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A central goal of neuroscience is to determine how the brain’s relatively static anatomy

can support dynamic cortical function, i.e., cortical function that varies according to

task demands. In pursuit of this goal, scientists have produced a large number of

experimental results and established influential conceptual frameworks, in particular

communication-through-coherence (CTC) and gating-by-inhibition (GBI), but these data

and frameworks have not provided a parsimonious view of the principles that underlie

cortical function. Here I synthesize these existing experimental results and the CTC and

GBI frameworks, and propose the function-through-biased-oscillations (FBO) hypothesis

as a model to understand dynamic cortical function. The FBO hypothesis suggests

that oscillatory voltage amplitude is the principal measurement that directly reflects

cortical excitability, that asymmetries in voltage amplitude explain a range of brain signal

phenomena, and that predictive variations in such asymmetric oscillations provide a

simple and general model for information routing that can help to explain dynamic cortical

function.

Keywords: oscillations, information routing, communication-through-coherence, gating-by-inhibition, oscillatory

modulation

Introduction

Humans are able to rapidly adapt their behavior based on different task demands. While
research over the past decades has shown that the structure of the brain is plastic, such
as that shown in rapid changes in dendritic boutons during learning (Moser et al., 1994;
Piccioli and Littleton, 2014), the long time scale, typically minutes, for such plastic changes in
anatomy cannot readily explain changes in function on the time scale of seconds. In pursuit
of the search for potential mechanisms that can support this dynamic nature of the brain,
studies have produced a large number of experimental results and two influential conceptual
frameworks.

These studies occur at different levels of inquiry that span the microscopic domain (i.e.,
single-neuron neurophysiology) and the macroscopic domain [e.g., electroencephalography
(EEG) or behavioral state]. Single-neuron neurophysiology studies often directly relate different
physiological processes. For example, many studies showed that cortical neurons preferentially
fire during the trough of neuronal oscillations in different frequency bands, such as the theta
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(4–8Hz) or alpha (8–12Hz) bands (Bragin et al., 1995; Harris
et al., 2003; Huxter et al., 2003; Buzsaki and Draguhn, 2004;
Klausberger et al., 2004; Lee et al., 2005; Siapas et al., 2005;
Jacobs et al., 2007; Lorincz et al., 2009; Fell and Axmacher, 2011;
Haegens et al., 2011). This demonstrates that oscillatory activity
can dynamically modulate the excitability of local neuronal
populations, which appears to be important for explaining
dynamic brain function.

Other microscopic or macroscopic studies cannot or do
not make explicit statements about particular physiological
processes. Rather, they apply mathematical procedures to
particular brain signal measurements and report the observed
relationship of the resulting brain signal features with a particular
behavioral or other measurement. For example, in numerous
studies scientists applied specific mathematical techniques (such
as the Hilbert transform) to the (usually bandpass-filtered)
time-varying brain signal voltage measurements to calculate
time-varying estimates of the power or phase of oscillatory
activity in a particular frequency band. An increasing number
of reports have shown that such power or phase measurements
can be related to cortical excitability (e.g., Sauseng et al.,
2009 or Canolty et al., 2006 respectively). The results for
oscillatory phase in these studies suggest that cortical processing
is more likely to occur during a specific phase (usually the
trough) of the underlying oscillations [i.e., phase-amplitude
coupling (PAC)]. While important problems with present PAC
signal analysis approaches and their resulting physiological
interpretation have been recognized (Aru et al., 2014), the
results of these studies do echo the results of the basic
neurophysiology studies described above. At the same time, this
seemingly direct link to underlying physiological processes does
not exist for (the purely mathematical construct of) oscillatory
power. In other words, it is unclear how oscillatory power
may mechanistically alter cortical excitability. Furthermore, it
is unclear why cortical excitability appears to be related to two
mathematically completely independent measurements (power
and phase) of oscillatory activity.

