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The goal of this research is to test the potential for neuroadaptive automation to improve

response speed to a hazardous event by using a brain-computer interface (BCI) to

decode perceptual-motor intention. Seven participants underwent four experimental

sessions while measuring brain activity with magnetoencephalograpy. The first three

sessions were of a simple constrained task in which the participant was to pull back

on the control stick to recover from a perturbation in attitude in one condition and to

passively observe the perturbation in the other condition. The fourth session consisted

of having to recover from a perturbation in attitude while piloting the plane through

the Grand Canyon constantly maneuvering to track over the river below. Independent

component analysis was used on the first two sessions to extract artifacts and find

an event related component associated with the onset of the perturbation. These two

sessions were used to train a decoder to classify trials in which the participant recovered

from the perturbation (motor intention) vs. just passively viewing the perturbation. The

BCI-decoder was tested on the third session of the same simple task and found

to be able to significantly distinguish motor intention trials from passive viewing trials

(mean= 69.8%). The same BCI-decoder was then used to test the fourth session on the

complex task. The BCI-decoder significantly classified perturbation from no perturbation

trials (73.3%) with a significant time savings of 72.3 ms (Original response time of

425.0–352.7ms for BCI-decoder). The BCI-decoder model of the best subject was

shown to generalize for both performance and time savings to the other subjects. The

results of our off-line open loop simulation demonstrate that BCI based neuroadaptive

automation has the potential to decode motor intention faster than manual control in

response to a hazardous perturbation in flight attitude while ignoring ongoing motor and

visual induced activity related to piloting the airplane.

Keywords: neuroadaptive automation, brain computer interface, brain machine interface, neuroergonomics,
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INTRODUCTION

Safe and effective performance in many occupational settings is
critically dependent on people making timely and correct split-
second decisions to avoid an impending hazard. Consider a
speeding driver having to swerve to avoid hitting a child running
unexpectedly onto the roadway; a nurse having to administer
defibrillation to a patient having sudden cardiac arrest; or a pilot
having to execute a rapid maneuver to recover from a stall or
other abrupt perturbation during high-speed flight. Although
some drivers, nurses, and pilots may be sufficiently skilled to
make quick decisions and avoid mishaps in these situations,
there are many conditions—fatigue, stress, mind wandering, task
overload, to name a few—that can degrade human performance
so that a correct and timely response is not possible and an
accident may result.

One approach to this problem is to enhance human
performance in such time-critical situations by decoding a
person’s neural activity associated with the intention to act.
Once intention has been detected, one could provide appropriate
feedback to the human operator or trigger computer aiding.
Brain activity precedes motor action, so if neural signals
associated with the intention to act could be successfully
decoded in real time, one could use the decoded output to
aid the human user. Using computer technology to augment
human performance based on an assessment of human operator
cognitive states is termed adaptive automation (Parasuraman
et al., 1992; Scerbo, 2008; Parasuraman and Galster, 2013).
Neuroadaptive automation is when neural signals are used to
assess operator state, an approach that has been successful
in mitigating human performance decrements in a variety of
cognitive tasks (Byrne and Parasuraman, 1996; Prinzel et al.,
2000; Scerbo et al., 2003; Wilson and Russell, 2007; Ting et al.,
2010; Durantin et al., 2015; Gateau et al., 2015). Such an approach
is consistent with the field of passive Brain Computer Interfaces
(BCI), also referred to as Brain Machine Interfaces (BMI), in
which user neural states are monitored in order to enhance
human interaction with external devices (Blankertz et al., 2010;
Lotte et al., 2013).

There is extensive research on the use of BCIs to support
partially or fully disabled persons to control devise such as
computers and prosthetic limbs (Reiner, 2008), and a smaller
but growing literature on their use for healthy individuals so
as to enhance human-system interaction (Zander and Kothe,
2011; Lotte et al., 2013). Comparatively little work has been
conducted comparing the effects of neuroadaptive automation
or passive BCIs to human performance in time-critical (split-
second) decision-making situations [For related research see
the studies by Haufe et al. (2011, 2014) and Kim et al.
(2015) concerned with detection of braking intention by EEG].
In particular, when a critical event has to be detected and
responded to quickly, can one decode the associated neural
states of the human operator to achieve a faster response
than the operator’s manual action? We can rephrase the
question as follows: given that the brain is faster than the
hand (or foot or other effector), can one solve the problem
that human manual actions are sometimes too sluggish to

avoid a mishap when very little time is available by using
the decoded brain activity to respond to a critical hazardous
event?

We addressed this issue in the present study by examining
whether neural signals could be decoded to enhance human
performance in a time-critical decision-making task. We chose
a decision-making situation that is encountered in aviation
tasks: responding quickly to an in-flight perturbation, such as
turbulence, micro-bursts, severe windshear, structural damage
(e.g., from trim tab failure, bird strike, etc.). While such
perturbations can occur in many types of flight, they can be
a major contributor to mishaps in military aviation, given
the greater exposure to risky situations requiring split-second
decision-making, such as low-level flight over terrain, or high G-
force maneuvers (Knapp and Johnson, 1996; Moroze and Snow,
1999; Nakagawa et al., 2007). When flying at high speed and very
close to terrain, a savings of even a fewmilliseconds in responding
to a perturbation can represent the difference between life and
death (Haber and Haber, 2003).

Decoding neural states corresponding to cognitive states has
been the object of considerable attention in the neuroimaging
literature. A major approach to the problem has been to
apply pattern-classification algorithms to multi-voxel functional
MRI data in order to decode information representation
in a participant’s brain (Kamitani and Tong, 2005, 2006;
Norman et al., 2006; Nishimoto et al., 2011; Poldrack,
2011; Shibata et al., 2012; Callan et al., 2014; Christophel
and Haynes, 2014; Hutzler, 2014). However, the relatively
low temporal resolution of fMRI and other neuroimaging
methods based on cerebral hemodynamics renders them
unsuitable for decoding neural states associated with split-
second decision-making. Instead, electroencephalography (EEG)
or magnetoencephalography (MEG) provide methods with
sufficient temporal resolution to decode neural states associated
with rapid decision-making. In the present study we used MEG
as our primary source of neural activity, but also conducted an
fMRI study to allow for better localization of MEG activity to
brain areas.

A number of studies have applied pattern classification
methods to neural signals in order to decode specific cognitive
states. Typically these approaches train the classifier on part
(e.g., half) of the neuroimaging obtained during performance
of a cognitive task and then evaluate the effectiveness of the
classifier on the remaining (untrained) half of the data (Garrett
et al., 2003; Wilson and Russell, 2007; Baldwin and Penaranda,
2012). This is certainly an accepted criterion for evaluating
how well a particular decoding algorithm works in a particular
domain of human performance. But a stricter test is necessary
if such neural BCI-decoders are to be useful in a general
way. The more stringent test would involve application of
a trained classifier to untrained data taken from a different
task in the same general cognitive domain. Such a strategy,
if successful, can provide for a more generalizable test of
the efficacy of neural state decoding for a given cognitive
function. We used this approach in the present study by
training a MEG classifier during performance of a simple
flight task involving a perturbation and applying it to a more
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complex flight task involving similar types of perturbations
during ongoing piloting. It is important to note that the
ongoing piloting task uses the same control stick (controlled
by articulation of the hand, wrist, and arm) as that needed to
recover from the perturbation. It is therefore necessary for the
BCI-decoder to be able to distinguish between brain activity
responding to changes in the visual field and motor intention
that are a result of piloting from brain activity responding
to changes in the visual field and motor intention that arise
from a perturbation (even though the BCI-decoder has not
been specifically trained to do so). We additionally evaluated
the generalizability of a trained model across participants’ by
using the weights of the model of the best participant to test
performance over the trials of the complex flying task of the
remaining participants.

SeveralMEG and EEG studies have identified neural correlates
of visual and motor responses that suggest our goal of predicting
motor intention to a visually presented hazard prior to actual
movement is possible. Single trial response times to visual
coherent motion onsets were predicted by MEG activity from
150 to 250 ms before the manual response of the observer
(Amano et al., 2006). While the focus of the Amano et al.
(2006) study is on the onset of visual perception, not on motor
intention, it does provide a potential link between response
time and the identification of the perceptual event. In a study
investigating neural correlates of speeded motor responses to
a visual stimulus it was found that larger low-theta complexes
in EEG preceded more rapid button presses (Delorme et al.,
2007). It has also been found that self-paced motor intention
of reaching direction can be successfully decoded prior to
movement onset (62.5 ms with 76% classification performance)
using slow cortical potentials (0.1–1 Hz) recorded by EEG (Lew
et al., 2014). In addition, research conducted on the detection
of braking intention in simulated (Haufe et al., 2011; Kim
et al., 2015) and real (Haufe et al., 2014) driving using EEG
was able to make predictions about 130 ms earlier than the
corresponding behavioral responses. The real-world task set
out in our experiment to be able to predict motor intention
to a visual hazard in the presence of complex ongoing motor
control and a dynamically changing visual field goes beyond what
was investigated in these previous studies. Nevertheless, we do
believe that these studies taken together suggest that there may
potentially be some features present in theMEG (and EEG) signal
that can be decoded prior to movement onset in response to a
visually presented hazard even under the robust conditions set
out in our experiment.

There have been previous studies (Blankertz et al., 2002; Parra
et al., 2003) using online BCI to detect error-related potentials to
reduce error-rate and improve overall performance. While these
methods are promising they utilize data that occurs after the
response is made and are thus not applicable to our objective of
detecting motor intention prior to movement. It is the goal of our
study to utilize an off-line BCI-decoder to evaluate the feasibility
of using real-time neuroadaptive automation to enhance piloting
performance by reducing response time to recover from an
impending hazard (see Figure 1).

MATERIALS AND METHODS

Participants
A total of seven right–handed adults participated in this study.
Five (three females and two males) were glider pilots from local
university clubs. The two participants (males) that were not pilots
had considerable experience with driving or flying related video
games. The age of the participants ranged from 19 to 40 years
with amean of 23.9 years and SE= 2.7 years. All participants gave
written informed consent for experimental procedures approved
by the ATR Human Subject Review Committee in accordance
with the principles expressed in the Declaration of Helsinki.

