features of
these diseases, a baseline for developing more accurate and reliable
differentiating tools for diagnosis, and ultimately treatment, can
in theory be provided (Keshavan et al., 2013).

Previous studies show both similarities and differences in static
FC between SZ and BP. Most prior studies focused on quantifying
the underlying characteristics of sensory, auditory, cognitive con-
trol (CC) and emotional processes of the brain. For example, the
default mode network (DMN), consists of a set of brain regions
known to be activated during internally focused tasks and may
be involved in processes such as attention to internal emotional
states, self-referential processing or task- independent thoughts
(Buckner et al., 2008). DMN data may distinguish between SZ and

BP (Öngür et al., 2010; Calhoun et al., 2011). There are numer-
ous studies suggesting abnormal default network connectivity in
SZ and BP (Zhou et al., 2007, 2008; Calhoun et al., 2008b, 2011),
although both increased and decreased connectivity have been
reported. Different analytical techniques could account for these
inconsistent findings, as seed-based and data-driven analyses and
varying preprocessing steps do not necessarily produce the same
results. Also each intrinsic brain network comprises a collection
of multiple network components, only a few of which might be
affected throughout a specific period of illness.

Prior studies have identified abnormal connectivity in other
intrinsic networks. For example, patients with persistent audi-
tory verbal hallucinations may have increased connectivity in
the cingulate cortex within the speech-related network (Wolf
et al., 2011). In attention and executive control networks, patients
demonstrated abnormal connectivity in precuneus and right lat-
eral pre-frontal areas. Few studies have examined both bipolar and
SZ patients. A recent study of both disorders (Öngür et al., 2010;
Meda et al., 2012; Khadka et al., 2013) found subgenual and medial
prefrontal anomalies in BP patients and dorsal medial prefrontal
anomalies in SZ patients, although considerabe overlap among
groups.

In this paper, we implement a recently published approach to
assess functional network connectivity (FNC) dynamics between
healthy controls (HCs) and SZ and bipolar patients, which
includes group spatial ICA, dynamic FNC via sliding time win-
dow correlation, and k-means clustering of windowed corre-
lation matrices (Allen et al., 2012). We hypothesized that dis-
rupted functional integration in SZ and bipolar patients can
be found in several brain regions including temporal, frontal,
visual, and DMNs as suggested by previous studies. To test our
hypothesis we conducted group difference analyses in connec-
tivity using independent two sample t-tests. The results show
that dynamic FNC captured by sliding time window analysis
can reveal significant differences between patients and con-
trols that cannot be found using conventional stationary FNC
analysis.

MATERIALS AND METHODS
PARTICIPANTS
We assessed 159 total subjects comprising 61 screened HCs [HC,
age 35.44 ± 11.57 (range), 28 females], 60 patients diagnosed
with SZ or schizoaffective disorder (SZ, age 35.85 ± 12.01, 13
females) and 38 bipolar subjects (BP, age 38.96 ± 10.90, 20
females), matched for age with no significant differences among
three groups, where age: p = 0.303, F = 1.2031, DF = 2. Signifi-
cant differences in sex among three groups were found, where sex:
p = 0.002, X2 = 11.81, DF = 2. Diagnoses were based on detailed
medical and psychiatric history, chart reviews, and the Structured
Clinical Interview for DSM Disorders (Gibbon et al., 1997). None
were acutely ill at the time of scanning. Bipolar patients were a
mixture of psychotic and non-psychotic by history.

Data acquisition
Resting-state fMRI scans were acquired at the Institute of Living,
Hartford, CT, USA on a 3T Siemens Allegra head-only scanner
with 40 mT/m gradients and a quadrature head coil. T2* -weighted
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functional images were acquired using gradient echo planar imag-
ing (EPI) method with repetition time (TR) = 1.5 s, echo time
(TE) = 27 ms, field of view = 24 cm, acquisition matrix 64 × 64,
flip angle = 700, voxel size = 3.75 mm × 3.75 mm × 4 mm, slice
thickness = 4 mm, gap = 1 mm, number of slices = 29, 210 frames
and ascending acquisition. Subjects were instructed to keep their
eyes open, look at a fixation cross on a monitor display and to rest
quietly during the scan session.