The relationship of different brain signal features with
each other and with cortical excitability is even less clear
for other types of brain signal features. For example, for the
past several decades, scientists have studied different types of
evoked responses (ERPs) such as the P300 (Chapman and
Bragdon, 1964), or different types of slow task-related activity
[Bereitschaftspotential (BP, Kornhuber and Deecke, 1965),
contingent negative variation (CNV, Walter et al., 1964), or slow
cortical potentials (SCPs; Birbaumer et al., 1990; He and Raichle,
2009)]. These electrophysiological signals often receive different
names that may depend not only on the filtering technique (e.g.,
spectral analysis vs. signal averaging), but also on the specific
area of study. For example, scientists who study the neural basis
of movements may call a slowly developing negative potential
preceding movements a Bereitschaftspotential (BP, Kornhuber
and Deecke, 1965); scientists who study consciousness may call
a similar phenomenon a slow cortical potential (SCP, He and
Raichle, 2009); and scientists who study response anticipation
may call it contingent negative variation (CNV, Walter et al.,
1964). These differing naming conventions persist even though

these observations share some apparent similarities (in that they
are usually reflected in negative voltage shifts), and even though
there are observations that link them to other (e.g., frequency-
based) phenomena (Shibasaki et al., 1978; He and Raichle, 2009).
Similar comments about naming convention could also be made
about the large number of different evoked responses (ERPs) that
result from actual or anticipated sensory stimulation [e.g., the
P3a and P3b (Polich, 2007)]. Finally, recent advances in the local
field potential (LFP) and ECoG literature have revealed a number
of additional brain signal features that express the relationship
between the phases or amplitudes of oscillatory activity at
single or across multiple sites [e.g., phase-phase or amplitude-
amplitude coupling (Buzsaki and Wang, 2012; Siegel et al.,
2012)]. The functional relevance and generating mechanism for
these phenomena are currently still largely unclear.

Nevertheless, there have been some proposals for mechanisms
that could explain different types of brain signal features. For
example, scientists have tried to explain the generation of ERPs by
phase resetting (Sayers et al., 1974; Makeig et al., 2002; Fell et al.,
2004; Hanslmayr et al., 2007), additions to ongoing oscillations
(Shah et al., 2004; Makinen et al., 2005; Mazaheri and Jensen,
2006), or non-zero baselines (Nikulin et al., 2007; Mazaheri and
Jensen, 2008).

Despite these present difficulties in understanding how
the brain may support dynamic function of individual
neuronal populations, scientists have proposed two influential
conceptual frameworks to begin to explain rapid variations
in behavior across neuronal populations. The first proposal
is the communication-through coherence (CTC) hypothesis
put forth by Fries (2005). The CTC hypothesis is concerned
with the mechanism by which the brain may modulate the
functional relationship between one sending and one receiving
neuronal population. Specifically, CTC’s principal thesis is that
function may emerge from anatomy through the brain’s ability
to optimize information transfer by synchronizing the timing
of oscillatory activity at the sending and receiving sites. This
hypothesis rests fundamentally on the physiological concept
of variable cortical excitability, i.e., neuronal firing occurs
preferentially at the trough of oscillatory activity (Klimesch
et al., 2007; Lorincz et al., 2009; Haegens et al., 2011). CTC has
received support from modeling studies (Akam and Kullmann,
2010, 2012) and experimental results (Saalmann et al., 2012;
Roberts et al., 2013). In sum, CTC is fundamentally based on
oscillatory phase: it explains variable function of a sending and
a receiving neuronal population primarily through the degree
of phase synchrony of modulatory oscillatory activity at those
populations.

The second proposal is the gating-by-inhibition (GBI)
hypothesis that was formally articulated by Jensen and Mazaheri
(2010). This hypothesis is based on a long history of research
by a number of scientists, including Pfurtscheller, Klimesch,
Jensen, and others. In contrast to the CTC hypothesis, GBI
is fundamentally based on oscillatory power: it suggests that
neuronal populations that are not related to the task are
functionally inhibited by increased oscillatory power in specific
frequency bands, such as the alpha (8–12Hz) band. How this
concept, which is based on oscillatory power, may be related
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to the CTC hypothesis, which is based on oscillatory phase, is
uncertain.

In summary, while existing theories have made important
progress, our understanding how the microscopic concept of
cortical excitability relates to different types of macroscopic brain
signal measurements and in turn to organized behavior still
appears to be incomplete. Furthermore, it is currently unclear
how oscillatory power and phase may interrelate with each
other, and if and how the conceptual frameworks proposed
by Fries and Jensen can be reconciled. Primarily because of
these important issues, different neural or behavioral domains
are usually described by independent sets of relatively narrow
scientific explanations, which tends to force scientists in a
particular discipline to stay within and to conform to the
corresponding set of explanations. This situation presents a
roadblock to an improved understanding of the function of the
brain.

