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Sound localization is an important function of the human brain, but the underlying
cortical mechanisms remain unclear. In this study, we recorded auditory stimuli in
three-dimensional space and then replayed the stimuli through earphones during
functional magnetic resonance imaging (fMRI). By employing a machine learning
algorithm, we successfully decoded sound location from the blood oxygenation
level-dependent signals in the temporal lobe. Analysis of the data revealed
that different cortical patterns were evoked by sounds from different locations.
Specifically, discrimination of sound location along the abscissa axis evoked robust
responses in the left posterior superior temporal gyrus (STG) and right mid-STG,
discrimination along the elevation (EL) axis evoked robust responses in the left
posterior middle temporal lobe (MTL) and right STG, and discrimination along the
ordinate axis evoked robust responses in the left mid-MTL and right mid-STG.
These results support a distributed representation of acoustic space in human
cortex.

Keywords: sound localization, functional MRI, multivariate pattern analysis, decoding, auditory spatial
discrimination

Introduction

Sound localization plays an important role in everyday life. We can automatically identify the
location of an acoustic target even in a noisy environment. This perception is mainly derived from
interaural time differences (ITD), interaural level differences (ILD) and spectral cues (Blauert, 1997;
Cohen and Knudsen, 1999; Grothe et al., 2010). These spatial cues are analyzed along the ascending
auditory pathway (Thompson and Cortez, 1983; Wise and Irvine, 1985; Cohen and Knudsen,
1999; Grothe et al., 2010). Different areas in the temporal lobe have been shown to be sensitive
to sound location (Recanzone, 2000; Tian et al., 2001; King et al., 2007; Lee and Middlebrooks,
2011), but the underlying mechanisms of auditory spatial processing in these areas remain unclear
(Middlebrooks, 2002; Meyer et al., 2010; Salminen et al., 2010; Lewald and Getzmann, 2011;
Schechtman et al., 2012).
It is reasonable to expect a topographic representation of sound location in the auditory

cortex (Jeffress, 1948) because topographic representations, such as the tonotopic map
found in primary auditory cortex (Merzenich et al., 1975) and the orientation map
found in primary visual cortex (Hubel and Wiesel, 1959), seem to be a hallmark of
cortical organization. However, such a representation has not been found even after

Frontiers in Human Neuroscience | www.frontiersin.org 1 April 2015 | Volume 9 | Article 203

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00203
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00203/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00203/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00203/abstract
http://community.frontiersin.org/people/u/209573
http://community.frontiersin.org/people/u/212820
http://community.frontiersin.org/people/u/212595
http://community.frontiersin.org/people/u/123251
https://creativecommons.org/licenses/by/4.0/
mailto:xlhu@tsinghua.edu.cn
http://dx.doi.org/10.3389/fnhum.2015.00203
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Zhang et al. Neural representation of acoustic space

intensive study (Cohen and Knudsen, 1999; Weeks et al.,
1999; Lewald et al., 2000, 2008; Recanzone, 2000; Wessinger
et al., 2001; Middlebrooks, 2002; Stecker and Middlebrooks,
2003; Zimmer et al., 2006; Deouell et al., 2007; Nakamoto
et al., 2008; Altmann et al., 2009; Grothe et al., 2010; Lee
and Middlebrooks, 2011). In fact, many physiological studies
have found that auditory neurons in mammals have very
broad tuning curves to sound location (spatial receptive fields
typically span 150–180◦) (Mickey and Middlebrooks, 2003;
Stecker et al., 2005), although location can be decoded from
a population of such neurons (Miller and Recanzone, 2009).
Neuroimaging studies suggest that sound location is encoded
in a distributed manner in the cortex (Weeks et al., 1999;
Maeder et al., 2001; Zatorre et al., 2002; Brunetti et al., 2005;
Barrett and Hall, 2006; Altmann et al., 2008; Smith et al., 2010;
Kong et al., 2014).