DATA PRE-PROCESSING
Functional images were pre-processed using an automated
pipeline based around SPM 51. Pre-processing included the
removal of the first four image volumes to avoid T1 equilibration
effects, realignment using INRIalign (Freire et al., 2002), slice-
timing correction using the middle slice as the reference frame,
spatial normalization into Montreal Neurological Institute (MNI)
space2, reslicing to 3 mm × 3 mm × 3 mm voxels, and smoothing
with a Gaussian kernel (FWHM = 5 mm). Voxel timeseries were
z-scored to normalize variance across space, minimizing possi-
ble bias in subsequent variance-based data reduction steps (Allen
et al., 2012).

In order to limit the impact of motion we excluded from anal-
ysis subject data with a maximum translation of >2 mm or with
SFNR <275 (Signal-to-fluctuation-noise ratio, where the signal is
the average voxel intensity in all the ROIs defined in the object,
averaged across time, and the fluctuation noise is the temporal
standard deviation of the spatial mean in the same ROIs, after
removing the slow drift from the temporal series). Patient and
control groups were age matched. Additional processing steps were
taken to mitigate against residual motion effects as described later.

GROUP ICA AND POST-PROCESSING
Imaging data were decomposed into functional networks using
a group-level spatial ICA (Calhoun et al., 2001a; Calhoun and
Adali, 2012). Group ICA was performed using the GIFT tool-
box (Calhoun, 2004). In order to obtain functional parcellation,
we used a high model order ICA (number of components,
C = 100) to decompose the functionally homogeneous cortical
and subcortical regions exhibiting temporally coherent activity
(Kiviniemi et al., 2009; Smith et al., 2009; Abou-Elseoud et al.,
2010). In the subject-specific data reduction principle com-
ponent analysis (PCA) step, 120 principal components were
retained (retaining >99% of the variance of the data). Group
data reduction retained C = 100 PCs using the expectation-
maximization (EM) algorithm as implemented in the GIFT
toolbox. The Infomax group ICA (Calhoun et al., 2001b) algo-
rithm was repeated 20 times in ICASSO (Himberg and Hyvari-
nen, 2003) and the resulting components were clustered to
estimate the reliability of the decomposition (Himberg et al.,
2004). Subject-specific spatial maps (SMs) and time-courses
(TCs) were estimated using the GICA1 back-reconstruction
method based on PCA compression and projection (Calhoun
et al., 2001b; Erhardt et al., 2011b). Out of the 100 compo-
nents obtained, we characterized 49 components as ICNs that

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5
2http://www.mni.mcgill.ca/

depicted peak cluster locations in gray matter with minimal
overlap with white matter, ventricles and edges of the brain
and also exhibit higher low frequency temporal activity. Subject
specific time courses and spatial maps were obtained via back
reconstruction.

Additional post-processing steps including linear, quadratic
and cubic detrending, multiple regression of the six realignment
parameters and their temporal derivatives, removal of detected
outliers, and low-pass filtering with a high frequency cutoff of
0.15 Hz were applied to the component TCs in order to remove
trends associated with scanner drift and movement-related arti-
facts. We have detected the outliers based on the median absolute
deviation, as implemented in 3D DESPIKE (Cox, 1996). Outliers
were replaced with the best estimate using a third-order spline fit
to the clean portions of the TCs.

FC ESTIMATION
The static FNC for each subject was estimated from the TC matrix,
as the C × C sample covariance matrix (see Figure 1A). In addition
to the standard FNC analyses, we computed correlations between
ICN TCs using a sliding temporal window [Tukey window (see
Figure 1B)] having a width of 22 TRs = 33 s; sliding in steps
of 1 TR), resulting in W = 180 windows to capture the vari-
ability in connectivity. To characterize the full covariance matrix,
we estimated covariance from the regularized precision matrix or
the inverse covariance matrix (Smith et al., 2011). Following the
graphical LASSO method of (Friedman et al., 2008), we placed
a penalty on the L1 norm of the precision matrix to promote
sparsity. The regularization parameter lambda was optimized sep-
arately for each subject by evaluating the log-likelihood of unseen
data (windowed covariance matrices from the same subject) in a
cross-validation framework. Final dynamic FC estimates for each
window, were concatenated to form a C × C × W array represent-
ing the changes in covariance (correlation) between components
as a function of time.