Here I provide a conceptual framework of cortical function
that may help to resolve these important problems by
synthesizing existing experimental results and theoretical models
into two general principles. The first principle of this framework
suggests that cortical excitability of a neuronal population is
indexed most directly by the voltage amplitude of oscillatory
activity. This leads to the notion that the established findings
of the relationship of oscillatory power or phase with cortical
excitability are essentially indirect by-products of asymmetrically
distributed peak/trough amplitudes (i.e., biased oscillations),
and that such biased oscillations may underlie a range of
other brain signal phenomena. The second principle embeds
biased oscillations in a predictive context, applies the result
to populations of neurons, and thereby reconciles and extends
the CTC and GBI hypotheses. I will refer to the framework
that encompasses these two principles as the function-through-
biased-oscillations (FBO) hypothesis throughout this paper.

The FBO Hypothesis

The First Principle: Biased Oscillations Link
Cortical Excitability to a Range of Brain Signal
Phenomena
The first principle of the FBO hypothesis begins with the proposal
that the instantaneous voltage amplitude of oscillations, rather
than oscillatory power or phase, is the principal measurement
that directly reflects cortical excitability. Specifically, I suggest
that, for the exemplary oscillation shown with the blue trace in
Figure 1, the y axis simultaneously represents cortical excitability
as well as oscillatory voltage (This exemplary oscillatory activity
is shown to be sinusoidal, but in reality may take on different
shapes).

Experimental evidence supports this proposed link between
changes in instantaneous voltage and cortical excitability. For
example, Figure 2 shows recordings from cat motor cortex
about 0.2mm below the cortical surface. Spontaneous firings of
motor action potentials are clearly visible. Stimulation of the
nucleus ventralis lateralis (i.e., the thalamic nucleus projecting
to that area of cortex), but not stimulation of a nearby cortical

FIGURE 1 | Oscillatory voltage amplitude is the principal measurement

that controls cortical excitability.

FIGURE 2 | Recordings in motor cortex close to the cortical surface

(black trace) in response to stimulation of the cortex (arrow marked by

“C”) or the nucleus ventralis lateralis of the thalamus (arrow marked by

“VL”). VL stimulation, but not cortical stimulation, results in a change in

voltage potential that temporarily suspends motor cortical neuronal firing

(Modified from Li, 1956).

site, changes the voltage potential and temporarily suspends
action potential firing. In other words, thalamocortical volleys
appear to shift the cortical voltage potential away from its
baseline1 so as to hyperpolarize cortical populations and thereby
inhibit their firing. Similar effects have been found in the visual
cortex (Von Baumgarten and Jung, 1952; Tasaki et al., 1954)
and somatosensory cortex (Li et al., 1956). Thus, rhythmically
occurring volleys (such as those produced by oscillatory activity)
would periodically inhibit a particular neuronal population in
the cortex. This resulting interpretation of the functional role of
oscillatory activity is consistent with an emerging view on this
topic (Klimesch et al., 2007; Mathewson et al., 2011).

It is important to recognize that, in the example in Figure 1

that features a constant and high level of peak-to-peak amplitude,
the concepts of oscillatory voltage amplitude and oscillatory
phase are essentially interchangeable with respect to their
relationship to cortical excitability: excitability is high during a
certain phase of the oscillation (i.e., the trough), and excitability
is high when the voltage amplitude is low.

It is well-known that an oscillation’s peak-to-peak amplitude
(and hence, oscillatory power) is not constant but often changes
with a task. The next building block supporting the first principle

1It is important to recognize that the polarity of these voltage changes depends on

the recording configuration, and thus may be positive or negative.
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of the FBO hypothesis is the suggestion that such task-related
changes in peak-to-peak amplitude do not affect the peaks and
troughs of the oscillation equally. Let us consider the exemplary
oscillatory signal in Figure 3A. In this example, the blue trace
gives the time course of oscillatory activity. The peak-to-peak
amplitude of this modulatory signal decreases with time (i.e.,
reduces oscillatory power with time), thereby indicating an
overall trend toward increased cortical excitability. As recognized
in earlier observations (Nikulin et al., 2007; Mazaheri and Jensen,
2008, 2010) that were made in the context of explaining ERPs,
such changes in peak-to-peak amplitude might not affect the
amplitude of the peaks and troughs of the oscillatory activity
equally, but only affect the amplitude of the peaks2. Indeed,
Figure 3B (modified from Figure 3A, Nikulin et al., 2007)
demonstrates that the amplitude bias of an oscillation in the
alpha band (y axis) is related to the power of the oscillation (x
axis). (The shaded area gives the 95% confidence interval.) In
summary, the second building block of the first principle of the
FBO hypothesis suggests that the amplitude bias (dotted blue
trace, which could be computed by averaging one cycle of the
oscillation or by averaging many trials with random oscillatory
phase) is related to oscillatory power.