Most of these studies examined the neural encoding
mechanisms using sounds presented along the horizontal plane.
However, in reality sounds may come from anywhere within
the entirety of three-dimensional (3D) space. Furthermore,
it is possible that the encoding mechanisms differ for sounds
arising from different locations. For instance, many studies
have shown that neurons in both hemispheres prefer
contralateral stimulation (Woldorff et al., 1999; Mickey
and Middlebrooks, 2003; Miller and Recanzone, 2009; Yao
et al., 2013), but a similar encoding mechanism for sound
locations above and below the horizontal plane cannot exist
because we do not have an ‘‘up brain’’ or ‘‘down brain’’. A
small number of studies (Lewald et al., 2008; Lewald and
Getzmann, 2011) have used stimulus locations beyond the
horizontal plane, but the analyses were restricted to the
ability of the brain to distinguish among sounds along the
abscissa dimension. Another study (Pavani et al., 2002)
presented stimuli along a horizontal line and two vertical
lines located in front of subjects, but the aim was to study
the encoding of sounds moving along these lines. An
electrophysiological study investigated sound localization
mechanisms in monkeys using speakers distributed in 3D space
(Zhou and Wang, 2012) but focused on the level tolerance
of spatial perception in single neurons. Furthermore, in
electrophysiological experiments, one can only observe the
activity of a small number of neurons at a time, which is
insufficient for discovering patterns of cortical activation across
large areas.

In this study, we explored the underlying mechanisms
of spatial sound perception over all of 3D space using
functional magnetic resonance imaging (fMRI) in human cortex.
We first recorded sounds from speakers distributed evenly
throughout acoustic space and then played the recorded sounds
in the fMRI chamber during brain scanning. Multivariate
pattern analysis (MVPA) revealed that sound locations could
be discriminated using brain activity for three different
conditions: left vs. right, up vs. down, and front vs. back.
Moreover, the cortical activity that enabled decoding under
the different conditions displayed different spatial patterns
in the super temporal gyrus (STG) and middle temporal
lobe (MTL).

Materials and Methods

We planned to analyze the brain activity evoked by spatial
sounds. First, we needed to decide what types of stimuli
should be used. One strategy is to use synthetic stereo
sounds (Maeder et al., 2001; Zimmer et al., 2006; Kong
et al., 2014). However, such sounds lack subject-specific
spectral localization cues due to differences in individual
anatomy. Accordingly, we decided to use realistic spatial sounds
originating from 3D space that were customized for each
subject. This was achieved by playing sounds via loudspeakers
positioned around each subject’s head and recording the
stimuli via inner-aural microphones. These recorded stimuli
were then delivered to the subject via stereo earphones during
fMRI scanning. This subject-specific stimulus design eliminates
the influence of different head and torso shapes on the
perception of sound location, which should more faithfully
preserve spatial cues for each subject. However, the recording
techniques, properties of the earphones and other factors
may degrade the quality of the stimuli. Three behavioral
experiments were designed to test if the majority of the spatial
cues had been preserved during fMRI scanning. See below
for details.

Subjects
Eight right-handed subjects (1 female, age from 21 to 26, mean
age 23) with normal symmetric hearing abilities participated
in the experiments. Normal symmetric hearing abilities were
confirmed before the experiments by testing the pure tone
thresholds (PTTs) for all the subjects (GSI AudioStar Pro,
Guymark, UK). The recording of one additional subject was
aborted due to subject discomfort. All subjects provided
informed consent prior to participation. The experimental
protocols were approved by the institutional review board of
the Biomedical Imaging Research Center, Tsinghua University.
All procedures adhered to the tenets of the Declaration
of Helsinki.

