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Causal inference is a fundamental component of cognition and perception. Probabilistic
theories of causal judgment (most notably causal Bayes networks) derive causal
judgments using metrics that integrate contingency information. But human estimates
typically diverge from these normative predictions. This is because human causal
power judgments are typically strongly influenced by beliefs concerning underlying
causal mechanisms, and because of the way knowledge is retrieved from human
memory during the judgment process. Neuroimaging studies indicate that the brain
distinguishes causal events from mere covariation, and also distinguishes between
perceived and inferred causality. Areas involved in error prediction are also activated,
implying automatic activation of possible exception cases during causal decision-
making.
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Causal inference is a fundamental component of cognition and
perception, binding together conceptual categories, imposing
structures on perceived events, and guiding decision-making. A
type of causal inference that is of particular interest to decision
scientists is causal power judgment. Causal power refers to the
ability of a particular cause alone (when it is present) to elicit
an effect, relative to other causes (Cheng, 1997). For example,
selective serotonin-reuptake inhibitors (SSRI) may be considered
more effective in alleviating depression than a placebo if greater
depression alleviation is observed when an SSRI is ingested than
when a placebo is ingested.

In probabilistic theories of causal judgment, causal power is
assessed through metrics that integrate contingency information.
One such normative metric is defined as

1P = (E|C)−P(E| ∼ C)

that is, the probability of the effect occurring in the presence of the
cause minus the probability of the effect occurring in the absence
of the cause. (This metric is referred to as ∆P by Cheng (1997) and
as PNS by Pearl (2000)). An extension of ∆P that normalizes the
metric by means of the base rate of the effect measures the power
of the candidate cause to generate or prevent the effect relative to
other possible causes. Cheng (1997) defined this metric for causes
that generate an effect as

Pc = 1P/1− P(E| ∼ C).

This is equivalent to the metric defined by Pearl (2000) as PS.
For causes that prevent the effect, Cheng (1997) defined causal
power as

Pc = −1P/P(E| ∼ C).

The difficulty with the probabilistic approach is that human
causal power judgments frequently depart from the normative
values predicted by these metrics. This is because human causal

power judgments are typically strongly influenced by beliefs
concerning underlying causal mechanisms, and because of the
way knowledge is retrieved from memory during the judgment
process.

CAUSAL MECHANISMS
Causality is distinct from mere contingency or covariation. In
causality, one event has the power to bring about another
event. In covariation and contingency, two events are simply
statistically dependent on one another. People cognize causal
events differently than they do simple contingency or covariation,
and this is apparent in neuro-imaging results: When viewing
launching displays, significantly higher levels of relative acti-
vation is observed in the right middle frontal gyrus and the
right inferior parietal lobule for causal relative to non-causal
events (Fugelsang et al., 2005). Another study contrasted dis-
plays of normal causality with magic tricks that appear to vio-
late causality and those that are surprising but do not violate
causality (Parris et al., 2009). The results indicated that brain
areas responsible for detecting expectancy violations in gen-
eral (i.e., anterior cingulate cortex and left ventral prefrontal
cortex) are not responsible for detecting causality violations.
This function appears to be specific to the dorsolateral pre-
frontal cortex. In another study, identical pairs of words were
judged for causal or associative relations in different blocks of
trials. Causal judgments, beyond associative judgments, gen-
erated distinct activation in left dorsolateral prefrontal cortex
and right precuneus, again substantiating the particular involve-
ment of these areas in assessments of causality (Satpute et al.,
2005).

Other research indicates that perceptual causality can
be neurally distinguished from inferential causality. Inferen-
tial causality activates the medial frontal cortex (Fonlupt,
2003). Research involving callosotomy (split-brain) patients
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also indicates particular left hemispheric involvement (Roser
et al., 2005). In contrast, perception of causality can be
influenced by the application of transcranial direct stimula-
tion to the right parietal lobe, suggesting that the right pari-
etal lobe is involved in the processing of spatial attributes
of causality (Straube and Chatterjee, 2010; Straube et al.,
2011).

In short, neuroimaging studies show that the brain distin-
guishes causal events from non-causal events, and this distinction
cannot simply be attributed to the surprising nature of non-
causal event displays. It also distinguishes between perceived and
inferred causality.