These two building blocks, i.e., instantaneous voltage
amplitude of oscillations reflecting cortical excitability and the
existence of a voltage bias, provide the basis for two insights that
represent the main conceptual contribution of the first principle
of the FBO hypothesis.

The first insight is that the concept of variations in
instantaneous voltage amplitude of biased oscillations
provides a simpler, more complete, and more physiologically
plausible model of cortical excitability than a model based
on either oscillatory power or oscillatory phase. It is simpler,
because it depends on only one model-free measurement
(the instantaneous voltage) rather than on two separate
mathematically extracted transformations (power and phase)
that depend on a specific model (e.g., a repeating sinusoid).

This model is also more complete in describing cortical
excitability than a model based on either oscillatory power or
oscillatory phase. This is apparent in the example in Figure 4.
In this example, oscillatory amplitude envelope (dotted black
trace, calculated either by using the Hilbert transform or by
taking the square root of low-pass filtered oscillatory power)
decreases from left to right as the oscillation cycles between
different phases of peaks and troughs. Thus, by averaging many
measurements, a study may well-find a relationship between
oscillatory amplitude/power envelope3 and cortical excitability,
or between oscillatory phase and cortical excitability, but neither
relationship will be entirely correct. Specifically, consider the
left-most period of the oscillation in Figure 4. At time (A),
oscillatory power accurately reflects cortical excitability: power is
high and cortical excitability is low. However, at time (B), there
is a big discrepancy between these measurements as power is
still high but cortical excitability is high as well. In contrast, for

2A later article (Nikulin et al., 2010) came to a somewhat different conclusion.
3The amplitude envelope of an oscillation is the square root of the power envelope.

While they are different mathematically, for the purposes of the arguments

presented here, they can be used interchangeably.

FIGURE 3 | (A) The time-varying instantaneous voltage amplitude of

oscillatory activity (solid blue trace) is not zero mean, but has a bias (dotted

blue trace) whose amplitude varies with the amplitude of oscillatory power. (B)

Experimental evidence supporting this proposed relationship (Modified from

Nikulin et al., 2007).

FIGURE 4 | Traditional interpretations of the relationship between

oscillatory power and phase with cortical excitability do not fully

capture the realities of biased oscillations. E.g., oscillatory power is high

but cortical excitability is high as well (B); oscillatory phase cycles between

peaks and troughs, but cortical excitability is always high (C). In contrast,

traditional measurements are correct at (A): oscillatory power is high,

oscillatory phase is at a peak, and excitability is low.

low values of oscillatory power [i.e., around the times indicated
by (C)], oscillatory phase cycles between the peak and trough
(which would suggest strongly varying cortical excitability), but
cortical excitability is relatively constant and high. In contrast, the
instantaneous voltage amplitude (that includes the voltage bias)
always accurately reflects cortical excitability.

Finally, this model is also more physiologically plausible.
As indicated above, several studies have found an inhibitory
effect of voltage shifts produced by subcortical volleys on
firing of cortical populations (Von Baumgarten and Jung, 1952;
Tasaki et al., 1954; Li, 1956; Li et al., 1956). However, such
physiological interpretations cannot readily be made for the
(purely mathematical concepts of) oscillatory phase or oscillatory
power.

The presence of the voltage bias also has important
implications for the generating principles of a variety of
macroscopic brain signal features. This possibility has been
discussed in the specific context of ERPs in previous work
(Nikulin et al., 2007; Mazaheri and Jensen, 2008). The second
insight is that these implications may be broader than previously
discussed. In this context, let us consider the example given in
Figure 5. The blue trace in panel A illustrates the time course of
the raw (i.e., biased) voltage of an exemplary 10-Hz (i.e., alpha
band) modulatory signal in a single trial. Similar to Figure 3A,
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FIGURE 5 | The bias in oscillations can explain different macroscopic

observations. (A) The blue trace gives the time-varying voltage amplitude of

an exemplary biased oscillation. The red trace illustrates the effect of

band-pass filtering the blue trace between 8 and 12Hz. The black trace is

the squared amplitude of the red trace. (B) Traces show the average of many

trials of the corresponding signal traces shown in (A) with random phase. (C)

The blue trace illustrates the average voltage of EEG recordings prior to

movement (indicated with an arrow). The yellow trace illustrates the average

voltage trace after a lesion to the nucleus ventralis intermedius of the

thalamus (Modified from Shibasaki et al., 1978).

this exemplary modulatory signal reduces the voltage of its
peak over about 1.5 s, thereby indicating time-varying but still
progressively increasing cortical excitability. In other words, the
instantaneous voltage amplitude of this exemplary blue trace is
the result of a 10-Hz oscillation, a slow decrease in peak-to-
peak amplitude, and a concomitant decrease in voltage bias. As
will become important later, this slow decrease may suggest the
physiologically independent presence of a very slow oscillation in
a frequency analysis.