Behavioral Experiment Setup
A behavioral experiment setup was built in a double-walled,
sound-attenuating and echo-reduced chamber (IAC-1205A,
Industrial Acoustics, UK). The setup contained a platform
similar to the one used in subsequent fMRI scanning sessions.
When subjects laid on this platform, sixteen speakers were
evenly distributed around their heads along a spherical surface
with a radius of 80 cm (Figure 1A). The position of a
given speaker is specified in angles of azimuth (AZ) and
elevation (EL). The speaker just in front of the subject’s eyes
was located at AZ = 0◦ and EL = 0◦ (negative AZ values
indicate positions to the left). One speaker was positioned just
above the head of the subject (EL = 90◦); four speakers were
evenly positioned at EL = 45◦ with 90◦ horizontal spacing
(AZ = 0◦, ±90◦, 180◦); eight speakers were positioned at
EL = 0◦ (AZ = 0◦, ±45◦, ±90◦, ±135◦, 180◦); and three speakers
were positioned at EL = −45◦ (AZ = 0◦, ±90◦). All speakers
were immobilized facing the center of the sphere, i.e., the
subject’s head.
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FIGURE 1 | Experimental setup for 3D acoustic stimulation. (A) Schematic
illustration of the experimental platform. A subject lay on a platform with sixteen
speakers evenly distributed around his/her head. All speakers were placed on
the surface of a sphere (radius 80 cm) centered at the subject’s head and
immobilized facing the center. Fifteen speakers (yellow dots) were mounted on
three iron hoops with radii of 56.6 cm, 80 cm and 56.6 cm and elevation (EL)

angles of 45◦, 0◦ and 45◦, respectively. Four speakers were positioned at
EL = 45◦, eight speakers at EL = 0◦, and three speakers at EL = −45◦. azimuth
(AZ) angles are indicated next to the speakers. The 16th speaker was
positioned at EL 90◦ (on top of the subject’s head). (B) Waveforms (left) and
spectrograms (right) of a sample stimulus recorded from one subject’s left (top)
and right (bottom) ear for a sound presented at EL = 0◦ and AZ = −45◦.

Acoustic Stimuli and Experimental Procedures
Behavioral Task
Each subject underwent three experiments in sequence, with
either speaker-delivered sounds or earphone-delivered sounds.
The procedures for these experiments are detailed below. In
all experiments, the behavioral task was the same: immediately
after the presentation of a stimulus, the subjects had to
indicate their perception of the position of the stimulus by
pressing one of three buttons (‘‘left’’, ‘‘middle’’, or ‘‘right’’)
with their right hands. Here, ‘‘left’’ stimuli were defined as
those originating from the speakers with negative AZ values
(EL = 0◦, ±45◦), ‘‘right’’ stimuli were defined as those from

the speakers with positive AZ values (EL = 0◦, ±45◦), and
‘‘middle’’ stimuli were defined as those from the speakers
with zero AZ values (EL = 0◦, ±45◦) and the speaker with
EL = 90◦.

Experiment 1
Subjects lay on the platform in the acoustic chamber with their
heads positioned at the center of the spherical surface where
the 16 speakers were mounted. Mono stimuli were delivered to
the speakers via a digital-to-analog interface (TDT, Tucker-Davis
Technologies, Florida). A total of 80 (5 per speaker) stimuli were
pseudo-randomly presented. The stimuli used in this experiment
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consisted of band-passed noise (20 Hz–12 kHz), with a duration
of 500 ms and a sampling rate of 44.1 kHz.

Experiment 2
This experiment was the same as Experiment 1 except that the
stimuli were the recorded sounds, which were subject-specific
and were delivered through earphones. The sound recording
procedure was as follows. Before the experiment, two inner-ear
microphones were placed in the external auditory canal of each
subject. Then, the stimuli used in Experiment 1 were played
through the speakers. The microphones recorded the speaker-
delivered sounds via a stereophonic preamplifier with a sampling
rate of 44.1 kHz. Finally, the recorded stereo sounds were
trimmed to 550-ms segments. The waveform and spectrogram
of an example recorded stimulus are shown in Figure 1B.