DYNAMIC STATES AND CLUSTERING
From all of the dynamic windowed FNC matrices, we selected win-
dows of higher variability as subject exemplars and used K-means
clustering to obtain group centrotypes. We repeated the clus-
tering method using different distance functions (correlation,
cosine, rather than the L1-norm) and also found very similar
results. We determined the number of clusters to be five using the
elbow criterion of the cluster validity index, which is computed
as the ratio between within-cluster distances to between-cluster
distance. These centrotypes are then used as starting points to
cluster all of the dynamic FNC data. Group specific centrotypes
were computed. Subject specific centrotypes were used to perform
independent sample t-tests to probe for group differences.

RESULTS
INTRINSIC CONNECTIVITY NETWORKS (ICNs)
ICA was successfully used to identify the intrinsic connectivity
networks (ICNs) in HCs and patients with SZ and bipolar, and to
identify differences in FNC among these ICNs. The spatial maps of
49 ICNs identified with group ICA are shown in Figure 2A. ICNs
are grouped by their anatomical and functional properties, which
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FIGURE 1 | (A) An overview of the sliding window analysis. Group
independent component analysis (ICA) is used to decomposed resting-state
data from 159 subjects into 100 components, 49 of which are identified as
intrinsic connectivity networks (ICNs). GICA1 back-reconstruction method is
used to estimate the subject specific spatial maps (SMs) and time courses

(TCs). (B) Stationary FC between components (left) is estimated as the
covariance of TCs. Dynamic FC (right) is estimated as the series of regularized
covariance matrices from windowed portions of each subject’s component
TCs and then the matrices are aggregated across subjects [Adapted from
(Allen et al., 2012)].

include the following: sub-cortical (SC), auditory (AUD), sensori-
motor (SM), visual (VIS), CC, default mode (DM), and cerebellar
(CB) components. The observed ICN networks are very simi-
lar to those found in previous studies with low model order ICA
(Calhoun et al., 2008a) as well as high model order ICA (Kiviniemi
et al., 2009; Smith et al., 2009; Allen et al., 2011).

The SC networks are represented by four components (ICs 48,
91, 78, and 61) with activations focused in the amygdala, putamen
head, putamen tail, and thalamus. The AUD network is repre-
sented by a single component (IC 36) with bilateral activation of
the superior temporal gyrus (STG). The SM regions are captured
by nine components (ICs 1, 70, 15, 38, 9, 80, 14, 35, and 27).
The visual system (VIS) is represented by ten components (ICs
31, 10, 11, 16, 21, 29, 32, 33, 54, and 87), which matches with
the functional and structural characterization of occipital cortex.
The cognitive control network (CC) includes the ICN components
involved in directing and monitoring behavior, mediating mem-
ory and language functions (ICs 64, 66, 92, 42, 60, 63, 94, and 95).
The DMN is captured by eight components. Finally, we classify
the CB network with three components with activations in both
right and left cerebellum.

STATIC FNC
Group mean FC or static FNC between ICN timecourses is shown
in Figure 2B. The ICN components in the static FNC matrix

were initially ordered using algorithms in the brain-connectivity
toolbox (Rubinov and Sporns, 2010) that maximize modularity
of the connectivity matrix. These were manually partitioned into
subgroups as in our earlier work (Allen et al., 2012). The aver-
age connectivity matrix demonstrates strong positive connectivity
within subcortical, VIS, SM, default-mode, and CB networks. A set
of CC regions also shows this positive connectivity among them-
selves and are also connected to certain VIS networks. These CC
and VIS regions show anti correlation to default-mode regions.
Two sample t-tests did not reveal any group differences in static
or overall connectivity. Previous studies have found differences in
FNC in similar groups, but not with such a high model order that
produces more focus brain regions, but also more comparisons.
In our case, several FNC pairs showed a trend level of significance,
but did not quite reach a corrected level of significance for the
static FNC analysis.