There are several ways to extract oscillatory measurements
from brain signals (bandpass-filtering, Hilbert transform, etc.).
The red trace illustrates the result from subjecting the blue
trace to a bandpass filtering operation between 8–12Hz. Because
the bandpass filtering operation removes frequencies lower than
8Hz, it removes the oscillation’s voltage bias: notice how the
voltage bias (that is readily visible in the blue trace) disappears
in the red trace after the bandpass filtering operation. In
other words, the red trace is now centered around zero mean
(dashed black line indicating zero voltage). The black solid trace
illustrates the instantaneous power (i.e., squared amplitude) of
the bandpass-filtered signal.

The blue, red, and black traces in Panel B show the average of
many trials of the corresponding oscillatory signal traces shown
in Panel A with random phase. The blue average trace highlights
a trend toward increasing excitability (i.e., decreasing voltage
amplitude), similar to what is usually seen in the BP, SCP, or CNV.
The red average trace does not show any variations over time.
The black average trace highlights the reductions in oscillatory
power typically seen prior to volitional task engagement. Notice
the somewhat smoother appearance of the black trace compared
to the blue trace, which results from the timing uncertainty
introduced by the bandpass filtering operation. In summary,
the concept of biased oscillations can explain the relationship
between the negative voltage shifts and the decrease in oscillatory
power that are often observed in relationship to particular tasks
(such as movements).

The literature provides some clues that are consistent with
aspects of this hypothesis. One such piece of evidence is shown
in Panel C (modified from Shibasaki et al., 1978). The blue
trace illustrates the average voltage of EEG recordings prior to

movement (indicated with an arrow). The negative deflection
prior to movement onset is readily apparent, and is similar to
that in the blue trace in Panel B. The yellow trace illustrates
the average voltage of EEG recordings after a lesion to the
nucleus ventralis intermedius (VIM), i.e., the thalamic nucleus
that projects to motor cortex. The yellow trace does not feature
the negative deflection prior to movement, but does exhibit an
increased ERPs following the movement. In other words, with
an intact VIM, we see the typical BP prior to movement. After
the VIM has been lesioned, no such negative voltage shift occurs,
quite possibly because thalamic lesions often diminish alpha
oscillations (Hughes and Crunelli, 2005). In summary, the second
insight of the first principle of the FBO hypothesis is that the
amplitude bias in oscillatory activity may explain aspects of the
slow time-varying brain signal phenomena that usually precede
behaviors.

When integrated with other well-known observations, the
same concept may also provide a convenient explanation for
evoked responses (ERPs) that follow motor movements or
sensory stimulation. Specifically, it is well-known that the brain
can modulate not only the peak-to-peak amplitude but also the
instantaneous phase of ongoing low-frequency oscillations. This
phenomenon is termed phase resetting and has previously been
suggested to be a contributing factor to ERP generation (Sayers
et al., 1974; Makeig et al., 2002; Fell et al., 2004; Hanslmayr
et al., 2007; Sauseng et al., 2007). However, in addition to phase
resetting, it is also well-known that different task-related areas
in the brain are modulated by different oscillations at similar
or different frequencies (Jacobs et al., 2007), and that motor
movements or sensory stimulation may result in modulation of
oscillatory power (Pfurtscheller and Aranibar, 1979; Potes et al.,
2014, respectively). All of these known effects will contribute
to a time-varying bias in average voltage, and thereby must
all provide an important contribution to the generation of
ERPs.

Finally, biased oscillations may also explain some of
the more recent observations reported in the literature,
including particular reports of PAC, phase-phase coupling,
or amplitude-amplitude coupling (Siegel et al., 2012). As an
example, for the representative data shown in Figure 5A, analyses
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may identify PAC between the 10-Hz alpha oscillation and
the <1Hz activity change (See Aru et al., 2014, for a more
comprehensive discussion of issues with current analyses or their
interpretation.).

In summary, the first principle of the FBO hypothesis suggests
that the instantaneous voltage amplitude of biased oscillations is
the principal measurement that controls cortical excitability, and
that it can help to explain a variety of macroscopic brain signal
phenomena.