Experiment 3
This was the fMRI scanning experiment, during which the
same behavioral task was carried out. Subject-specific recorded
stimuli (see Experiment 2 above) were delivered through MR-
compatible electrodynamic earphones. The experiment started
with a practice run in which several spatial stimulus sequences
were delivered to familiarize the subjects with the fMRI
environment. The practice run was followed by eight functional
runs. Each run consisted of 76 trials. Of these trials, 64 were
stimulus trials (4 trials per sound location) and 12 were ‘‘silent’’
trials (without stimulus presentation), which were randomly
intermixed (Figure 2). Because the acoustic noise generated
during image acquisition could interfere with the perception of
sound location, the stimuli were delivered during scan intervals
(Hall et al., 1999; Joanisse et al., 2007). Each trial began with
2 s of image acquisition, and the stimulus (if any) was presented
in the subsequent 3.5 s (TR = 5.5 s). The 550-ms-long stimulus
could begin at any point within the 2.5 s that followed image
acquisition. Each run lasted 418 s. Short breaks were included
between runs. The whole fMRI experiment lasted approximately
1 h. Subjects were asked to focus on the behavioral task and to
ignore themachine noise. Note that subjects did not need to press
buttons during the ‘‘silent’’ trials.

MRI Acquisition
During Experiment 3 (described above), brain imaging was
performed in a 3-Tesla MRI system (Philips; Achieva) with
an 8-channel head coil at the Center for Biomedical Imaging
Research of Tsinghua University. Each subject participated in
two sets of scans. First, high-resolution anatomical image scans
were obtained using a T1-weighted MPRAGE pulse sequence
to generate anatomical images coregistered with the functional
data. Anatomical images were acquired using 180 1-mm slices
(256 ∗ 256 matrix; 0.9 ∗ 0.9 mm in-plane resolution; time
repetition (TR) = 7.7 ms; time to echo (TE) = 3.8 ms; flip
angle = 8◦; field of view (FOV), 230 mm). Functional data were
then acquired while subjects were performing the behavioral
task. Functional images were obtained using a standard echo-
planar imaging (EPI) sequence and 34 4-mm no gap slices
(144 ∗ 144matrix; 1.56 ∗ 1.56mm in-plane resolution; TR = 5.5 s;
TE = 28.7 ms; flip angle = 90◦; field of view (FOV), 224 mm).

fMRI Data Preprocessing
Functional brain volumes were analyzed using Statistical
Parametric Mapping software (SPM8).1 Individual functional
volumes were motion corrected through realignment to the
first EPI image, coregistered with each subject’s anatomical
image, spatially normalized into MNI space and resampled in
1.56 ∗ 1.56 ∗ 3 mm3 voxels. These preprocessed data were then
analyzed using two complementary methods: voxel-wise general
linear model (GLM) analysis and ROI-based MVPA.

Univariate GLM Analysis
A GLM whose repressors matched the time course of the
experimental conditions was applied to each subject’s data to
identify voxels activated by the stimuli. The predicted activation
time course was modeled as a ‘‘gamma’’ function convolved
with the canonical hemodynamic response function. Voxel-
vise parameter estimation was carried out according to the
GLM. To improve the signal-to-noise ratio, a Gaussian kernel
(5 ∗ 5 ∗ 5 mm3) was applied to the normalized data prior
to the GLM analysis. For each subject, an activation map
was generated by contrasting stimulus trials with silent trials
(Figure 3). Similarly, we analyzed differences between the blood
oxygenation level dependent (BOLD) patterns using GLM by
contrasting different sound locations (left vs. right, up vs. down
and front vs. back) but did not find any significant effects. In all
of these analyses, the statistical threshold was set to p < 0.05,
corrected by the false discovery rate (FDR). MRIcron was used
to display activation maps on a standard brain template (Rorden
and Brett, 2000).

MVPA
Preprocessed functional data for each run were separately fit with
a GLM. At every voxel, a GLM was applied with one predictor
coding for the stimulus response and one linear predictor
accounting for a within-trial linear trend (Friston et al., 2007;
Kay et al., 2008). The regression coefficient (beta) of the stimulus
response was taken to represent this stimulus at this voxel
(for convenience this coefficient is also called the ‘‘response’’
of the stimulus at the voxel). However, we did not fit the 64
stimuli individually. Instead, the four stimuli from the same
location in each run were combined together, which resulted in
16 responses. Therefore, a total number of 128 brain response
images were obtained for each subject’s eight runs. Note that the
data were not smoothed for regression.