Experimental Tasks
Two different tasks were used, a simple piloting task of level
flight over the ocean and a more complex piloting task through
the Grand Canyon. We used the first task to develop a
method for decoding of neural states associated with response
to a perturbation and the second task to investigate the
generalizability of the method to a related but more complex
situation. In both tasks the participant was given a first-person
unobstructed view from the airplane (the view was as if from
a camera in the front of the aircraft, see Figures 2A–D). The
aircraft model simulated was an F22—Raptor using the X-
plane flight simulator (Version 9.75, Laminar Research). The
data for various flight parameters (elevator, aileron, rudder
deflections, pitch, roll, yaw, heading, speed, dive rate, structural
g-forces, latitude, longitude, altitude, etc.) and the control stick
(NATA Technologies MRI and MEG compatible) deflections
were collected at a mean sampling rate of 400 Hz using a
UDP Matlab interface. The experimental conditions could be
controlled via Matlab by using the UDP interface to give
commands to the flight simulator.

Simple Piloting Task
This task had four conditions, two involving the presence or
absence of a perturbation, and two in which the participant
had the choice to either pilot the plane or passively watch the
screen without moving the control stick [see Supplementary
Videos 1–4; (1) fly_perturbation; (2) fly_noperturbation; (3)
watch_perturbation; (4) watch_noperturbation; The participants
viewed the 1st person perspective given on the left side of the
video]. The primary task required the participant to pull back on
the control stick (causing an upward elevator deflection resulting
in the plane to climb) as rapidly as possible in response to a
perturbation in attitude (orientation of the plane with respect
to the horizon) causing the plane to dive at a steep rate (see
Figures 2A,B). The participant was instructed to hold the control
stick but not to move it until after the perturbation occurred. The
perturbation consisted of instantaneous maximum downward
deflection of the elevator for 200 ms causing the plane to
enter a steep dive. The trial started with the plane flying at an
altitude of 107m above sea level at a speed of 1040 kph. The
perturbation occurred on 67% of the trials at a random time
between 2 and 4 s (randomly determined) after the beginning
of the trial. If the plane descended to 30m above sea level the
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FIGURE 1 | Outline of processing procedures for the implementation of the hypothesized neuroadaptive automation to speed recovery to perturbation

in flight attitude. The goal of this system is to speed up response time for the aircraft to recover from a perturbation by decoding the motor intention of the pilot. In

this way the pilot is always in control of the aircraft rather than relying on automation in which the pilot is out of the loop. It should be noted that all processing was

done offline and that the online parts of the system were simulated. The processing times for each of the procedures if ran in real-time online are given. As we were

carrying out an offline simulation to determine the feasibility of signal processing and the BCI-decoder performance during training and testing stages for

implementation in a real-time neuroadaptive automation system the aircraft computer was not actually implemented in this study. The system is theoretically able to

work in real time with only a 5–7.5 ms loss in time savings because the weights of the ICA and BCI-decoder are determined before hand and applied to the online

system. The aircraft computer is a necessary part of the neuroadaptive automation system that receives commands from the BCI-decoder to implement the recovery

maneuver (in this case upward elevator deflection). The aircraft computer can also send information to the BCI-Decoder that can signal the onset of potential

perturbations to the airplane. This information can be used to reduce the occurrence of false-alarms made by the system (executing upward elevator deflection when

there is no actual perturbation or motor intention to recover). The aircraft computer can use up to 120 ms (time of the processing window for the BCI-decoder) to

determine the presence of a non-pilot initiated perturbation in attitude without causing a loss in the time savings afforded by the neuroadaptive automation system.

ICA, Independent Component Anayalsis; BCI, Brain Computer Interface; LSPC, Least Squares Probabilistic Classification; UDP, Universal Datagram Protocol.

simulator was paused before the plane crashed into the ocean.
At the end of each trial the simulator was paused for 1.5–
2.5 s (randomly determined). The timing was the same for trials
in which there was no perturbation. Before the beginning of
each trial participants chose by button press whether they were
going to pilot the plane or passively watch without moving the
joystick. Participants were instructed to try to make about twice
as many piloting trials as passive trials. The rational for having
the participant select whether they were to fly or watch rather

than to direct them which condition it was by instruction was to
better insure that they were actually doing the task correctly. If
given visual directed instructions, participants would often try to
recover from the perturbation even when they were instructed to
just watch. Allowing participants to choose which condition to
fly or watch helped to alleviate this problem. In this study, for
the simple piloting task, only the trials containing a perturbation
(fly_perturbation and watch_perturbation) were used to train
the BCI-decoder. Please see the section under Decoding Pilot
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FIGURE 2 | First person view the participant observes while carrying

out the simple piloting task over the ocean (A,B) and the complex

piloting task (C,D). The first panel for each task (A,C) shows a representative

image of what the view may appear like prior to the perturbation. The second

panel for each task (B,D) shows a representative image of what the view may

appear like during the perturbation. Notice that in the simple piloting task over

the ocean (A,B) the bank angle is always level, whereas, in the complex

piloting task the bank angle is continuously changing based on the control

stick inputs to maintain the goal of tracking the river (See Supplementary

Videos 1–6).

Intention below for the rational. After the button was pressed
there was a delay of 0.8–1.3 s (randomly determined) before the
trial begins. The passive trials were the same as the piloting trials
with the exception that the plane would pause when it reached an
altitude of 30m above the ocean, which occurred at a mean time
of 1.3 s after the onset of the perturbation.

There were 90 trials per session. On average there were 40
piloting perturbation trials, 20 piloting no-perturbation trials,
20 passive viewing perturbation trials, and 10 passive viewing
no-perturbation trials. The actual number of trials for each
condition was dependent on the participant’s choice to pilot or
passively view. The percentage of perturbation trials (67%) was
experimentally determined and presented randomly within each
of those conditions. Each session was ∼13 min. Bad trials (plane
did not fly straight and level until time of perturbation) were
removed from the analysis. Additionally, trials with response
times slower than 700 ms from the onset of the perturbation were
removed from the analysis.

Complex Piloting Task
This task involved flying through the Grand Canyon
and consisted of two conditions: perturbation (67% of
trials) or no perturbation (33%) [See Supplementary
Videos 5, 6; (5) Grand_Canyon_perturbation; (6)
Grand_Canyon_noperturbation]. Unlike the simple flying
task, the participant was always required to pilot the plane. There
were no passive viewing conditions. In the complex task the
participant was constantly required to move the elevator and
ailerons of the plane with the control stick to track the river

through the Grand Canyon. The perturbation was caused by an
instantaneous maximum downward deflection of the elevator
for 200 ms. Depending on the attitude (particularly the angle of
bank–roll) of the plane, the perturbation would cause a rapid
departure from the trajectory of flight toward the ground and/or
one of the cliffs (see Figures 2C,D). The plane started each trial
at approximately 30m above ground level at a speed of 1135
KPH. As in the simple task, the perturbation occurred between
2 and 4 s (randomly determined) after the beginning of the trial.
There was also a pause for 1.5–2.5 s (randomly determined)
at the end of each trial. Unlike the simple task, in which the
participant specified by button press whether they were going
to pilot the plane or passively watch, in the complex task every
trial was a piloting trial. The instructions on the screen denoted
that the participant could push the button when they were
ready to begin the trial. After the button was pressed there
was a delay of 0.8–1.3 s (randomly determined) before the trial
began. Unlike the simple task, in the complex task the plane
was allowed to crash into the ground or cliff. Upon a crash the
system would pause the screen. There were 90 trials total in the
complex piloting task. There were 60 perturbation trials and 30
no-perturbation trials. The order was randomly determined.
Each session was approximately 14 min. Trials in which the
plane crashed before the onset of the perturbation were removed
from the analysis.

Functional MRI
Our goal to develop a classifier of operator intention to undertake
a rapid action to avoid a perturbation was to use a neuroimaging
method with high temporal resolution, such as EEG or MEG.
We used MEG in the current study, but in order to bolster our
ability to localize MEG activity to intracortical sources, we also
conducted an fMRI study of the same piloting tasks in order
to establish seeds for conducting source localization analyses of
MEG data. In the fMRI experiment participants underwent two
sessions of the simple piloting task. Visual presentation of the
flight simulation was projected by mirrors to a screen behind
the head coil that could be viewed by the participant by a
mirror mounted on the head coil. An fMRI compatible control
stick (NATA technologies) was used by the right hand of the
participant to control the elevator (back = pitch up; forward =

pitch down) and aileron (roll left and right) deflections. Trigger
timing of the fMRI scanning was directly read into one of the
flight parameters of the flight simulator by means of a National
Instruments Hi Speed USB NI USB-9162 BNC analog to digital
converter.

A Siemens Verio 3T scanner was used to obtain functional T2∗

weighted images with a gradient echo-planar imaging sequence
(echo time 30 ms; repetition time 2500 ms; flip angle 80◦). A
total of 40 interleaved axial slices were acquired with a 4 × 4
× 4 mm voxel resolution covering the cortex and cerebellum. A
single run consisted of approximately 340 scans. (The number
varied depending on the randomized time and how long the
participant took to make a button response to start the trial).
The first three scans were discarded. Structural T2 images, later
used for normalization, were also collected using the same axial
slices as the functional images with a 1 × 1 × 4 mm resolution.
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Images were preprocessed using SPM8 (Wellcome Department
of Cognitive Neurology, UCL). Echo planar images EPI were
unwarped and realigned. The T2 image was co-registered to
the mean EPI image. The T2 images were acquired during
the same fMRI session as the EPI images with the same slice
thickness. Since the head was in approximately the same position
it is thought that this will facilitate coregistration. The EPI
images were then spatially normalized to MNI space (3 ×

3 × 3 mm voxels) using a template T2 image and the co-
registered T2 image as the source. Normalization was done
using the T2 image rather than EPI because we believe it
gives better results due to better spatial resolution. The images
were smoothed using an 8 × 8 × 8 mm FWHM Gaussian
kernel. Regional brain activity was assessed using a general linear
model employing an event-related analysis in which the onset
times were convolved with a hemodynamic response function.
High pass filtering (cutoff period 128 s) was carried out to
reduce the effects of extraneous variables (scanner drift, low
frequency noise, etc.). Auto-regression was used to correct for
serial correlations. The six movement parameters were used as
regressors of non-interest in the analysis to account for biases
in head movement correlations present during the experimental
conditions. Anatomical T1 weighted images were acquired with a
1× 1× 1 voxel resolution for use in constructing source models
for localizing brain activity recorded by MEG.