The Second Principle: A General Framework for
Dynamic Cortical Function
The second principle synthesizes and extends the concepts
provided in the CTC hypothesis and the GBI framework by
embedding the concept of biased oscillations into a predictive
context. The result provides a simple and general model for
routing of information flow that can explain dynamic cortical
function.

Similar to the proposal that biased oscillatory voltage
amplitude provide a unifying foundation for explaining
experimental results for oscillatory power and phase, control of
local cortical excitability with biased oscillations can also provide
a unifying foundation for synthesizing CTC and GBI. The
proposal is that rather than controlling the phase relationship
of oscillations across task-related populations (as proposed by
CTC) or oscillatory power of neuronal populations (as proposed
by GBI), the brain engages in dynamic task-related processing
by controlling the instantaneous voltage amplitude of biased
oscillations to predictively inhibit task-unrelated populations or
inhibit populations at task-unrelated times.

To illustrate this concept, let us consider the exemplary
network of neuronal populations that is shown in Figure 6A.
In this figure, eight distinct neuronal populations are labeled
with A–H. Anatomical connections between these populations
are depicted with arrows. Arrows that do or do not carry action
potential volleys are shown in black or yellow, respectively.
Populations that receive excitatory or inhibitory modulation (i.e.,
low or high average peak-to-peak voltage amplitude, respectively)
are shown in orange or yellow, respectively. In this example,
population A, which does not receive inhibitory modulation
(e.g., from subcortical structures such as a particular thalamic
nucleus), receives an action potential volley and sends out volleys
to all populations it is connected to (B, C, and D), presumably
through cortico-cortical projections. Because B and D receive
inhibitory modulation, they are not excited by the incoming
volleys they receive from A; thus, they do not send out volleys
to connected populations. In this example, excitatory input to
population A will result in activation of, and communication
between, populations C and G. This concept synthesizes the
CTC and GBI hypotheses: because biased oscillatory voltage
amplitude can define higher excitability either by decreasing
peak-to-peak amplitude or by being in its trough, it can
describe a situation in which a sending and a receiving neuronal
population communicate either by synchronizing their phases (as
would be suggested by CTC) or by decreasing the peak-to-peak
amplitude of the receiving population (as would be suggested
by GBI).

FIGURE 6 | Biased oscillations regulate information flow in the cortex.

(A) Circles represent eight neuronal populations (A–H). Yellow/orange circles

represent populations that receive inhibitory/excitatory input, respectively.

Black/yellow arrows represent neuronal pathways that do/do not carry action

potentials, respectively. (B) Time courses of oscillatory power over

sensorimotor cortex in a perceptual decision-making task in which subjects

have to push a button depending on sensory evidence. Black/red traces give

oscillatory power for “high” or “low” amounts of evidence, respectively

(Modified from Kubanek et al., 2013).

The second principle anchors the dynamics of biased
oscillations in a predictive process. Dynamic information routing
may require separate mechanisms for task-related engagement
that can or cannot be predicted based on prior evidence.
There are obvious situations in which our interactions with
our environment can be predicted in advance. For example, we
may be provided with accumulating perceptual evidence that
will lead to a motor action. In this situation, the brain has the
opportunity to optimize excitability of its neuronal populations
(e.g., increase excitability of the motor system) so as to optimize
performance. Indeed, many studies (Bertelson and Boons, 1960)
have documented increased behavioral performance resulting
from prior evidence. According to the first principle of the
FBO hypothesis, the brain may readily achieve this purpose
by reducing the peak-to-peak amplitude of biased oscillations
associated with neuronal populations that are related to the
anticipated task, and by increasing it for all other populations.
There is plenty of experimental evidence to support this concept
(e.g., Bidet-Caulet et al., 2012). Figure 6B (modified from
Kubanek et al., 2013) illustrates the relative power (i.e., a function
of peak-to-peak amplitude) of an oscillatory signal recorded
over sensorimotor cortex in a perceptual decision task, in which
subjects were asked to push a button depending on the amount of
evidence given by auditory clicks. The power of the modulatory
signal is progressively reduced for trials of “high” evidence
compared to for trials of “low” perceptual evidence. Thus, this
mechanism progressively increases cortical excitability in motor
cortex, and clearly demonstrates that cortical excitability of local
neuronal populations depends not only on present but also on
past events.