The importance of causal mechanism assessment looms par-
ticularly large in causal decision-making. People typically dis-
count even strong covariation/contingency information if no
plausible causal mechanism appears responsible for the covari-
ation or contingency (Ahn et al., 1995). In a classic study by
Fugelsang and Dunbar (2005), people read either plausible or
implausible causal hypotheses and were shown covariation data
that were either consistent or inconsistent with these hypothe-
ses. A consistent case was one in which a plausible hypoth-
esis was accompanied by strong covariation (high ∆P) or an
implausible hypothesis was accompanied by weak covariation
data (low ∆P). An inconsistent scenario was on in which a
plausible hypothesis was accompanied by weak covariation data
(low ∆P) or an implausible hypothesis was accompanied by
strong covariation (high ∆P). The task was to estimate the
effectiveness of the purported cause in bringing about the effect.
The results showed quite clearly the impact of causal plausibility
on behavioral judgments and neural processing. Areas associ-
ated with thinking (executive processing and working memory)
were more active when people encountered data while evalu-
ating plausible causal scenarios. Areas associated with learning
and memory (caudate, parahippocampal gyrus) were activated
when data and theory were consistent (plausible + strong data
OR implausible + weak data). But when data and theory were
inconsistent (implausible + strong data OR plausible + weak
data), attentional and executive processing areas were active (ante-
rior cingulate cortex, prefrontal cortex, precuneus) Attentional
and executive processing areas (anterior cingulate gyrus, pre-
frontal cortex, precuneus) were particularly active when plausible
theories encountered disconfirming (weak) covariation. These
results were interpreted to mean that people focus on theories
that are consistent with their beliefs (plausible causal scenarios).
They also attend to disconfirming data, but they do not necessarily
revise beliefs in light of disconfirming data. This phenomenon
is sometimes referred to as truth maintenance (Doyle, 1979) or
belief revision conservatism (Kelly et al., 1997; Corner et al.,
2010). Both strategies seek to maintain coherence in one’s knowl-
edge base by minimizing changes to current belief in light of new
information.

KNOWLEDGE RETRIEVAL
Different types of knowledge are activated when reasoning from
cause to effect than when reasoning from effect to cause. When
reasoning from cause to effect, disablers are spontaneously acti-
vated; when reasoning from effect to cause, alternative causes

are spontaneously activated. (Preventive causes in this literature
are referred to as disablers.) Consider, for example, arguments of
the form “If Marilyn takes SSRI medication, then her depression
will lift/Marilyn is taking SSRI medication/Therefore, Marilyn’s
depression will lift”. People’s willingness to accept such arguments
is inversely proportional to the number of disablers activated in
memory (factors that could prevent Marilyn’s depression from
lifting even though she’s taking SSRI medication.) This effect has
been observed in adults (e.g., Cummins et al., 1991; Cummins,
1995, 1997; De Neys et al., 2002, 2003; Vershueren et al., 2004)
as well as children (Markovits et al., 1998; Janveau-Brennan and
Markovits, 1999).

Recently, two models have been proposed to capture the
impact of disablers on causal power judgments. In the first model,
proposed by Cummins (2010), causal power judgments are cap-
tured by the following equation:

Wc = B(α/(α + disablers))

Wc represents the decision-maker’s estimated probability that the
cause will in fact bring about the effect. B is a parameter that
reflects the believability of the causal mechanism underlying the
purported causal relationship. The inclusion of this parameter
is motivated by ample research showing that people ignore or
discount covariation information if no they can think of no
plausible causal mechanism whereby the purported cause can
bring about the effect (e.g., Ahn et al., 1995). In the model, if
a decision-maker does not believe the two events are causally
related, B = 0 and disablers are irrelevant and hence not activated
in memory. Only when they believe a causal mechanism exists
that empowers one event to evoke another (B = 1) do disablers
become relevant.

The term α/(α+disablers) is a memory activation function—
a positively accelerated curve—in which the first few disablers
retrieved from memory have greater impact on judgment than
those retrieved later. Activation spreads throughout the network
of associated disablers, and likelihood estimates drop off signifi-
cantly the farther it spreads. This is because stronger disablers are
presumed to be activated earlier than weaker ones, and therefore
have greater impact on judgment outcomes. In other words, the
psychological difference between 0 and (e.g.,) 3 items is greater
than the psychological difference between (e.g.,) 4 and 7. α is
a free parameter; it simply expresses the steepness of the curve,
and its value is determined empirically. Figure 1 depicts causal
power likelihood estimates for different disabler and α values
when B = 1.

The model captures the likelihood of an effect occurring
when a cause is present and disablers are absent, and its crucial
prediction is that the number of disablers and the order of disabler
retrieval both matter.