MEG
In the MEG experiment participants underwent three sessions of
the simple piloting task and one session of the complex piloting
task. The first two sessions of the simple piloting task were used
for training the decoding algorithm. The third session of the
simple piloting task was used to evaluate the effectiveness of the
trained algorithm in decoding neural states when participants
perform the same task. As discussed previously, however, an
effective classifier should be able to decode not only neural states
on the same task that it has been trained on, but on more
complex versions of the task that the classifier has not been
trained on—that is, whether the classifier can achieve transfer.
Accordingly, we also assessed the effectiveness of the classifier in
decoding neural activity preceding detection and response to a
perturbation in the complex piloting task. Visual presentation of
the flight simulation was projected to a mirror to a screen above
the participant’s head. An fMRI compatible control stick (NATA
technologies) was used by the right hand of the participant to
control the elevator (back = pitch up; forward = pitch down)
and aileron (roll left and right) deflections. Trigger timing for the
start of each trial and the start of the perturbation was registered
by a photodiode placed on the screen. A small white square was
constantly presented on the lower center part of the screen (out
of the view of the participant) at the start of each trial and at the
onset of the perturbation the small square turned black for 20 ms.
The light intensity change was detected by the photo diode and
written directly to one of the extra channels on the MEG.

The data was recorded using a Yokogawa 400 channel MEG
supine position system. Head movement was restrained by using
a strap across the forehead. A sampling rate of 1000 Hz was
used with input gain of ×5 and an output gain of ×100. The

trials were segmented 1000 ms before and after the onset of the
perturbation. For trials with no perturbation the timing of the
virtual perturbation was given by the photodiode and used as
the onset point for segmentation. The data were down sampled
from 1000 to 250 Hz and filtered using a causal Butterworth
online bandpass filter from 2 to 100 Hz. Only bad trials in
which there was a machine failure in the flight simulator causing
the plane to verge from a straight and level course (for the
simple piloting task) or bad trials in which the plane crashed
before the onset of the perturbation (for the complex piloting
task) were removed from the data. Besides bandpass filtering
there was no manual or automated artifact cleaning of the data
prior to independent component analysis. Infomax independent
component analysis (EEGLAB, Delorme and Makeig, 2004) with
principal component analysis PCA reduction to 64 components
was conducted on the first two sessions of the simple piloting
task (processing time was approximately 7 min). ICA has been
shown to be well suited for separation of artifact and task related
components (Delorme et al., 2007). The weights derived from the
ICA were used to calculate component activation waveforms for
the trials in sessions one and two. They were also used to calculate
component activation waveforms for the trials in sessions three of
the simple piloting task and the session of the complex piloting
task. There were two reasons that the weights from the first two
sessions were used to calculate the activation waveforms of the
later sessions: first, we did not want to bias the classification
results of the BCI-decoder used for training by including the
test data of the later sessions; and second, we wanted to simulate
conditions required to run the BCI-decoder as if we were running
it online in real-time. The independent components showing
evoked responses to the averaged perturbation piloting trials were
considered for training of the BCI-decoders. Each participant had
one evoked potential related component with an ICA spatial filter
showing a prominent sinc and source (See Figures 3A,B). All
preprocessing steps described above were automated except for
the selection of the independent components showing evoked
responses, which was done by visual inspection of the averaged
activation waveform and the ICA spatial filter. This step can also
be automated if desired.

MEG Source Localization Analysis
Source localization analysis involves the following steps: (1)
Determining the position of the head (brain) within the MEG
device, (2) Segmentation of the cortex of the brain, (3) Estimation
of the leadfield model on the vertex points of the segmented
cortex, and (4) Current source estimation on the cortex.

1. Five coils attached to the participant’s head (one behind each
ear, and three across the forehead) were used to determine the
position of the head within the MEG. The positions of the five
coils on the participant’s head were measured by the Polhemus
FastSCAN Cobra system. This system allows for a 3D laser
scan of the face as well as the coordinate location for the five
markers to be obtained. Matlab software (part of the VBMEG
toolbox) was used to register the coordinate space of the 3D
face image to the participant’s anatomical T1 MRI structural
image. Once the position of the five coils in reference to the
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FIGURE 3 | Source localized activity for each participant (P01–P07 denotes participant identification number). (A) On the left the independent component

analysis spatial filters for the MEG channels are shown for each participant. (B) The mean activation waveform for session one with the peak latency given in the upper

corner for each participant. The blue boxes over the peak denote the three 40 ms windows the decoder was trained on. The mean response time is denoted by the

gray line in the plot. The corresponding value is shown to the bottom right of this line for each participant. (C) The estimated current using variational Baysian

multimodal encephalography VBMEG is shown rendered on the surface of the brain for each participant.
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MEG sensors are known the position of these sensors can be
registered in the coordinate space of the participant’s T1 MRI
structural image.

2. The cortex was segmented from the brain using FreeSurfer
software (Fischl et al., 1999). This software was also used to
make an inflated model of the cortex used for display.

3. The segmented vertex points of the cortex were used to
estimate the leadfield matrix using the Sarvas equation
(Sarvas, 1987).

4. Current source on the surface of the cortex was estimated
using variational Bayesian multimodal encephalography
(VBMEG) that uses fMRI information as a prior constraint in
the analysis. See the articles by Sato et al. (2004) and Yoshioka
et al. (2008) for a detailed description as well as the tested
accuracy of source localization for VBMEG.

The VBMEG analysis used the fMRI t-values of the contrast
of the perturbation piloting condition vs. the no perturbation
piloting condition on the simple piloting task. The results of
the SPM analysis for the contrast for each participant (using a
threshold of p < 0.05 uncorrected, with a spatial extent of 50
voxels, andmasking out activity in the cerebellum and subcortical
areas) were projected onto the brain of their own T1 image
using their individual specific normalization parameters. For
one of the participants for which fMRI data was not collected
the random effects analysis across all of the participants for
the same contrast (using a threshold of p < 0.05 uncorrected,
with a spatial extent of 50 voxels, and masking out activity in
the cerebellum and subcortical areas) was used as a prior and
projected back to the individuals T1 image using their specific
normalization parameters. The fMRI T-values were thenmapped
to the vertex points of the segmented brain serving as prior
information for the VBMEG analysis. A lenient uncorrected
threshold of p < 0.05 was used to ensure that sufficient
vertex points of the brain were given prior information for the
VBMEG analysis. Using a conservative threshold corrected for
multiple comparisons for the fMRI analyses may considerably
restrict the extent of prior information for the VBMEG
analysis.

The activation waveforms of the trials from all conditions and
sessions for both the simple and complex tasks were projected
to the MEG sensor space (400 channel) using the weights of the
independent components as determined from the ICA on the
trials from the first two sessions of the simple piloting task. The
mean activity of the trials for each condition was used in the
VBMEG analysis. The noise model, serving as a baseline, was
calculated using the activity from the no perturbation passive
viewing condition. The VBMEG analysis estimated current
activity over the entire cortex using a variance magnification
factor= 500 and a confidence parameter= 500 [these parameters
are such that they give somewhat less weight to the fMRI prior
activity in determining the location of the source activity Sato
et al. (2004) and Yoshioka et al. (2008)]. The time period for
current estimation was 250 samples and the time step for the next
period was 100 samples. The output of the analysis was the mean
estimated current across trials for each cortical vertex point for
each condition.

To determine the location of current on the brain thought
to underlie the response to the perturbation and to be able to
compare the results across participants the following procedure
was used for each participant using data from the complex
piloting task: For each of the vertex points (there were ∼6000
for each participant), the root-mean-squared RMS current was
determined for perturbation recovery and for a baseline period
prior to perturbation: The RMS current for perturbation recovery
was calculated from 12 ms before and 8 ms after the new mean
response time (utilizing performance of the adaptive automation
BCI-decoder—see Results section). The RMS current for the
baseline period was calculated from 400 ms before onset of the
perturbation to just before the onset of the perturbation. The
current for each vertex point was normalized by subtracting 20
times the mean RMS current of the baseline period (across all
vertex points) from the RMS current of perturbation recovery
for each vertex point and then dividing by the maximum RMS
current across all vertex points. The normalized current of the
vertex points that were greater than zero were projected to the
standard template brain (2 × 2 × 2 mm) (given in SPM8)
using the MNI coordinates determined during segmentation
by Free Surfer. The resulting images were smoothed using a
FWHM 8× 8× 8 mm Gaussian kernel. Because smoothing may
cause activity to be spread to regions that were not originally
active a threshold was used such that only voxels showing
mean RMS values greater than the lowest value of the original
smoothed voxels (corresponding to the original projected vertex
points) were considered to be significant (using a spatial extent
threshold of 100 voxels). The intersection of active voxels across
all seven participants was used to define common activity. The
SPM Anatomy Toolbox v1.8 (Eickoff et al., 2005) was used to
determine the labels of active brain regions.

Decoding Pilot Intention
We developed a method to decode the participant’s intention
to perform an action in response to a perturbation by training
a classifier on neural data taken from the first two sessions of
the simple piloting task. The classifier was then evaluated by
testing its ability to decode participant intention on the third
session of the same task. As a more stringent test of classifier
performance—an examination of its transfer generalizability—
we then examined its ability to decode intention in the complex
piloting task. It should be noted that this classifier represents an
open loop simulation of a BCI in order to test the feasibility of
such a method for real-time implementation of neuroadaptive
automation using a closed loop BCI-decoder. See Figure 1 for a
depiction of the hypothesized neuroadaptive automation system
implemented in this study.