However, we also computed an analysis of FNC differences
within groups of components (e.g., DMN components re-
combined), called a network group (NG). To do this we computed,
for each NG, the average connectivity between it and all other
NGs (Repovs et al., 2011). We then applied an FDR correction for
multiple comparisons of the between-NG connectivity. Several
between-NG pairs showed significant group SZ/control differ-
ences, including sub-cortical and sensory-motor, sub-cortical and
CC, and DM and cerebellum. One pair, sub-cortical and CC,
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FIGURE 2 | (A) Non-artifactual ICNs and (B) Group mean static FNC
between ICN timecourses. ICNs are divided into groups and arranged
based on their anatomical and functional properties. FC was averaged
over all subjects and displayed as inverse Fisher-transformed. All of the
ICN labels in (B) indicate the brain region with peak amplitude and
should be considered as bilateral activation unless mentioned as left

(L) or right (R). See table S1 for more detailed information on each
intrinsic component. STG, superior temporal gyrus; SMA,
supplementary motor area; MCC, middle cingulated cortex; Bi-FFG,
bi-fusiform gyrus; MTG, middle temporal gyrus; IPL, inferior parietal
lobule; SPL, superior parietal lobule; dMPFC, dorso-medial prefrontal
cortex; Cereb, cerebellum.

showed a significant difference between SZ and BP patients. No
between-NG connectivity difference was found between HCs and
bipolars.

DYNAMIC CONNECTIVITY STATES AND GROUP DIFFERENCES
We use k-means clustering method to identify re-occurring pat-
tern of FC states (Figure 3). Dynamic FNC analysis suggests that
patients make fewer transitions to some states (States 1, 2, and
4) compared to HCs. Significant differences were found between
groups in dynamic FNC states 1, 2, 3, and 4, between healthy
control and patient groups as well as between SZ and bipolar
patients.

Figure 4 summarizes the difference between groups measured
by the connectivity between ICN component pairs. For better
visualization purpose, brain connectome for each of the sig-
nificant dynamic states is shown in Figure 5. Also, Figure 6
shows the rendering maps for main effects of dynamic con-
nectivity for all the subjects. To create the rendering maps,
we first identified the modularity in the dynamic FC matrix
for each state using the Brain Connectivity Toolbox (Rubi-
nov and Sporns, 2010). For each component, the average

connectivity within a module was computed and stored as
“component weight vector.” These positive or negative weights
were then used to create weighted spatial map containing
all contributing components for a given dynamic state, and
finally the weighted spatial maps were projected onto a 3-
dimensional MNI surface using the AFNI-SUMA (Saad et al.,
2004).

In state 1, two component pairs captured the differences
between HCs and SZ patients as well as between the two patient
groups (Figures 4 and 5). Compared to HCs, SZ patients showed
greater connectivity between the component pair STG (C36) and
left angular gyrus (C65), in the temporal-parietal region. Also
compared to BP, SZ patients showed greater connectivity between
two frontal components: right motor (C15) and dorso-medial
prefrontal cortex (DMPFC; C46).

In dynamic connectivity state 2 (Figures 4 and 5), HCs showed
greater connectivity between a sub-cortical component, putamen
tail (C78) and a frontal component, ventral motor (VM C1),
compared to the patients with SZ.

In dynamic state 3 (Figures 4 and 5), most of the differ-
ences in connectivity were captured between HCs and SZ patients,
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FIGURE 3 | Results from clustering approach for k = 5. Group specific centroids of the states (state 1 to state 5) are obtained from k-means clustering. The
total number and percentage of occurrences is listed above each centroid

and between the two patient groups. These connectivity differ-
ences were found in frontal, parietal, occipital, temporal and
CB regions of the brain. SZ patients showed greater connectiv-
ity between several temporal-parietal components, compared to
HCs. The connectivity between most of the frontal-parietal and
frontal-occipital components was greater in HCs compared to SZ
patients, whereas the connectivity between most of the parietal-
occipital components was greater in SZ patients. Also greater
connectivity in SZ was found between two frontal-parietal com-
ponent pairs, VM, and left supramarginal gyrus, and VM and right
superior parietal lobule (SPL), compared to BP. This is the only
dynamic state that captured differences between these two patient
groups.