It is important to recognize that this optimization of brain
function cannot readily be achieved by generating a desired phase
relationship between neuronal populations: in the predominant
situation in which the timing of task execution is not precisely
predictable (e.g., in the example above, it is not exactly clear
when the movement will occur), a desired functional relationship
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between two cortical populations can only be achieved using
phase synchrony if oscillations governing two different neuronal
populations share the same frequency. This is plausible for
populations within a particular cortical system (e.g., the visual
system), which may be subserved by the same subcortical
nucleus. Indeed, existing experimental evidence for such phase
synchrony across populations (Saalmann et al., 2012; Roberts
et al., 2013) was derived from data collected within the visual
system. At the same time, it is well-known that oscillations in
different systems can be produced by different sources, and often
have different frequencies (Pineda, 2005). E.g., the frequency of
the sensorimotormu rhythmhas been reported to be significantly
higher than that of the classical visual alpha rhythm (Storm
van Leeuwen et al., 1976). Thus, if the timing of task execution
is not known ahead of time, it appears to be difficult if not
impossible for the brain to predictively control information flow
by achieving constant phase synchrony across such different
systems. This suggests that CTC cannot explain the regulation
of information flow across wide areas of the brain in such
situations.

The situation is opposite if the brain has to process and react
to a stimulus that cannot be anticipated, e.g., a loud noise while
we are reading. While it is well-known that we can quickly
react to such unexpected stimuli (Yantis and Jonides, 1984),
such rapid reactions cannot readily be explained by increased
excitability that are due to reduction in oscillatory peak-to-
peak amplitude, as highest excitability would not be achieved
until the oscillation reaches its trough (i.e., up to tens of ms
later). Thus, reducing the peak-to-peak amplitude of a biased
oscillation would not guarantee that the initial action potential
volleys produced by the stimulus would hit excitable neuronal
populations in the appropriate sensory regions, and consequently
would reduce the ability of the brain to process this stimulus.
At the same time, it is well-known that the brain has the
ability to reset the phase of oscillatory activity (Brandt, 1997)
in response to salient stimuli. With phase-resetting of biased
oscillations, the brain could produce oscillatory phase synchrony
throughout the respective perceptual system. Thus, it would
guarantee that action potential volleys produced by such stimuli
would be delivered to excitable neuronal populations throughout
that system. While there is evidence for cross-modal phase
resetting (Thorne et al., 2011), the degree to which different
systems are phase reset by an incoming stimulus may be a critical
determinant of the limitations of human performance in sensori-
motor behavior. Such phase resetting may even cause subsequent
reduction in peak-to-peak amplitude in this perceptual system.
Hence, in response to a sudden salient stimulus, the brain may
update its ongoing predictions to incorporate the likely case that
more salient stimuli will follow the first.

Irrespective of whether an event can or cannot be predicted
based on prior evidence, such configurations fundamentally
requires the brain to make predictions: in the decision-making
example above, the brain must use current and past evidence
to make a prediction of the optimal future state of cortical
excitability. In the example of a loud noise during reading, the
brain must be able to evaluate the likelihood that a particular
stimulus occurs given past evidence (e.g., we know that a loud

stimulus in a library will produce a stronger cortical response
than a loud stimulus in a predictive series of loud stimuli). In
other words, the brain must constantly use information from
past events to predict the likelihood of a particular stimulus,
and adjust cortical excitability as a function of this predicted
likelihood. This invokes an image in which the “excitability
landscape” across the cortex is constantly being updated using a
predictive process.

In summary, the second principle of the FBO hypothesis
suggests that variable cortical function is implemented
primarily by variable biased oscillations across different
cortical populations, and proposes that the variability of the
two main parameters of biased oscillations, i.e., oscillatory
peak-to-peak amplitude and phase, must be determined by a
predictive process. Thus, predictive biased oscillations can form
the basis for a simple, general, and physiologically grounded
model of variable cortical function.

Predictions

The FBO hypothesis generates a number of testable predictions.
The first principle of the FBO hypothesis predicts: (1) that for
most if not all locations in the cortex that are modulated by
oscillatory activity, oscillatory activity has a voltage bias that is
related to oscillatory power; (2) that the instantaneous voltage
of biased oscillations is a better predictor of cortical excitability
(e.g., as assessed by action potential firing probability or by the
magnitude of broadband gamma amplitude4) than is oscillatory
power or phase; (3) that amplitude variations in biased oscillatory
signals can explain a fraction of the variance of slow time-
domain signals (such as the BP), of ERPs, and of more recent
observations (in particular amplitude-amplitude coupling or
PAC that involves frequencies < 4Hz); and (4) common evoked
responses (ERPs) that are routinely detected in EEG/MEG may
not be detectable in LFP or ECoG signals, because ERPs represent
at least in part the spatially superimposed time-domain voltage
changes associated with a temporal sequence of oscillatory power
adjustments that are the consequence of a stimulus.