The training of the classifiers was conducted using trials from
the first two sessions of the simple piloting task. The two classes
to be decoded were presence of perturbation while piloting the
plane vs. presence of perturbation while passively viewing. The
reason for selecting these contrasts to train on was because we
wanted to ensure that the BCI-decoder was not just picking
up the visual evoked response induced by the perturbation but
was extracting activity related to the attentional components of
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the response to the perturbation in relation to the intention to
recover from the change in attitude. Rather simple features were
used for decoding in the hope that they would generalize across
sessions, tasks, and participants. The first step in calculating the
features used for decoding was to determine the time point of
the absolute peak in the mean evoked response (that was less
than 300 ms) to the onset of the perturbation in the selected
independent component of the perturbation piloting trials of
the first session of the simple task used for training (the peak
time for the participants was as follows: S1 = 232 ms; S2 =

236 ms; S3 = 284 ms; S4 = 196 ms; S5 = 228 ms; S6 = 284
ms; S7 = 264 ms; mean = 246 ms) (See Figure 3B for the
mean activation waveforms for the Fly and Watch conditions for
each participant from session 1). For each trial RMS amplitude
was calculated within two consecutive 40 ms windows prior
to the time of the peak of the averaged evoked potential and
one 40 ms window after (These windows are depicted as blue
bars at the top of the mean activation waveforms in Figure 3B

for each participant). The RMS amplitude values in these three
windows served as the features for decoding for the perturbation
piloting trials. To help in generalization and to bias the classifier
to make fewer false alarms the perturbation passive trials used
three separate time points to extract the features (120, 60, and
0 ms before the onset of the perturbation). This had the effect
of increasing the number of training trials for the perturbation
passive condition by three. Since there were originally half
as many perturbation passive trials than perturbation piloting
trials this increased the training ratio to be about 1.5 times
as many trials for the perturbation passive condition to that
of the perturbation piloting condition. The greater number of
training trials and the greater variability for the perturbation
passive condition is used to increase the ability to reject trials
that are not from the perturbation piloting condition (reduce
false-alarms) and increase the noise variability with regards to
timing such that the classifier may more readily generalize to the
complex task in which the attitude of the plane (and thus the
visual image on the screen) is constantly changing as a result of
the continuous piloting task of tracking the river in the Grand
Canyon. The reason we did not use the no perturbation piloting
task as one of the conditions to train the BCI-decoder on is
that it would likely just extract the visual evoked response to the
perturbation piloting task and not extract the attention related
component of the motor intention for attitude recovery that we
are interested in determining. Given the continuous changes in
attitude of the plane while maneuvering on the complex task
a BCI-decoder that is based on visual evoked perturbations
from the simple task may result in a large number of false
alarms.

The BCI-decoder was trained on approximately 80 trials of
the perturbation piloting task and 120 trials of the perturbation
passive task using the Matlab Least Squares Probabilistic
Classification (LSPC) toolbox (Sugiyama et al., 2010). LSPC uses
a linear combination of kernel function to model the class-
posterior probability. Regularized least-squares fitting of the
true class-posterior probability is used to learn its parameters
(Sugiyama et al., 2010). The use of least-squares fitting to
determine a linear model allows for a global solution to be made

analytically providing a considerable speedup in computational
time. The default parameters were used in training of the LSPC
models (see Matlab code: Sugiyama et al., 2010). The time
required to train the classifier is approximately 0.25 s. Prior to
training the features for the trials were normalized by subtracting
the mean and dividing by the standard deviation. The mean
and standard deviation from the training trials were used to
normalize the trials used for testing. The first test set consisted
of trials from the session of the simple piloting task that was not
used during training. There were approximately 40 perturbation
piloting trials and 20 perturbation passive trials to be classified
using the train LSPC model. Balanced accuracies (Brodersen
et al., 2010) are reported to account for biases in unequal number
of trials in the two conditions to be classified. The test data
consisted of features computed at the time point specified by
the peak of the evoked response determined from the training
data. No information about the distribution of the test data was
used. The BCI-decoder treats each test trial as independent. One
hundred BCI-decoders were trained and then tested using trials
from the simple piloting task. The primary parameter that is
random for training of the model for each BCI-decoder is the
order of the trials in the training cross validation steps. The BCI-
decoder with the best performance as determined by balanced
accuracy was used to test the trials from the complex piloting task.

The goal for the BCI-decoder in the complex piloting task was
to be able to detect the intention to recover from a perturbation in
attitude faster than by movement of the control stick by the hand.
The selected LSPC model trained on the simple piloting task
was used for testing of the complex piloting task. Additionally
the same parameters (mean and standard deviation) used during
training were also used on the test set for normalization of
the features. For the perturbation piloting trials and the no
perturbation piloting trials the LSPC model began testing at time
point zero when the perturbation started. The window for the
BCI-decoder was 120 ms encompassing the three 40 ms time
windows in which the RMS amplitude was calculated. Therefore,
the earliest time the perturbation could be detected was at 120
ms. The 120 ms time window tested by the BCI-decoder was
incremented in 8 ms steps through 1000 ms of the data for each
trial. The earliest point at which the BCI-decoder detected the
presence of a perturbation piloting trial was the point at which the
adaptive automation would be implemented to recover attitude.
The time between detection by the BCI-decoder and the onset of
the control stick by the hand to recover from the perturbation
in attitude was used to evaluate the time benefit (time savings)
of the implementation of the adaptive automation. The trial was
only considered a hit if the BCI-decoder predicted time was faster
than the actual movement time of the control stick. To determine
the statistical significance of the BCI time savings, BCI-decoders
were trained using 1000 random permutations of the labels and
each was tested on the complex piloting task. All 1000 permuted
models used for evaluation had less than 25% false positives. This
criterion was used in order to be comparable to the false positive
performance of that of the BCImodels trained with correct labels.
The perturbation time benefit were calculated for each of the 1000
permuted models and used as a distribution to compare against
the model trained with the actual labels.
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In order to evaluate the generalizability of a single model
across participants the weights of the model of the participant
with the best performance were used to test the trials of
the complex flying task of the remaining six participants.
Performance measures including BCI time savings were
determined using the same method as applied when using each
participants corresponding model to test the trials of the complex
piloting task (see above).

Procedure
Participants underwent the fMRI and MEG sessions on separate
days. The fMRI experiment was used to calculate a prior
for the MEG source localization analysis using Variational
Bayes Multimodel Encephalography (VBMEG). Six of the
seven participants participated in the fMRI experiment. One
participant only did the MEG experiment. All of the participants
that participated in the fMRI experiment did it prior to the
MEG experiment. MRI anatomical T1 scans were acquired for
all seven participants and used to make models for source
localization analysis using VBMEG. All analyses were conducted
using Matlab software unless otherwise stated.

RESULTS

Behavioral Performance
The response times (RTs) for each of the participants to initiate
pull back on the control stick in reaction to a perturbation
causing the plane to enter a steep dive for both the simple piloting
task and the complex piloting task are presented in Table 1. The
RT in the complex task (median = 436.5) was not found to be
significantly higher than in the simple task (median = 368.5), p
= 0.0781 (df= 6). However, there is a tendency in this direction.
The number of trials the plane crashed into the ground/cliff, as
well as the number of bad trials (resulting from machine failures
and/or movement before the onset of the perturbation for the
simple task and crashes before the onset of the perturbation
for the complex task) are also presented in Table 1. As Table 1
indicates, these numbers were relatively small, but were greater
in the complex task. It should be noted that bad trials were
excluded from analysis and not used for calculation of response

times or training/testing of the BCI-decoders. In some cases
on the complex task there were crashes after the onset of the
perturbation. These trials were not excluded from analysis.

Source Localization
The smoothed RMS current centered around the time of the
perturbation on the complex piloting task of the activation
waveform of the projected task related independent component
rendered on the surface of the brain (See Methods for details
of source localization analysis) is displayed for each participant
along with the corresponding independent component spatial
map in Figure 3C. There was some degree of variability
in the extent to which different brain regions were active
across participants (Figure 3C, Table 2). As can be seen in
Figure 4 and Table 3 brain regions that were commonly active
for all participants include the pre-central gyrus (including
premotor cortex), post- central gyrus, the superior parietal
lobule, the primary visual cortex, and human occipital cortex
visual motion processing area V5 (hOC5). It should be noted
that while source localization is interesting in determining
the brain regions associated with the independent component
upon which decoding is made it is not a necessary step
in implementation of the proposed neuroadaptive automation
brain-machine interface.

BCI-Decoder Performance
The results of the performance of the BCI-decoder are presented
in Tables 4–9. The performance of the best (as determined by the
highest balanced accuracy score) out of 100 BCI-decoders tested
on the novel sessions of the simple piloting task is presented
in Table 4 for each participant. The average over all 100 BCI-
decoders is given in the table for comparison. The BCI-decoder
for six of the seven participants showed significant differences (p
< 0.05) in being able to distinguish between perturbation piloting
trials and perturbation passive viewing trials. The mean balanced
accuracy performance was approximately 70%. Certainly the
selection of the best BCI-decoder out of 100 trained biases these
results, however, it was our goal to find the model that may
best extract attentional information related to the intention of
recovering from the perturbation in attitude. In this respect

TABLE 1 | Response time to pull back on control stick after start of perturbation for the two training sessions and two test sessions.

ID RT train BT train RT train BT train RT test BT test RT test BT test CT test

Ses1 (ms) Ses1 Ses2 (ms) Ses2 simple (ms) simple complex (ms) complex complex

1 356.4 1 387.7 2 370.4 1 357.9 0 0

2 377.7 0 427.0 2 452.6 3 436.5 8 9

3 386.5 2 371.4 0 384.4 0 454 2 6

4 295.1 0 303.7 0 305.5 0 359.8 2 6

5 323.9 0 336.9 0 342.3 0 462.2 1 1

6 355.0 0 386.3 9 368.5 3 480.4 5 0

7 348.4 0 347.1 0 337.8 0 424.1 4 9

Group mean 349.0 0.43 365.7 1.86 365.9 1.0 425.0 3.14 10.33

ID, Participant identification number; RT, Response Time; Ses, Session; BT, Bad Trial; CT, Crash Trial.
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TABLE 2 | MNI coordinates of clusters of brain activity for each participant.