Dynamic state 4 revealed differences between HCs and bipolar
patients in temporal and parietal regions, where greater con-
nectivity in HCs was found between two parietal components,
paracentral and SPL, and greater connectivity in BP was found
between a temporal component bilateral fusiform gyrus and a
parietal component left supramarginal gyrus. Dynamic state 5
did not display any significant group differences in FC. Also, no
significant correlation between symptoms and connectivity was
found.

DISCUSSION
We explored dynamic FC patterns with ICA, sliding windows, and
clustering. Our analysis of connectivity dynamics in a relatively
large sample (n = 159) provides, to our knowledge, the first whole-
brain characterization of regional differences in FC variability and
distinction of discrete FC states among healthy control, SZ, and

bipolar patients. We identified several ICNs that differentiate SZ
and BP from HCs.

Dynamic FC captures stable connectivity patterns that are not
observed in the stationary FC. FC of the brain is not stationary;
rather it’s changing over time. Thus observing group-wise dif-
ferences in connectivity across time as captured by the discrete
dynamic states gives us more valuable information that cannot be
found within the stationary or mean FC.

In Figure 3, each matrix represents the centroid of a cluster
and signifies a connectivity state stably present within data. These
dynamic connectivity states are fully reproducible and present in
numerous subjects. Dynamic state 1 resembles the pattern of sta-
tionary FC. FC patterns in state 2–5 represent connectivity show
considerable deviation from the mean FC.

One of the notable features that differ between FC states is
the connectivity within DMN regions and, between DMN and
other functional networks. In state 3 and 5, the DMN regions
show strong synchronous activation with themselves, and mostly
asynchronous activation with other functional networks. Partic-
ularly in state 3, the DMN regions show strong asynchrony with
most of the CC components. State 5 shows the similar nature
of connectivity between DMN and CC components, but with a
reduced number of CC components. Also in states 3 and 5, sev-
eral sensori-motor components show negative correlations with
the DMN system, which is not visible in other states. In con-
trast, state 1, 2, and 4 do not show similar FC patterns between
DMN and other ICN networks, where segregation of synchronized
activation between DMN and other ICN nodes can be
observed.
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FIGURE 4 | Difference in dynamic states. Group differences in dynamic
FC states are obtained using an independent two-sample t-test
between healthy control and patient groups, as well as between

schizophrenia and bipolar patient groups. The cells that have survived a
FDR threshold for multiple comparison correction are enclosed in black
patch.

State 2 captures the FC differences between cortical and subcor-
tical components, where strong asynchronous activation between
subcortical regions (amygdala, putamen head, putamen tail, and
thalamus) and sensori-motor, auditory, and VIS cortex were
found. Cerebellum also shows this asynchrony with these cortical
regions. Also substantial reduction in connectivity between DMN
regions can be observed in this state. As mentioned in several pre-
vious studies, reduced thalamocortical connectivity (Spoormaker
et al., 2010), increased subcortical connectivity (Larson-Prior
et al., 2011) and a segregation of DMN connectivity (Spoormaker
et al., 2010; Larson-Prior et al., 2011) indicated a state of light sleep
or drowsiness. Also similar dynamic state related to drowsiness was
found among healthy subjects in (Allen et al., 2012).

Hutchison et al. (2013), periods of hypersynchronization
were described where extremely high intra-network connectiv-
ity between all nodes of oculomotor and motor networks were
found in macaques and humans. This relates well to our observed
discrete FC states where states 1,2, and 4 show time windows
with high correlations throughout the motor system (and some
motor components in state 5), while state 3 and 5 represent
periods with synchronous activation between VIS areas. From
our results, we can predict that periods of hypersynchronization
between motor nodes would also include synchronous activation

of DM regions and segregated synchronous activation between the
nodes in other ICNs. Also, we can predict that hypersynchroniza-
tion between VIS areas will be accompanied by synchronization
of DMN regions and strong asynchronous activation with other
functional networks.