A linear support vector machine (SVM; Burges, 1998)
was trained to classify the responses into different categories
based on the locations of the stimuli: left vs. right (abscissa
discrimination), up vs. down (EL discrimination) and front
vs. back (ordinate discrimination). A leave-one-run-out cross-
validation was performed for each subject. In other words, the
brain images obtained from all but one of the functional runs
were used to train the classifier, and the run excluded from
training was used for testing. This process was repeated for
each run in turn. The average accuracy over all testing runs was
computed.

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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FIGURE 2 | Functional magnetic resonance imaging (fMRI)
experimental design. A fast event-related design and a sparse
scanning protocol were adopted. Each subject participated in eight
functional runs using the same experiment protocol. Each run consisted
of 76 trials, and within each run, 64 stimulus trials (4 trials per sound
location) and 12 null trials were randomly intermixed. Each trial began

with 2 s of image acquisition, and the stimulus (if any) was presented in
the subsequent 3.5 s (TR = 5.5 s). For stimulus trials, the onset of the
550-ms stimulus was jittered throughout the 2.5 s that followed image
acquisition. A location identification task was conducted during functional
scanning. Subjects were asked to indicate the location of each stimulus
(left, middle or right) with a right-handed button press.

FIGURE 3 | Statistical parametric map of active regions using “stimulus vs. silent” contrast. The significance level for activation was set at p < 0.05 (FDR
corrected). The bottom panel shows a multi-slice orthogonal view.

Due to the high resolution of fMRI, each brain image
contained a massive number of voxels. A two-step approach was
used to reduce the number of voxels to facilitate the multivariate
classification as described above. First, a mask was obtained by

combining Brodmann areas 41, 42 and 22 in each hemisphere,
and a region of interest (ROI) was defined by smoothing this
mask with a Gaussian kernel (5 ∗ 5 ∗ 5 mm3). Thus, all activated
voxels in the univariate analysis except those in the left motor
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cortex were included in this ROI, which mainly consist of the
superior temporal lobe and the superior part the MTL. Then,
for each discrimination condition, a permutation test-based
approach was employed to further reduce the number of voxels
(Nichols and Holmes, 2002), which is described as follows. For
any discrimination condition, the class labels of the training set
were randomly permutated 2000 times. Accordingly, 2000 linear
SVMs were trained with these labels. For each voxel, a probability
distribution of its linear weight in the classifier was estimated.
We found that a Gaussian distribution was sufficient to fit the
data. Based on these probability distributions, we tested the
null hypothesis of no relationship between the voxel’s response
and its true class label. If the weight of a voxel determined
using the true location labels lies far outside the major mass of
the distribution, as indicated by a small p-value, then the null
hypothesis is unlikely to be valid, and the voxel can be treated
as ‘‘active’’, i.e., relevant for this discrimination condition. This
is a multivariate analysis approach. To prevent over-fitting only
training data were used in the permutation test.

Note that the voxel selection procedure for each
discrimination condition was performed separately for each
of the eight runs in each subject. A voxel selected in more
than four runs in a single subject was defined as an effective
voxel (EV) for that discrimination condition. Selecting an EV
in a single subject can be considered as a Bernoulli trial with
probability p for successful trials. In this study p was assigned less
than 0.05 by the permutation test. If we treat the exact number
of subjects in which the same voxel is successfully selected as
a random variable X, then X follows a binomial distribution
and P(X = k) = C(8, k) ∗ pk ∗ (1 – p)(8−k). The probability
of selecting the same voxel in three or more subjects is
P(X ≥ 3) = 1−P(X = 0) – P(X = 1) − P(X = 2). It is easy to
verify that this function monotonically decreases if p decreases.
Since p < 0.05, we have P(X ≥ 3) < 0.58 ∗ 10−3. In this sense,
we defined an EV selected in three out of eight subjects as a
Significant Effective Voxel (SEV).