Brain region P1 MNI P2 MNI P3 MNI P4 MNI P5 MNI P6 MNI P7 MNI

Orbital Gyrus −22,58, −4 −34,56, −6 26,45, −13 −6,56, −14

−12,54, −16 48,36, −10 22,46, −12

SFG, MFG −14,44,32 −38,40,30

−32,40,36 42,51,7

IFG BA44 −52,4,10 54,14,10 −49,5,6 −50,10,6 54,18, −2

56,16,22 56,8,34 58, −1,7

IFG BA45 45,44,2 58,30,0 −50,25, −1 −48,36,4 48,44,12

56,26,2

SFG SMA BA6 1, −16,66 −4,0,58 −4, −3,68

11, −13,67

PMC BA6 −35, −25,68 −34, −23,68 −30, −27,68 −36, −28,68 −38, −8,64 −26, −21,70 −33, −25,67

46, −8,48 28, −8,64 22, −31,76 58,4,31

Pre−CG BA4 −48, −16,56 −35, −25,58 −35, −25,54 −32, −28,69 −42, −18,54 −9, −42,75 −30, −38,70

42, −10,46 12, −27,74 8, −34,76 −28, −27,59

38, −30,61 9, −38,75

Post−CG BA1,2,3 −18, −36,76 −24, −36,72 −40, −41,61 −30, −34,70 −30, −44,64 −35, −35,67 −40, −44,58

−48, −30,58 −52, −32,54 44, −22,60 −44, −34,58 −62, −8,10 −47, −26,55 56, −20,46

46, −32,60 38, −32,60 53, −24,55 44, −30,60

62, −24,26

SPL −10, −76,52 10, −70,56 −38, −48,57 −14, −54,66 −24, −60,62 −16, −74,48 −16, −70,62

−22, −82,48 24, −56,56 −8, −65,58 −10, −90,34 20, −66,60 18, −66,48 −16, −86,38

12, −56,68 9, −64,61 16, −68,56 13, −66,62

26, −50,66 41, −45,58

IPC −54, −70,16 −46, −74,18 −52, −44,38 −58, −39,35 −58, −18,28

−56, −24,30 46, −70,14 48, −43,35 57, −34,40 60, −30,30

60, −22,34 68, −30,20 58, −30,40 46, −82,20

hOC5 (V5) MT, IOG 52, −67, −1 −44, −74,18 −40, −70, −2 −52, −72, −2 52, −62, −16 −44, −72,5 −52, −70,0

56, −62,4 54, −67,13 50, −70,0 53, −69,1 56, −64, −2

hOC4 −38, −72, −12 32, −71, −1 46, −80, −15 −32, −77,0

40, −72, −12

Cuneus Calcarine Gyrus BA17,18 −12, −104,4 −4, −72,2 −8, −68,4 −2, −80, −2 16, −94,16 −10, −98,2 −4, −72,0

−24, −102, −6 −10, −94,26 −8, −94, −8 8, −82,10 20, −98, −10 12, −90,0 10, −70,0

20, −98,22 −10, −100,8 18, −92, −14 12, −102,4 6, −86,16

14, −98,0 10, −70,2

16, −100, −14 16, −96,20

MTG −56, −64, −2 −48, −24, −10 55, −66, −2

−56, −59,8

60, −26, −16

54, −63, −2

ITG −54, −50, −18 60, −48, −12 −46, −60, −10 54, −54, −20 50, −56, −16 −44, −63,0

48, −50, −12 −52, −32, −20 −44, −62, −16 −56, −20, −24

−58, −24, −20 60, −46,0

Temporal Pole −50,6, −15 −48,12, −20

58, −2, −6

P, participant identification number; IFG, Inferior Frontal Gyrus; SFG, Superior Frontal Gyrus; SMA, Supplementary Motor Area; PMC, Premotor Cortex; Pre-CG, Pre Central Gyrus;

Post-CG, Post Central Gyrus; SPL, Superior Parietal Lobule; IPC, Inferior Parietal Cortex; hOC5 (V5), Human Occipital Cortex Visual motion processing area V5; MT, Middle Temporal

Cortex overlaps area hOC5; IOG, Inferior occipital gyrus; MTG, Middle Temporal Gyrus; ITG, Inferior temporal gyrus. MNI coordinates of Clusters of root-mean-squared RMS current

12 ms before and after the mean time in which the decoder detected motor intention to the presence of a perturbation. The threshold of significant RMS current activity at a specific

vertex point was set at 20x the mean baseline RMS current from −400 to 0 ms across all vertex points. A spatial extent threshold of 100 voxels was used on the smoothed projection

into MNI space.
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FIGURE 4 | Source localized activity common to all participants. Activity is present in the left pre- central gyrus, the left post central gyrus, the right superior

parietal lobule, the right primary visual cortex V1, and the right visual motion processing area V5.

TABLE 3 | MNI coordinates of clusters of brain activity common across all

participants.

Brain region All seven participants MNI

Pre-CG, PMC BA4,6 −36,−26,68

Post-CG BA1,2,3 −30,−38,68

SPL 7P 7A Precuneus 12 −68,60

Cuneus (V1) BA17 16,−96,10

hOC5(V5) 52,−62,0

Pre-CG, Pre Central Gyrus; Post-CG, Post Central Gyrus; SPL, Superior Parietal Lobule;

hOC5 (V5), Human Occipital Cortex Visual motion processing area V5.

MNI coordinates of Clusters of root-mean-squared RMS current 12 ms before and after

the mean time in which the decoder detected motor intention to the presence of a

perturbation that are common across all seven participants. The threshold of significant

RMS current activity at a specific vertex point was set at 20x the mean baseline RMS

current from −400 to 0 ms across all vertex points.

we feel justified in selecting the best model trained and tested
on the simple piloting task to use for testing in an unbiased
manner on the complex piloting task. Although training the BCI-
decoder to distinguish between the perturbation piloting and no
perturbation piloting trials on the simple piloting task may have
provided better performance when testing on the novel session
from the same task it is likely that the model would have learned
the response to the visual aspects of the perturbation rather than
the neural activity related to the intention to recover attitude.

As discussed above the model with the highest balanced
accuracy on the test session of the simple piloting task was used
to test the session of the complex piloting task. The goal was
to simulate the use of a brain computer interface in real time
that would initiate the use of adaptive automation to initiate
recovery from a perturbation in attitude faster than could be done
by moving the control stick by the hand. In accomplishing this
goal the BCI-decoder was used on a 120 ms window starting
at the time of the perturbation and stepping through the data
in 8 ms steps. The BCI-decoder was also tested on trials in
which there was no perturbation within the same time region
in which the perturbation may have occurred. This point was
determined randomly during the experiment and triggered on
the MEG trace using a photodiode (see Methods). Bad trials were
eliminated from the analysis (see Table 1). The first instance of
the classification by the BCI-decoder as a perturbation piloting

trial is the time point at which the adaptive automation is
initiated. Only trials in which the BCI-decoder is faster than
the movement of the controls stick are counted as hits (true
positives). The results of the classification performance for
the complex piloting task are presented in Table 5. Because
unequal number of trials existed for perturbation piloting and
no perturbation piloting trials balanced accuracies were used
(Brodersen et al., 2010). All seven participants showed significant
classification performance above chance even with the additional
criteria that the detection of a perturbation piloting trial had to
be before movement of the control stick. In these cases where
there was classification of a perturbation trial after control stick
movement, the trial was counted as a miss (false negative). The
ratio of correct rejections (true negatives) to false alarms (false
positives) was greater than the ratio of hits (true positives) to
misses (false negatives). The mean balanced accuracy across
participants was 73%. Table 6 shows the performance on the
complex piloting task of the six subjects tested using the weights
from the model of the best participant. The results indicate that
the balanced accuracies of all six participants showed significant
classification performance above chance (Table 6). While there
were significant differences in hit rate and false alarm rate
between the generalized and own model tests there were no
significant differences, using theWilcoxon signed rank test, in the
primary performance measures including balanced accuracy, d′,
and a′ (a′ a prime or area under the curve was calculated by the
method given inMacmillan and Creelman (1991) (See Table 3B).

The improvement in response time afforded by the use of
the neuroadaptive automation is given in Table 7. In trials in
which there was a miss, neuroadaptive automation was not
employed and the original response time was used. The mean
response time difference was calculated from the original onset
time minus the onset of the neuroadaptive automation for all
perturbation piloting trials. The mean improvement in response
time across participants was a reduction from 425 to 353
ms under neuroadaptive automation, or an average of 72 ms
improvement. Figures 5A,B depicts the decoded response times
plotted on the single trial activation waveforms of the adaptive
automation (black circles) for participant 1 (best performer) and
3 (median performer), respectively. The single trials are arranged
in increasing order of behavioral response time from bottom
to top (white line). The significance of the time savings was
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TABLE 4 | Novel test session classification performance: simple piloting task over ocean: detect perturbation piloting vs. perturbation passively watch.

ID bacc_mean bacc_ppi1 bacc_ppi2 bacc_p tp fn fp tn hr far d′ a′

1 61.5 (58.4) 48.6 73.5 0.039 21 16 6 13 0.57 0.32 0.65 0.70

2 58 (51.2) 45.9 69.3 0.093 15 21 5 16 0.42 0.24 0.50 0.67

3 73.1 (72.4) 61.1 83.0 0.023 26 15 2 14 0.63 0.13 1.49 0.85

4 73.8 (67.1) 62.2 83.7 0.009 27 13 3 16 0.68 0.16 1.46 0.85

5 76.3 (75.0) 67.3 84.4 0.0002 23 17 0 19 0.58 0.05 1.86 0.89

6 81.1 (78.8) 70.9 89.4 0.0001 27 10 1 18 0.73 0.05 2.23 0.91

7 64.8 (62.6) 52.9 75.6 0.009 21 19 4 16 0.53 0.20 0.90 0.76

Group mean 69.8 (66.5) 58.4 79.8 0.016 23 16 3 16 0.59 0.16 1.30 0.80

ID, Participant identification number; bacc_mean, Balanced accuracy mean in percent; bacc_ppi, Posterior probability intervals; bacc_p, p value; TP, true positive (hit); FN, false negative

(miss); FP, false positive (false alarm); TN, true negative (correct rejection); HR, hit rate; FAR, false alarm rate; d′, d prime; a′, a prime.