The second principle of the FBO predicts: (1) that variable
routing of information flow through a physical network
depends primarily on the cortical excitability (indexed by biased
oscillations) of the receiving neuronal population; (2) that the
peak-to-peak amplitude of a biased oscillation is produced by
a prediction of the likelihood that the corresponding neuronal
population is related to the task; (3) that the phase of a cortical
oscillation is adjusted as a function of a prediction of the
likelihood of a sensory stimulus; (4) that differential oscillatory
activity should be present not only across different systems (e.g.,
visual vs. motor), but also within a particular system; and (5)
that task execution (rather than predictive network modulation)

4Broadband gamma amplitude is often computed by determining the analytic

amplitude of ECoG/LFP signals in a high (e.g., 70–170Hz) frequency band.

Broadband gamma activity has been suggested by an increasing number of

studies to reflect the average firing rate of neuronal populations close to

the electrode (Manning et al., 2009; Miller et al., 2009; Ray and Maunsell,

2011)
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should always be accompanied by non-oscillatory broadband
gamma activity.

Testing these predictions requires careful consideration of
several technical issues. First, any particular cortical population
may be under simultaneous and superimposing modulatory
influence by different oscillations (e.g., Hughes and Crunelli,
2007; Jacobs et al., 2007). Second, the raw voltage potential
may be influenced by non-oscillatory activity (e.g., voltage
shifts created by ionic currents). Third, voltage is not an
absolute but a relative measurement. Thus, an experimentally
measured voltage bias may be of varying magnitude or
even polarity depending on sensor modality and source of
referencing. Fourth, with present signal acquisition hardware,
it is difficult to achieve similar signal-to-noise characteristics
across all relevant signal frequencies (i.e., DC to high gamma).
Fifth, oscillatory modulation is likely to be spatially fine-
grained, and hence may be subjected to spatial summation,
which will impede its proper characterization using EEG or
MEG. Thus, testing these predictions may benefit greatly
from, and will likely require, intracranial or intracortical
recordings.

Further Research

The FBO hypothesis provides a proposal for two general
mechanisms that can support dynamic cortical function. Its main
predictions listed above can now readily be tested in future
experimental research. In addition, there are several important
questions that remain to be answered.

1. In line with previous findings, this paper suggests that there
is an asymmetric distribution of peak and trough amplitudes.
The specific characteristics of this asymmetry are currently
unclear.

2. Is cortical excitability influenced by factors other than
instantaneous voltage?

3. Other than instantaneous cortical excitability, which factors
(such as amplitude or temporal distribution) of input to a
given region determine cortical excitation?

4. Why is cortical excitability established using repetitively
pulsed inhibition (i.e., oscillatory activity) rather than using a
continuous process? I speculate that repetitive inhibition may
be more metabolically efficient than continuous inhibition,
and may be equally effective.

5. The second principle of the FBO hypothesis explains how
the brain may predictively modulate cortical function. It
does not attempt to answer several important corresponding
questions:

a. How does the brain generate predictive models of optimal
cortical excitability?

b. How does the brain use sensory inputs resulting from
particular behaviors to change the parameters of these
predictive models to optimize future behaviors?

c. The predictive processes described in the FBO hypothesis
essentially bias cortical processing toward those neural
populations that are task-related. It does not elucidate the
nature of the cortical activations that actually execute the

tasks (i.e., primarily detected using action potential firing
rates or broadband gamma amplitude). The relationship
between these two processes is important, because they
lead to different predictions about measurements. As an
example, according to the FBO hypothesis, presentation of
multiple sensory stimuli will lead to an increase in cortical
excitability in the regions corresponding to the particular
sensory domain. Thus, subsequent stimuli should result in
augmented cortical responses. However, many experiments
have shown that repeated stimulation can result in
decreased responses, a phenomenon called repetition
suppression (Baldeweg, 2006). This phenomenon may be
explained by the concept of predictive coding (Friston, 2010;
Clark, 2013), which postulates that coding of information
in the brain at least in part represents the discrepancy
between a prediction of a sensory stimulus and the actual
stimulus. In summary, these two concepts may lead to
completely opposite experimental results. Future research
is necessary to establish the interplay between these two
phenomena.
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