Note that, state 4 is the only dynamic state where we have
found significant differences between healthy control and bipo-
lar subjects. State 4 shows synchronous activity within most
of the network nodes except few VIS and CC components,
which show anti-correlation with themselves as well as with
other ICN networks. The differences between HC and BP were
captured between a pair of SM component (paracentral gyrus)
and CC component(R SPL), and between a pair of SM com-
ponent (left supplementary motor area) and VIS component
(bi-fusiform gyrus).

The differences between groups are not localized in a sin-
gle dynamic state. Rather the group differences are distributed
across four dynamic states (states 1, 2, 3, and 4). This dis-
tributive nature of the group differences could be one rea-
son they were not detected in the static FNC, since that
metric only shows the average FNC for the run. Also the
dynamic states in Figure 4 show higher p-values for several
t-tests between ICN components for different groups, which
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FIGURE 5 | Brain connectome. A visual summary of significant
connectivity differences in dynamic states between different ICN
components for control and patient groups. The gray cross mark indicates
that no component from that region showed any significant group
difference. Note that the colors of the connecting links and the domains
are independent of each other. All of the component labels indicate the
brain region with peak amplitude and should be considered as bilateral

activation unless mentioned as left (L) or right (R). STG, superior temporal
gyrus; dMPFC, dorso-medial prefrontal cortex; AG, angular gyrus; VM,
ventral motor; ITG, inferior temporal gyrus; CB, cerebellum; SMA,
supplementary motor area; IFG, inferior frontal gyrus; SMG, supramarginal
gyrus; SPL, superior parietal lobule; LG, lingual gyrus; MOG, middle
occipital gyrus; IOG, inferior occipital gyrus; Bi-FFG, bi-fusiform gyrus;
ParaCL, paracentral.

did not pass multiple comparison correction tests. With a
larger sample size, more significant group difference could be
revealed.

Significant between-group differences in connectivity strength
were found in several intrinsic networks including sub-cortical,
VIS,auditory, SM,CC,DM and cerebellum networks. Several com-
ponents in the default-mode network (DMN) including DMPFC,
right and left angular gyri (AG), and right and left precuneus
showed significant connectivity differences with the components
in VIS, CC, SM, auditory, and CB networks. Previous studies sug-
gest that DMN may distinguish SZ and bipolar patients from
HCs (Zhou et al., 2007, 2008; Calhoun et al., 2008b, 2011). The
majority of previous studies report reduced task-related suppres-
sion in the DMN in SZ (Zhou et al., 2007, 2008; Jafri et al., 2008;
Bluhm et al., 2009; Jann et al., 2009; Kim et al., 2009; Park et al.,
2009; Pomarol-Clotet et al., 2010; Wang et al., 2011). Studies

showed that failure to deactivate default-mode regions corre-
sponded to gray matter losses in the dorsal ACC and medial
prefrontal cortex regions (Zhou et al., 2008; Pomarol-Clotet et al.,
2010; Skudlarski et al., 2010; Salgado-Pineda et al., 2011). How-
ever, as mentioned earlier, both increased and decreased FC have
been reported in the DMN in SZ. Medial prefrontal cortex is
a region known to be associated with information processing
when more than one course of action may be required, such
as representing the thoughts, actions, and feelings of others
across time (Gilbert et al., 2006). Several studies of both SZ and
BP (Öngür et al., 2010; Meda et al., 2012; Khadka et al., 2013)
have reported subgenual and medial prefrontal abnormalities in
bipolar patients and dorsal medial prefrontal abnormalities in
SZ patients. (Huang et al., 2010) reported decreased amplitude
of low frequency fluctuation (ALFF) in the medial prefrontal
regions in never treated SZ patients, and found to become
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FIGURE 6 | Main dynamic effects rendering maps. Using the Brain
Connectivity Toolbox, modularity in the dynamic FC matrices was found. The
FC matrix is divided into two modules with nodes of each module correlated
positively with each other in general and anticorrelated with nodes of other
module. For each component the average positive connectivity within a

module was computed and stored as “component weight.” These weights
were then used to create weighted spatial map containing all associated
components for a given dynamic state, and finally the weighted spatial maps
were projected onto a 3-dimensional MNI surface using the AFNI-SUMA
(Saad et al., 2004).

normalized with antipsychotic therapy (Sambataro et al., 2009;
Lui et al., 2010).