In the case when the FAR = 0 calculation of FAR is made by adding 1 to the original FP and TN values.

The performance scores are for the best out of 100 BCI-decoders trained on the first two sessions and tested on the novel simple piloting task session. The average balanced accuracy

for all 100 BCI-decoders is given in parentheses for comparison.

The bacc_p value for the group mean is the Wilcoxon signed rank test over the bacc_mean values for the 7 subjects that the values are greater than 50.

TABLE 5 | Novel test session classification performance: complex piloting task through Grand Canyon: detect perturbation piloting vs. no perturbation

piloting.

ID bacc_mean bacc_ppi1 bacc_ppi2 bacc_p tp fn fp tn hr far d′ a′

1 85.6 78.3 91.5 0.0001 47 13 1 29 0.78 0.03 2.62 0.93

2 66.6 58.1 74.6 0.02 22 30 2 28 0.42 0.07 1.31 0.81

3 74.7 65.5 82.7 0.0001 38 20 4 26 0.66 0.13 1.51 0.85

4 76.7 67.1 85.1 0.0001 46 12 7 23 0.79 0.23 1.55 0.86

5 66.1 56.3 75.1 0.001 32 27 6 24 0.54 0.20 0.95 0.76

6 79.4 70.1 87.4 0.0001 45 10 6 24 0.82 0.20 1.75 0.88

7 63.7 54.5 72.2 0.003 24 32 4 26 0.43 0.13 0.93 0.76

Group mean 73.3 64.3 81.2 0.016 36 21 4 26 0.63 0.14 1.52 0.84

ID, Participant identification number; bacc_mean, Balanced accuracy mean in percent; bacc_ppi, Posterior probability intervals; bacc_p, p value; TP, true positive (hit); FN, false negative

(miss); FP, false positive (false alarm); TN, true negative (correct rejection); HR, hit rate; FAR, false alarm rate; d′, d prime; a′, a prime.

The bacc_p value for the group mean is the Wilcoxon signed rank test over the bacc_mean values for the seven participants that the values are greater than 50.

TABLE 6 | Generalization of performance using best subjects weights: novel test session classification performance: complex piloting task through

Grand Canyon: detect perturbation piloting vs. no perturbation piloting.

ID bacc_mean bacc_ppi1 bacc_ppi2 bacc_p tp fn fp tn hr far d′ a′

1 – – – – – – – – – – – –

2 57.7 51.9 63.8 0.007 9 43 0 30 0.17 0.03 0.91 0.79

3 73.8 64.9 81.6 0.0001 35 23 3 27 0.60 0.10 1.54 0.85

4 68.6 60.3 76.3 0.0001 27 31 2 28 0.47 0.07 1.41 0.82

5 63.4 54.8 71.4 0.002 23 36 3 27 0.39 0.01 1.00 0.77

6 80.8 71.9 88.3 0.0001 43 12 4 26 0.78 0.13 1.89 0.89

7 64.3 56.0 72.0 0.0007 21 35 2 28 0.38 0.07 1.18 0.79

Group mean 68.1 (71.2) 60.0 (61.9) 75.6 (79.5) 0.032 (0.032) 26* (35) 30* (21) 2* (5) 28* (25) 0.47* (0.61) 0.07* (0.16) 1.32 (1.33) 0.82 (0.82)

ID, Participant identification number; bacc_mean, Balanced accuracy mean in percent; bacc_ppi, Posterior probability intervals; bacc_p, p value; TP, true positive (hit); FN, false negative

(miss); FP, false positive (false alarm); TN, true negative (correct rejection); HR, hit rate; FAR, false alarm rate; d′, d prime; a′, a prime.

The bacc_p value for the group mean is the Wilcoxon signed rank test over the bacc_mean values for the six subjects that the values are greater than 50.

The number in parentheses are the group mean values of the original decoder excluding sub01. *Denotes p < 0.05 on paired Wilcoxon signed rank test for the comparison between

the original decoder and the one trained with sub01 model over the six participants.
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TABLE 7 | Improvement in response time by adaptive automation complex piloting task through the Grand Canyon.

ID N TP FP Org Mean Org Se BCI mean BCI Se BCI rt diff BCI rt diff Perm rt diff Perm P

(ms) (ms) (ms) (ms) mean (ms) se (ms) Mean (ms)

1 60 47 1 357.9 5.2 283.1 9.8 74.8 7.8 5.2 0.002

2 52 22 2 436.5 13.8 369.7 15.6 66.7 14.3 6.4 0.023

3 58 38 4 454.0 10.2 405.2 13.6 48.7 7.9 4.5 0.014

4 58 46 7 359.8 7.3 277.0 10.6 82.8 10.4 4.9 0.001

5 59 32 6 462.2 6.6 404.2 12.7 58.0 11.8 3.1 0.003

6 55 45 6 480.4 7.3 341.4 14.1 138.9 15.4 13.5 0.002

7 56 24 4 424.1 9.3 388.0 13.3 36.1 8.6 7.4 0.041

Group mean 59 36 4 425.0 8.5 352.7 12.8 72.3 10.9 6.4 0.016

The p-value in the last column denotes the significance of the time savings improvement of the BCI adaptive automation over the original joystick based response times based on

permutation testing of 1000 models trained with random labels.

ID, Participant identification number; N, Number of Perturbation Piloting Trials; TP, True Positives (hits); FP, False Positives (false alarms); rt diff, response time difference; Org, Original;

se, standard error; Perm, Permuted; BCI Brain Computer Interface.

The Perm P-value for the group mean is the paired Wilcoxon signed rank test comparing the BCI rt diff values to the Perm rt diff values for the seven participants.

TABLE 8 | Generalization of performance using best subjects weights: improvement in response time by adaptive automation complex piloting task

through the Grand Canyon.

ID N TP FP Org Mean Org Se BCI mean BCI Se BCI rt diff BCI rt diff Perm rt diff Perm P

(ms) (ms) (ms) (ms) mean (ms) se (ms) Mean (ms)

1 – – – – – – – – – – –

2 52 9 0 436.5 13.8 408.7 15.6 27.8 10.7 7.9 0.026

3 58 35 3 454.0 10.2 407.3 13.5 46.7 7.7 5.5 0.009

4 58 27 2 359.8 7.3 327.9 9.3 31.9 7.9 4.1 0.001

5 59 23 3 462.2 6.6 427.7 11.2 34.5 9.5 2.9 0.001

6 55 43 4 480.4 7.3 347.9 15.8 132.5 15.7 17.8 0.002

7 56 21 2 424.1 9.3 388.7 11.8 35.4 9.2 2.8 0.006

Group mean 56 26* (35) 2* (5) 436.2 9.1 384.7* (364.3) 12.9 (13.3) 51.5* (71.9) 10.1 (11.4) 6.8 (6.3) 0.032 (0.032)

The p-value in the last column denotes the significance of the time savings improvement of the BCI adaptive automation over the original joystick based response times based on

permutation testing of 1000 models trained with random labels.

ID, Participant identification number; N, Number of Perturbation Piloting Trials; TP, True Positives (hits); FP, False Positives (false alarms); rt, response time; Org, Original; se, standard

error; Perm, Permuted; BCI Brain Computer Interface.

The Perm P-value for the group mean is the paired Wilcoxon signed rank test comparing the BCI rt diff values to the Perm rt diff values for the six subjects.

The number in parentheses are the group mean values of the original decoder excluding sub01. *Denotes p < 0.05 on paired Wilcoxon signed rank test for the comparison between

the original decoder and the one trained with sub01 model over the six participants.

evaluated by comparing the neuroadaptive automation response
time difference (to that of the control stick response) relative
to the distribution of response time differences of over 1000
models trained with randomly permuted labels (See Methods
Section). The p value was computed by the number of times
the models with permuted labels had larger response time
differences than the BCI trained with the correct labeling over
the 1000 permuted models (see Table 7). Table 8 shows the
time savings of the six participants tested using the weights
from the model of the best participant on the complex piloting
task. The same permutation technique as discussed above was
used to evaluate statistical significance. While all participants
showed a significant difference in time savings even using a
model trained by a different participant, the time savings were
significantly (p < 0.05; paired Wilcoxon signed rank test) greater
when using their own model (median = 62.4 ms; mean = 71.9

ms) vs. the generalized model (median = 35.0 ms; mean =

51.5 ms).

DISCUSSION

The present study examined whether it is possible to decode
neural signals associated with the intention to act in response
to an impending hazard. Using MEG, the results showed that
neural activity could be decoded so as to decrease the time needed
to respond to the hazard, compared to manual action. As such,
the results demonstrate that neuroadaptive automation can be
implemented to speed up intentional action when there is very
little available to respond.

There has been extensive prior research showing the
effectiveness of both neuroadaptive automation (Byrne and
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TABLE 9 | Flight characteristics of F22 on Grand Canyon task.

ID Avg altitude at

time of

perturbation

(m)

Avg airspeed

at time of

perturbation

(Km/h)

Avg airspeed at

time of

perturbation

(m/s)

Descent rate

DR mean

(m/s)

Descent rate

DR greatest

(m/s)

Avg response

Improvement by

BCI over all

trials (ms)

BCI Savings in

Descent

Altitude based

on Mean DR (m)

BCI Savings in

Descent

Altitude based

on Greatest

DR (m)

1 81.4 1122 311.6 69.1 87.4 75 5.2 6.5

2 79.8 1082 300.7 65.4 94.7 67 4.4 6.3

3 80.2 1117 310.3 56.2 83.7 49 2.8 4.1

4 79.8 1115 309.8 79.7 103.2 83 6.6 8.6

5 82.4 1117 310.2 71.8 124.6 58 4.2 7.2

6 82 1122 311.7 75.4 111 139 10.5 15.4

7 79.9 1113 309.1 69.6 93.3 36 2.5 3.4

Group

mean

80.8 1113 309.1 69.6 99.7 72 5.2 7.4

ID, Participant identification number; DR, Decent Rate; Avg, average.

The climb/descent rate is variable depending on the attitude of the plane at time of perturbation. The values given are the (1) mean of the maximum slope of descent calculated over a

200 ms period across trials and (2) the greatest maximum slope of descent calculated over a 200 ms period across trials.