Results

Behavioral Results
In Experiments 1, 2 and 3, all subjects showed consistent
performance and were able to precisely judge sound location.
The mean accuracy of each experiment was 99.53% (SD = 0.013),
98.28% (SD = 0.021) and 98.14% (SD = 0.018), respectively.
These high accuracies indicated that: (1) all subjects had normal
hearing abilities and could accurately discriminate the location of
spatial sounds; and (2) the recorded 3D stimuli did not degrade
important auditory cues for location perception during fMRI
scanning (Møller, 1992; Grothe et al., 2010).

Univariate fMRI Data Analysis
During Experiment 3, functional images were collected for each
subject while they were listening to the individually recorded
stimuli. Consistent with previous studies (Wessinger et al., 2001;
Pavani et al., 2002; Zimmer et al., 2006; Deouell et al., 2007;
Lewald et al., 2008), univariate analysis revealed that the stimuli,
when combined, evoked significant fMRI responses across the

auditory cortex bilaterally (Figure 3). The largest and most
robust activation was observed in the STG. The left motor
cortex was also conspicuously activated due to the right-hand
responses.

We were interested in whether the sounds from different
locations could elicit different BOLD response patterns in
the cortex; therefore, we constructed three contrast conditions
according to the sound’s location relative to the subject: left
vs. right, up vs. down and front vs. back. However, univariate
analyses did not yield significant difference in any of these
contrast conditions (threshold 0.05, FDR corrected).

Decoding Sound Location via MVPA
Compared with univariate analysis, MVPA methods enable the
study of the spatial pattern of brain activity across many voxels
simultaneously and boost the detection sensitivity of cognitive
states (DeMartino et al., 2008; Formisano et al., 2008a,b; Mitchell
et al., 2008; Pereira et al., 2009; Meyer et al., 2010). We thus
performed MVPA to decode sound location from the brain
activity. Specifically, we trained a linear SVM classifier on the
BOLD signals to discriminate the location of sounds in each of
the three conditions: left vs. right, up vs. down, and front vs.
back. Before applying the classifier, a two-step approach was used
to select relevant features (see Section Materials and Methods
for details). A leave-one-run-out cross-validation was performed
during classification for each subject, and the prediction accuracy
was defined as the average testing accuracy over eight validations.

The prediction accuracy over all subjects for left vs. right
was 66.74% (Figure 4), which was significantly higher than the
chance level (50%) (p = 2.4 ∗ 10−5). The prediction accuracies
for up vs. down and front vs. back were 57.81% and 57.42%,
respectively. Each of these accuracies was significantly higher
than the chance level (p < 0.012). These results indicate that
the temporal lobe exhibits distinguishable response patterns in
response to different sound locations. Themuch lower accuracies
for front vs. back and up vs. down than left vs. right suggests
that the cortex may encode sound location in different spatial
dimensions using different mechanisms.

Spatial Patterns of BOLD Signals in the Auditory
Cortex
We investigated the layout and consistency of spatial patterns
in the cortex across subjects, which enabled the classification of
sound locations. Voxels effective for discriminating the specific
classification conditions in a single subject was defined as EVs.
When an EV appeared in three or more subjects, it was defined as
a SEV. The SEVs were strongly correlated with the corresponding
discrimination condition (see Section Materials and Methods).

The SEVs for each discrimination condition were projected
onto a standard inflated cortical surface (Figure 5). They
exhibited distinct patterns that corresponded to the different
discrimination conditions. For the left vs. right condition, SEVs
were concentrated in the left posterior STG and right mid-STG.
For the up vs. down condition, SEVs were concentrated in the left
posterior-MTL and right STG. For the front vs. back condition,
SEVs were concentrated in the left mid-MTL and right mid-STG.
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FIGURE 4 | Classification accuracy across all subjects (median and
distribution) for the three discrimination conditions (left vs. right, up
vs. down and front vs. back). For these conditions, the average accuracies
were 66.74% (p = 2.4 ∗ 10−5), 57.81% (p = 0.0033) and 57.42% (p = 0.012),
respectively, which were significantly higher than chance (50%, dashed
horizontal line).