Another DMN component found in our analysis is the angular
gyrus (AG), which is known to be involved in language process-
ing (Hall et al., 2005; Binder et al., 2009; Price, 2010; Clos et al.,
2014), as well as memory and social cognition. Therefore, AG
dysregulation can help differentiate SZ and bipolar patients from
HCs. Our study showed greater connectivity in SZ between the
component pair STG and left AG. Notably, several studies also
found FC abnormalities in STG, which is a major part of the
dominant hemisphere language network. Also both structural and
functional abnormalities in the STG have been demonstrated in
SZ patients in multiple studies as well as in psychotic BP and con-
stitute the best-replicated brain differences correlating with the
severity of psychotic symptoms in SZ, most specifically auditory
hallucinations and formal thought disorder collectively; abnor-
malities in these regions likely underpin psychotic phenomena
(Aguayo, 1990; Swerdlow, 2010; Fusar-Poli et al., 2011). In our
study, group variations in connectivity strength were observed
in several temporal lobe components [STG, bi-fusiform gyrus
(FFG) and left inferior temporal gyrus (ITG)], known to pro-
cess auditory information (Kim et al., 2009; Sui et al., 2011). This
reinforces the fact that aberrant temporal lobe coherence patterns
may exhibit significant abnormality in both SZ, and to a lesser
extent BP (Pearlson, 1997; Calhoun et al., 2008b). These findings
may be useful in explaining the language and thought disruptions
in SZ.

Our study showed two other DMN components, left and right
precuneus, which are involved in a wide spectrum of highly inte-
grated tasks, including episodic memory (Cabeza and Nyberg,
2000; Rugg and Henson, 2002), mental imagery recall (Shallice
et al., 1994; Fletcher et al., 1996), and self-processing operations,
such as first-person perspective taking (Cavanna and Trimble,
2006). Garrity et al. (2007), higher positive symptoms were cor-
related with increased deactivation in the medial frontal gyrus,
precuneus and the left middle temporal gyrus (MiTG). Compared
to SZ patients, HCs showed greater connectivity between left cere-
bellum and both left and right precuneus. The cerebellum may
influence motor systems by estimating inconsistencies between
intention and action and by adjusting the motor operations appro-
priately (Kandel et al., 2000), as well playing a role in cognition and
emotion (Schmahmann and Caplan, 2006). Prior studies reveal
impaired functional integration of cerebellum in SZ (Honey et al.,
2005; Becerril et al., 2011). Collin et al. (2011) proclaimed the FC
to other brain regions [left thalamus, middle cingulate gyrus, and
supplementary motor area (SMA)] to be disconnected from the
cerebellum in SZ patients.

In our study, several SM components including SMA, right
and left motor, VM, supramarginal gyrus (SmG) and paracen-
tral showed between-group connectivity differences that were
distributed across different dynamic states. (Jeong et al., 2009)
reported decreased correlation of the left inferior frontal gyrus
(IFG) with left middle temporal gyrus (MTG)/ left superior
temporal sulcus, left SPL/supramarginal gyrus and other brain
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regions. Our results showed connectivity differences between SmG
and other brain components [with lingual gyrus (LG) in HC < SZ;
with VM in SZ > BP; with bi-FFG in HC < BP]. Previous stud-
ies found impaired FC between cerebellum and LG in SZ patients
(Collin et al., 2011).

Other findings in our analysis include connectivity differences
in several CC components [left ITG, left middle frontal gyrus
(MiFG), MTG, left IFG, left superior medial gyrus (SMG), and
SPL] with components from other brain networks. Abnormal FC
in left IFG, MiFG, and IFG was found in SZ patients (Jeong et al.,
2009; Müller et al., 2013).

Another key finding in our study is greater connectivity in HCs
between putamen tail and VM regions, compared to SZ patients.
The putamen may be involved in the generation of spontaneous
language, and linked to auditory/verbal hallucinations (Hoffman
and Hampson, 2012). Several SZ studies showed FC anomalies in
the putamen (Hoffman et al., 2011; Hoffman and Hampson, 2012;
Tu et al., 2012).