It is important to note that time and distance to ground saved by earlier elevator engagement is not only the savings in less descent toward ground but also allows for gain in altitude

relative to time because of earlier climb.

Parasuraman, 1996; Wilson and Russell, 2007; Ting et al., 2010)
and passive BCI (Blankertz et al., 2010; Zander and Kothe, 2011)
in enhancing human performance. However, the present study
represents the first successful attempt to show that decoded
neural activity can be used to potentially speed up split-second
decision making in response to an impending hazard on a novel
complex task that neither the participant or the classification
model has been trained on. While the brain is indeed faster than
the hand in responding to a hazard, its activity must be accurately
decoded so as to accrue a savings in time. In the piloting task
used in the present study, the mean savings in response time was
72 ms (ranging from 36.1 to 138.9 ms). Although this may seem
relatively small, in situations where humans are moving at high
speed toward a hazard, as in driving or piloting, the savings may
be sufficient to avert disaster.

To put a time savings of 72 ms in context, consider the flight
characteristics of a F22 aircraft on the complex piloting task.
Table 9 gives the response times to the in-flight perturbation
for each participant [Figures 5A,B depicts the decoded response
times plotted on the single trial activation waveforms of the
adaptive automation (black circles) for participant 1 (best
performer) and 3 (median performer), respectively]. Even with
an average improvement of 72 ms in response time this can result
in an average savings of up to 7.4m of lost altitude as a result
of earlier initiation of recovery in attitude to the perturbation.
This could make a difference between a successful and failed
attempt to avoid a collision. It should be noted that the large
variability in savings between participants is likely a result of
the quality of the MEG data in terms of separating task related
activity from artifacts rather than expertise on the task. There
was no apparent relationship between the savings afforded by the
simulated neuroadaptive automation and manual response time
on the task. It is known that there is considerable variability in
the quality of MEG and EEG data across individuals that impacts
successful BCI performance (Lotte et al., 2013).

It must be acknowledged, however, that the improvement
in response time using neuroadaptive automation comes at the
expense of making false alarms on a small number of trials. As in
any automated alarm system, the tradeoff between correct early
warning (hits) and false alarms has to be considered when setting
the decision criterion of the alarm (Swets, 1973; Parasuraman and
Riley, 1997). It may be possible in some cases to adjust the criteria
of the BCI-decoder to make less false alarms at the expense of
making less hits as well and reducing the overall response time
improvement afforded by the neuroadaptive automation. For
example in the study by Blankertz et al. (2002) the classifier was
trained such that it was optimal under the constraint that the false
positive (false alarm) rate attains a preset value.

The presence of a false alarm by the BCI-decoder could
be somewhat problematic. Without some type of system that
would identify externally induced perturbations from changes
in attitude induced by the pilot in flight the neuroadaptive
automation would initiate a recovery maneuver. Which in this
case is to reverse the pitch down elevator deflection caused by
the perturbation. Without the presence of a real perturbation,
if the plane was in level flight and the BCI decoder made
a false-alarm the neuroadaptive automation would cause the
plane to make an abrupt climb. With respect to the pilot,
this would constitute a pitch up perturbation. The goal of the
hypothesized neuroadaptive automation is not to take control
away from the pilot but rather to speed up the response of the
pilot’s motor intentions to unexpected flight conditions such
as perturbation of attitude. While the use of detecting error-
related potentials to decrease error rate has been successful
in some implementations (Blankertz et al., 2002; Parra et al.,
2003) it, unfortunately, is not likely to be of benefit in detecting
motor intention to improve response time. This is because the
relevant features for detecting the error-related potential on a
single trial basis is after the response is made. One way to
possibly keep the pilot in the loop and reduce the effects of
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FIGURE 5 | The decoded response time (circles) plotted on the single

trial activation waveforms (ranging from: red: large positive amplitude

to blue: large negative amplitude) of the selected independent

component of the simulated neuroadaptive automation on the

complex piloting task for (A) the best participant (P01) and (B) the

middle range participant in terms of classification performance (P03).

Both perturbation absent trials (top of each plot) and perturbation present trials

(bottom of each plot) are shown. The perturbation present trials are arranged

in order of fastest manual response time (bottom) to the slowest (top). The

manual response times are denoted by the thick white line for the perturbation

present trials. The decoded response time, by the simulated neuroadaptive

automation (BCI classifier), of each trial is denoted by a black circle. For

perturbation present trials the black circles denote hits when their time is faster

than the manual response time (white line). For perturbation absent trials the

black circles denote false alarms. A red circle is shown over the original

response time in the case when the simulated neuroadaptive automation failed

to classify the trial as a hit (misses) or in which it was slower than the original

response time (slow responses).

false-alarms is to engage the neuroadaptive automation for only
a couple hundred milliseconds and immediately disengage it in
response to opposite deflection of the flight controls by the pilot.
This would reduce the detrimental effects of false-alarms and at
the same time would speed up response to recover from true
perturbations in the case of hits. Given that the BCI-decoder is
extracting motor intention related activity it would be interesting
to determine whether the pilot actually notices the engagement
of the neuroadaptive automation in the case of hits or rather

just feels that they are really fast in reacting. The extent to
which pilot-automation induced oscillations arise and offset the
beneficial affects of time savings of the neuroadaptive automation
need to be investigated using closed-loop implementation of the
system during flight simulation (It should be noted that our
study reported here only uses an open-loop BCI decoder tested
offline to test the feasibility of implementation in neuroadaptive
automation).

Although the BCI-decoder was trained using a specified
window (120 ms) centered at the time of the peak evoked
response prior to movement onset to detect a perturbation
causing a pitch down attitude while in straight and level flight
over the ocean (simple visual field) it was able to generalize to
a novel complex flight condition in which the pilot maneuvered
the plane through the Grand Canyon. In this complex condition
the orientation of the perturbation with respect to the horizon
is dependent on the roll angle (bank angle) of the plane at the
time of the perturbation. The magnitude of the perturbation
reflected in negative deflection in the pitch axis is dependent
on the planes attitude (pitch, roll, yaw axes), speed, airflow
over the flight surfaces, and the time in which it takes for the
pilot to initiate recovery (the longer it takes the bigger the
perturbation effect). It is impressive the BCI-decoder is able
to generalize to the novel complex flight condition given that
the nature of the perturbation and the corresponding visual
aspects of the scene and ongoing motor control are quite
different from the training situation. As we envision the closed-
loop operational neuroadaptive automation system it would not
need to know the magnitude of the perturbation (although
this information may be available by flight instruments) as its
job is to only initiate recovery based on the decoded motor
intention of the pilot. It is up to the pilot to appropriately
control the plane within the first couple hundred milliseconds
after the neuroadaptive automation has been initiated. As it
stands now the system is only set up to recover from a pitch
down attitude. Ideally, we would like a system that could recover
from a perturbation in attitude to any of the axes (pitch, roll,
yaw) or combinations thereof. By comparing data from flight
instruments that precisely measure attitude of all axes of the
plane and pilot directed control movements the neuroadaptive
automation could initiate the proper combination of control
surface deflections to recover from various types of non-pilot
induced perturbations. It would be interesting to test whether
our system would generalize to other types of perturbation
in attitude even though it was only trained on a pitch down
perturbation. While this system using constraints determined
by flight instruments may work in the case of perturbations it
may not be effective in situations involving collision avoidance
(e.g., with another aircraft or bird, etc.). In these situations it
would be necessary to additionally build a BCI-decoder that can
determine the desired direction of motor intention as it relates
to the flight controls governing the attitude of the plane. This
task may be difficult to accomplish within the framework of
achieving the desired time savings to initiate recovery as fast as
possible.

For the complex flying task no information was given
concerning the timing of the peak of the event related evoked
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response to the onset of the perturbation used during training.
Rather, the 120 ms window of the BCI-decoder progressed
through the data in 8 ms steps until it identified an occurrence
of a perturbation. The initial time window for the perturbation
present trials started at the onset of the perturbation (the onset
of the perturbation absent trials was randomly determined).
However, there is no implicit information in this starting time
that would reference the time of the evoked response upon which
the BCI-decoder was trained. The presence of false alarms for
the perturbation absent trials may be problematic for application
of neuroadaptive automation working in a continuous manner
given that the occurrence of true perturbations is quite sparse.
As was discussed above, one way to reduce the number of false
alarms made by the BCI-decoder is to only attempt to decode
motor intention at points in which a perturbation is detected by
flight instruments and then the appropriate recovery maneuver is
applied by the neuroadaptive automation. One could implement
a system that automatically recovers from a perturbation without
regards to the pilot’s intention (“Automation”). However, this is
not the intention of the neuroadaptive automation proposed here
for which the goal is to always keep the pilot intentions in control
of the aircraft.

Previous research conducted on detection of driver braking
intention, using EEG (Haufe et al., 2011, 2014; Kim et al., 2015),
is relevant to the discussion of our results. In their studies as well
as in ours simple amplitude based features related to the onset of
the visual event were used for decoding the onset of movement
intention. The visual event signaling the onset to move in the
Haufe et al. (2011, 2014) and Kim et al. (2015) studies was the
flashing of the brake light on the car just in front of the one the
participant was driving. In our study the visual event signaling
the onset to move was the changes in the optic flow field and
the change in the position of the horizon (sky relative to ground)
(See Figure 2). The finding that the best participant’s decoding
model generalizes to the remaining six subjects on detecting
perturbation on the complex flying task with significant, although
reduced, time savings (See Tables 6, 8), does suggest that the
features selected by the model are not individual specific but
are to some degree common across participants. As it stands
now at least one session of the simple flying task is necessary
to extract the task related independent component that help in
artifact extraction. However, the finding that the BCI-decoder
generalizes across participants (See Tables 6, 8) is promising in
future attempts to make a generic system that does not require
training.

There are three important aspects that distinguish our study
from that of previous studies investigating braking intention.