The inclusion of α as a parameter is motivated by research
on reasoning with causal conditional arguments. De Neys et al.
(2003) reported that while “thinking aloud”, reasoners did not
halt the retrieval process upon retrieving a single counterexample.
Instead, they continued to retrieve disablers until a final judg-
ment was made, and willingness to accept causal conclusions
declined as more disablers were activated in memory. Their results
suggested a non-linear retrieval function, however, in which a
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FIGURE 1 | A model of causal power values (Wc ) as a function of
belief that a causal mechanism underlies the contingency (B) and
number of disablers for different values of α, a free parameter
whose value is determined empirically. In the graph, B = 1, meaning

that the decision-maker believes the contingency reflects a causal
relationship. The function shows that the first few disablers retrieved
have greater impact on causal power estimates than ones retrieved
later.

threshold occurred at about 3 retrieved items, after which argu-
ment acceptance ratings changed very little.

In the second model, proposed by Fernbach and Erb (2013),
causal power judgments are based on an aggregate disabling
probability. Each disabler has some prior likelihood of being
present (Pd) and, when present, a likelihood of preventing the
effect from occurring, which constitutes its strength (Wd). The
disabling probability of any given disabler (Ai) is equal to the
product of its prior probability and its strength

Ai = Pdi
∗Wdi

The likelihood that the cause will successfully bring about an
effect is the aggregate of these individual disabling probabilities:

A′ =
∑n

i=1
Ai −

∑
i,j:i<j

AiAj +
∑

i,j,k:i<j<k
AiAjAk− · · ·

+ (−1)n−1
∏n

i=1
Ai

As an example, if there are two disablers, then the resulting
equation is

A′ = A1 + A2 − A1
∗A2

If there are three, then it becomes

A′ = A1 + A2 + A3 − A1
∗A2 − A1

∗A3 + A1
∗A2
∗A3

and so on. Causal power, Wc, is the complement of this aggregate
disabling probability, which means that it expresses the likelihood

that the cause will bring about the effect when there are no
disablers to prevent it:

Wc = 1− A′

To summarize, according to Cummins (2010) (a) causal power
likelihood estimates diminish as the number of disablers retrieved
increases; and (b) earlier retrieved disablers have greater impact
than later ones. According to Fernbach and Erb (2013), causal
power likelihood can be captured by aggregate disabler impact,
a value not affected by order of disabler retrieval.

Fernbach and Erb (2013) found that their model constituted a
reasonably good fit for causal arguments but not for non-causal
ones, despite similarity in their conditional probabilities. These
results constitute strong support for the inclusion of believability
parameter when modeling disabler impact. Cummins (2014)
found that aggregate impact scores did not fully capture final
likelihood judgments well, and the disparity was due to the fact
that order of disabler retrieval mattered. Stronger disablers are
retrieved first, but, contrary to Cummins’ model, the ultimate
judgment is more strongly influenced by later retrieved items than
by earlier ones.

Recent research has successfully identified the neurocorre-
lates of disabler retrieval during causal reasoning. Of particular
interest are two specific event-related potentials: N2 and P3b.
N2 is a frontal negative deflection observed between 200 ms
and 300 ms after stimulus onset while P3b is a centroparietal
positive deflection observed 250–450 ms after stimulus onset. N2
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is typically observed when causal expectations are violated while
P3b is typically observed when such expectations are satisfied
(Verleger, 1988; Folstein and VanPetten, 2008). Causal arguments
that admit of many disablers elicit more pronounced N2 and less
pronounced P3b responses than do causal arguments that admit
of few disablers (Bonnefond et al., 2014). This pattern of response
is interpreted to mean that disabler retrieval lowers reasoners’
expectations that an effect will in fact be elicited by a particular
cause.

In a related fMRI study (Fenker et al., 2010), a task cue
prompted people to evaluate either the causal or the non-
causal associative relationship between pairs of words. Causally
related pairs elicited higher activity than non-causal associates
in orbitofrontal cortex, amygdala, striatum, and substantia
nigra/ventral tegmental area. Importantly, this network overlaps
with the mesolimbic and mesocortical dopaminergic network
known to code prediction errors (O’Doherty et al., 2003, 2007).
Because the study context did not explicitly require people to
make predictions, activity in this network suggests that that
prediction error processing might be automatically recruited in
assessments of causality.

The take-home message of this work is that human causal
inference cannot be adequately modeled without taking into
consideration the ways in which knowledge is activated and
weighted in the decision process. Current popular models of
causal inference (e.g., Fernbach et al., 2011; Fernbach and Erb,
2013) analyze it as a type of Bayesian inference, yet such models
do not constitute adequate descriptive models of human predictive
inference because they abstract away from these crucially impor-
tant variables. This implies that human predictive inference is not
purely Bayesian. As was well-documented by Kahneman (2011),
the source of the discrepancy seems to lie in the way knowledge
retrieval transacts with probability estimations. Automatic (e.g.,
Cummins, 1995, 2010) activation of relevant alternatives is a
hallmark of human reasoning, and this characteristic must be
accommodated in descriptive models of causal inference if human
causal judgments are to be adequately predicted.
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