LIMITATIONS AND FUTURE DIRECTIONS
Several experimental and methodological limitations must be con-
sidered while performing the sliding-window analysis method and
interpreting results. One limitation is that the non-stationary noise
sources in fMRI time series can influence changes in FC over time.
Synchronous global modulations of fMRI time series can be caused
by variations in respiratory and cardiac rates, as they predom-
inantly occupy the low frequencies (<0.1 Hz; Wise et al., 2004;
Chang and Glover, 2009). Also head motion could generate spa-
tially structured artifacts in FC (Power et al., 2012; Yan et al., 2013).
Even though ICA reasonably separates the component sources for
sliding-window analysis, it may not have completely separated the
effects from other sources of interest. Therefore, to interpret the
dynamic results, efficient denoising as well as recording of res-
piration and cardiac events should be considered. In the current
study we performed careful quality control as well as incorporating
multiple motion regression steps to mitigate against the impact of
motion.

Another important issue for sliding-window analysis is the
choice of window size. (Sakoǧlu et al., 2010) reported that the
ideal window size should be able to estimate FC variability and
capture the lowest frequencies of interest in the signal, as well as to
detect interesting short-term effects. In this study, dynamics were
estimated using an empirically validated fixed sliding-window of
22TRs (33s) similar to that used in (Allen et al., 2012). Future work
should evaluate changes across a variety of windows lengths that
could be performed using separate windows (Cribben et al., 2012)
or perhaps combined with multi-scale approaches such as wavelet
transform (Chang and Glover, 2010).

Several recent studies on microstate-based EEG-fMRI resting-
state datasets have showed that EEG microstates and some number
of fMRI-based ICNs show correspondence between themselves
(Britz et al., 2010; Musso et al., 2010; Yuan et al., 2012). A brain
microstate can be defined as a functional/physiological state dur-
ing which specific neural processes occur (Musso et al., 2010).
Using concurrent EEG-fMRI data, the underlying physiologi-
cal correlates of these dynamic states can be well assessed as
demonstrated in (Allen et al., 2013).

We characterized FC as the covariance between ICN time-
courses. Characterization of FC matrices based on higher-order
statistics (e.g., mutual information) or lag-insensitive measures
(e.g., cross-correlation) could efficiently recover the underlying
biological structure of networks. Another limitation of the study
is that smaller acquisition parameters may not lead to optimum
results by exploring all possible aspects of dynamic changes in FC.
Each subject in this study was scanned for only 5 min, which
is probably not optimal for considering the rate of change in
dynamic states. A longer acquisition time (∼10 min) is recom-
mended for a more accurate estimation of connectivity dynamics.
To identify centroids of dynamic FC we used k-means clustering,
which has several limitations, including difficulty in separating
clusters with different sizes and densities, and a high susceptibility
to outliers. Future work could include application of alternative
clustering models (fuzzy-clustering or density-based clustering
techniques) in the connectivity dynamics. Future work focusing on
an improved understanding of the association between disease and
connectivity dynamics could actually enrich our knowledge of the
dynamic properties of the healthy functional brain. In addition,
recent work has shown that there are time-varying changes not
only in the covariance but also in the associated spatial patterns
(Ma et al., 2014). Future studies to characterize both covariance
and spatial changes over time are warranted.

CONCLUSION
We have performed, to our knowledge, the first whole-brain char-
acterization of intrinsic regional differences in FC variability and
a comprehensive analysis of discrete FC states in SZ, BP and HCs.
One key finding was the aberrant FC patterns found in several
default-mode components including DMPFC, bilateral angular
gyrus, and bilateral precuneus, in the patient groups. Other sig-
nificant findings include connectivity anomalies in VIS, SM and
cognitive control networks in both patient groups. These findings
could be used as distinctive characteristic markers in SZ and BP,
and also could help diagnose the patients based on their biologi-
cal features, rather than exclusively depending on cross-sectional
clinical symptoms and information on longitudinal course and
outcome.
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