The first is that our test condition was on a novel task that
was fairly different from the one the BCI-decoder was trained
on rather than just using a subset of trials on the same task
for testing as is commonly done in decoding studies (Garrett
et al., 2003; Wilson and Russell, 2007; Haufe et al., 2011, 2014;
Baldwin and Penaranda, 2012; Callan et al., 2015; Kim et al.,
2015). Our study demonstrates that a BCI-decoder trained on a
simple task can generalize to amore complex one characteristic of
real world conditions with significant performance in identifying
perturbation events (mean bacc= 73%, p< 0.05; mean d′ = 1.52;

mean a′ = 0.84; Table 5) with a significant time savings of 72 ms
(Table 7).

The second is that the testing session (complex piloting task)
requires that the participant use the same control stick to recover
from the perturbation as used to maneuver the plane tracking
above the river. Under these conditions it is necessary for the
BCI-decoder to be able to distinguish brain activity related
to the perturbation and the intention to move from ongoing
changes in the visual field and motor intention required to
pilot the plane. This is substantially different from decoding
of movement intention of the foot from the accelerator to
the brake in response to a flashing light. In order to extract
neural activity related to movement intention in response to a
perturbation, rather than that just related to the visual event, the
BCI-decoder was trained to distinguish between trials in which
the participant was to pull back on the control stick in response to
a perturbation vs. just passively viewing the perturbation. All but
one of the subjects showed significant classification performance
in identifying movement intention trials from passive viewing
trials on the test session (mean bacc = 69.8%, p < 0.05; mean
d′ = 1.30; mean a′ = 0.80; See Table 4). The ability of the
BCI-decoder to be able to identify cases of motor intention in
response to identical visual events likely contributes to its ability
to distinguish between variations in brain activity in response
to changes in the optic flow pattern and movement intention
in response to a perturbation rather than changes in the optic
flow pattern induced by piloting while maneuvering through the
Grand Canyon.

The third is the difference in response time for emergency
braking, that is approximately 650 ms (Haufe et al., 2011, 2014;
Kim et al., 2015), compared to pulling back on the stick to recover
from a perturbation, which took approximately 437 ms for the
complex flying task and 369 ms for the simple flying task. One
reason why the time savings in the braking studies [up to 222 ms
using combined EEG and EMG (Haufe et al., 2014)] is larger than
in our study (72 ms) may be attributed to the longer response
time for emergency braking (over 200 ms longer). The mean
peak of the event related potentials used as the target range to
train the BCI-decoders in our study was 246 ms (See Figure 3B).
Because of the relatively fast response times the slower event
related potentials could not be used for decoding because they
occur after the behavioral response has already been given. The
mean response time for the complex flying task for the adaptive
automation is 352.7 ms compared to the original of 425.0 ms.
The mean time in which decoding performance reached an area
under the curve (A′) value of 0.8 was also around 350 ms in the
emergency braking studies (Haufe et al., 2011, 2014; Kim et al.,
2015). It should be mentioned that the improvement in response
time afforded by the adaptive automation in our study for some
of the participants allowed them to have almost superhuman
performance on this piloting task.

Given that the perturbation we employed abruptly alters
the optic flow field we predict that visual motion processing
areas as well as brain regions involved with motor intention
(premotor cortex, motor cortex, somatosensory cortex, parietal
cortex) are involved in decoding the decision for rapidmovement
in response to an impending hazard. While there is considerable
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variability in the extent and location of brain activity of the
selected independent component used for the BCI-decoder
for each participant there are regions that are commonly
activated across the participants (See Figures 3, 4 and Tables 2,
3). Consistent with our predictions all subjects showed some
degree of activity in visual motion processing areas (hOC5,
MT, IOG), as well as the premotor cortex, pre-central gyrus
(motor cortex), post-central gyrus (somatosensory cortex), and
parietal cortex (superior parietal lobule) (See Figures 3, 4 and
Tables 2, 3). The visual cortex (BA17,18) also showed some
degree of activity from all subjects (See Figures 3, 4 and
Tables 2, 3). Our findings are consistent with fMRI research
investigating action intentions from preparatory brain activity
(Gallivan et al., 2011). In the Gallivan et al. (2011) study,
decoded activity from voxels in multiple parietal, premotor, and
motor regions was found to successfully predict intended future
grasp and reachmovements. A study using electrocortiocography
(ECoG) revealed that in addition to motor and premotor activity
somatosensory activity also precedes voluntary movement (Sun
et al., 2015). The finding of predominantly caudal rather
than rostral dorsal premotor cortex activation found for most
participants in our study (See Figures 3, 4 and Tables 2,
3) is interesting as it relates to studies showing that that
action intention is processed more caudally and attention is
processed more rostrally in the premotor cortex (Boussaoud,
2001).

A potential limitation of our study is the low number of
participants. However, the primary aim of our study is to show
the feasibility of the proposed approach for the development
of neuroadaptive automation and to determine limitations that
need to be addressed in future research. In our study the
results from each individual participant are given. Even when
individually tailored models were trained specifically on data
from that participant there is some degree of variability in
performance at predicting presence/absence of a perturbation
(ranging from 63.7 to 85.6%, See Table 5), and the corresponding
time savings (ranging from 36.1 to 138.9 ms, See Table 7), as
well as the pattern of brain activation (See Figures 3, 4 and
Tables 2, 3). In the future, it may be interesting to investigate
why some participants have better predictive models than others.
These results strongly suggest that best performance will be
achieved by individually tailored systems rather than using a
generalized system that works across individuals. The drawback
of individually tailored systems is the time necessary to train
the system including ICA and the BCI-decoder. While this
study does demonstrate that it is potentially possible to enhance
response time by using an off-line BCI-decoder in these select
participants it will be necessary to test a larger sample to see how
well they generalize to the population in general and to determine
factors predicting model efficacy.

Given that themean time savings is 72ms in the simulated off-
line open loop neuroadaptive automation system demonstrated
here, it is important to discuss whether the processing time
would be of sufficient speed to be used in a real-time closed loop
neuroadaptive automation system (see Figure 1). The Yokogawa
400 channel MEG system at ATR is set up with a real-time
processing system. The hardware and software for acquiring

MEG channel data in real time and analog to digital conversion
includes the following: National Instruments A/D Converter
boards (6 Boards: 80 channels per board) can convert 400 MEG
channels plus additional channels (EEG, EOG, triggers, etc.)
sampled at 1000 Hz. To get high temporal precision that is stable
the National Instruments real-time operating system “Pharlab”
is used on a dedicated computer. Pharlab carries out filtering
operations on 400 channel MEG and sends the analog to digital
converted MEG channel data via UDP to a different computer
for further processing in ∼1.5 ms. The application of the ICA
weight matrix of the selected independent component to the
400 channel MEG data as well as the weight matrix of the BCI-
decoder over the computed activation waveform is <0.1 ms.
The ICA and BCI-decoder can operate in such a short time
because the weights have been trained ahead of time based on
data from previous sessions. Therefore, the data acquisition,
preprocessing, and BCI-decoding can all be accomplished in
<2 ms in the real-time system. The X-Plane flight simulator is
running at around 400 Hz. It takes ∼2.5–5 ms for the flight
simulator computer to receive the command from the BCI-
decoder computer over UDP and initiate the directed command.
Based on the specifications of the system at ATR the loss in
time savings afforded by the simulated neuroadpative automation
resulting from processing time would be ∼4.5–7 ms. This would
still leave a mean time savings afforded by the neuroadaptive
automation ranging from 65 to 67.5 ms, which could be of
substantial benefit in hazardous time critical situations. Most
of the delay (resulting in reduction of time savings) is in the
processing speed of the flight simulator, which theoretically could
be improved if using dedicated hardware and software in a real
aircraft.

While this system is specific to the MEG setup at ATR it is
possible to make such a dedicated real-time system that will work
with EEG that can be used in real-world settings. In order for
the system to be feasible in real aircraft it will be necessary to use
a more portable technology such as EEG. The signal processing
techniques used in this study together with automatic subspace
reconstruction have been shown to be able to separate artifacts
from brain related activity in flight even in an open cockpit
biplane (Callan et al., 2015). It is uncertain whether moving
from 400 channels to 64 or 20 channels with an EEG setup will
have a large effect on system performance. Source localization
would likely be considerably worse in the case of EEG especially
with 20 channels compared with that of MEG. The number of
channels will also play an important part in the ICA in the
number of brain and artifact components that can be separated.
In future research we will test an EEG based closed-loop version
of this neuroadaptive automation system on a motion platform
based flight simulator to determine its feasibility and additional
processing that may be necessary if it were to be realized in actual
manned or unmanned aircraft.

CONCLUSION

Our study explores the potential that neuroadaptive automation
may have in facilitating human performance. Our goal is to
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develop a system that enhances performance to super human
levels during normal hands on operation of an airplane (vehicle)
by reducing the response time by directly extracting from the
brain the movement intention in response to a hazardous
event. This approach differs considerably from those that
utilize BCI to maneuver a vehicle by hands-off control by
such methods as decoded mental imagery or attention related
steady state visual evoked potentials (Blankertz et al., 2010;
LaFleur et al., 2013). These applications of BCI, although
impressive, are severely limited in performance compared to
normal hands on control with the addition of greater workload
as well as divided attention away from the task at hand (It
should be noted however, that these types of BCI are of
extreme benefit when the normal channels of motor control
are impaired). Advantages of the neuroadaptive automation
BCI implementation proposed here, afforded by the use of
only brain activity naturally occurring during the perceptual
motor task, include improved performance with no additional
workload or attentional demands for the pilot (operator), as
well as no training by the pilot to fit the BCI. However, it
should be noted that human training protocols for utilizing
BCI are likely to improve performance (Lotte et al., 2013). Our
proposed BCI-decoder works continuously over time without
any a-priori knowledge of when a perturbation may occur.
In addition it was shown to be able to generalize to more
complex tasks and differentiate between motor intention to
an unexpected perturbation from that used during normal
maneuvering. Future research needs to test the proposed
neuroadaptive automation online using EEG in motion based
flight simulators as well as in real airplanes to evaluate its real-
world performance. It is interesting to conjecture whether the
participants will notice when the neuroadpative automation is
active or will they just think they are responding really fast.
This research adds to the growing field of neuroergonomics
and specifically to aviation cerebral experimental sciences. Our
results, using an off-line BCI-decoder, suggest that indeed
neuroadaptive automation can be implemented that is faster than

the hand. The data can be shared with interested scientists upon
request.
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