Discussion

In this study, we used machine learning techniques to study
brain activation patterns as a function of the location of auditory
objects. We found that the 3D locations of stimuli could be
decoded from cortical activity. Voxels exhibiting robust activity
formed distinct patterns in the temporal lobe that were effective
in discriminating different sound locations across subjects.
Abscissa discrimination (left vs. right) was more related to the
left posterior STG and right mid-STG. Ordinate discrimination
(front vs. back) was more related to the left posterior-MTL and
right STG. Finally, EL discrimination (up vs. down) was more
related to the left mid-MTL and right mid-STG.

Many fMRI studies (Wessinger et al., 2001; Pavani et al., 2002;
Zimmer et al., 2006; Deouell et al., 2007; Lewald et al., 2008) have
shown that cortical activity is related to sound location along
the abscissa dimension. Our results further indicate that cortical
activity contains sufficient information for the classification of
sounds along the abscissas dimension. Similar results have been
obtained with single cell recordings and a population decoding
method (Miller and Recanzone, 2009). What is new in our results
is that we have used cortical activity to classify sounds along the
ordinate and EL dimensions. However, classification accuracy for
ordinate and EL discrimination was significantly lower than for
abscissa discrimination. One possibility is that the behavioral task
(indicating if the stimulus was from the left, middle or right of
head) performed during fMRI scanning caused the difference in
accuracy because the subjects attended to variation in the sound
that were present along the abscissa dimension. However, that
should not be the major factor underlying the difference. In
fact, our decoding results are consistent with previous behavioral
studies (Makous and Middlebrooks, 1990; Carlile et al., 1997)

FIGURE 5 | Spatial patterns of effective voxels (EV) within the temporal
lobe for the different discrimination conditions. For each condition, the
voxels displayed in color were obtained from the permutation test-based voxel
selection procedure. Orange signifies voxels selected in at least one subject
and blue signifies voxels selected in three or more subjects. Blue voxels were
referred to as Significant Effective Voxels (SEVs). The dashed boxes in the top
panels depict the location of these results in the brain.

that reported lower localization errors for AZ discrimination
than for EL discrimination in a natural auditory environment.
Precise discrimination for up vs. down and front vs. back usually
depends on visual assistance and head motion (Thurlow and
Runge, 1967; Lewald et al., 2000), which were absent in our
experiments.

The across-subject SEVs for discriminating sound location
along the different dimensions exhibited different spatial
patterns. The voxels effective for abscissa discrimination were
mainly located in the STG bilaterally, which is consistent
with previous neuroimaging findings (Brunetti et al., 2005;
Zimmer and Macaluso, 2005; Zimmer et al., 2006; Lewald et al.,
2008; Ahveninen et al., 2013). The across-subject SEVs for
EL discrimination and ordinate discrimination were primarily
located in the left MTL and right STG. The possible reason for
the involvement of the MTL in the EL condition and ordinate
condition but not in the horizontal condition is that precise
localization of sounds in those two dimensions usually requires
visual assistance due to the up-down confusions and cone of
confusions (Carlile et al., 1997; Algazi et al., 2001; Grothe et al.,
2010), while the temporal lobe is suggested to be involved
in auditory-visual spatial integration (Kaas and Hackett, 2000;
Zimmer et al., 2006; Lewald et al., 2008). The implications
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of different spatial patterns evoked by different conditions
revealed in this study are unclear and need further investigation.
Inconsistent with our results, a previous fMRI study (Pavani
et al., 2002) did not reveal differences in brain activity for
sounds moving in the vertical plane and horizontal plane. This
discrepancy might be due to the different types of stimuli
(stationary vs. moving) or the analysis methods (multivariate vs.
univariate) used.

In conclusion, our results support the hypothesis that
auditory spatial information is represented in the cortex in a
distributed, not topographic, manner. The presence of distinct
spatial patterns of significant EVs under different discrimination

conditions suggests dissimilar processing mechanisms for sound
location along different dimensions of 3D acoustic space.
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