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We present a non-parametric approach to prediction of the n-back n ∈ {1, 2} task as

a proxy measure of mental workload using Near Infrared Spectroscopy (NIRS) data. In

particular, we focus on measuring the mental workload through hemodynamic responses

in the brain induced by these tasks, thereby realizing the potential that they can offer for

their detection in real world scenarios (e.g., difficulty of a conversation). Our approach

takes advantage of intrinsic linearity that is inherent in the components of the NIRS time

series to adopt a one-step regression strategy. We demonstrate the correctness of our

approach through its mathematical analysis. Furthermore, we study the performance

of our model in an inter-subject setting in contrast with state-of-the-art techniques in

the literature to show a significant improvement on prediction of these tasks (82.50 and

86.40% for female and male participants, respectively). Moreover, our empirical analysis

suggest a gender difference effect on the performance of the classifiers (with male data

exhibiting a higher non-linearity) along with the left-lateralized activation in both genders

with higher specificity in females.

Keywords: linear regression, curvilinear regression, working memory, near-infrared spectroscopy, mental

workload prediction

1. INTRODUCTION

The advent of intelligent systems, capable of communicating with human (Yamazaki et al.,
2007), introduces a tremendous opportunity to further explore some of most fundamental
aspects of human society, thereby fathoming the intricacies exhibited in human behaviors
pragmatically (Ogawa et al., 2011). Such systems have been increasingly proven to be of formidable
potentials in investigation of foundational societal building blocks such as epigenetics (Prince
and Gogate, 2007) and early child development (Lungarella et al., 2003; Tanaka et al., 2007).
In this regard, communication is undoubtedly the foundation of sociability (Yamazaki et al.,
2014). Research shows that a proper communication has direct and positive influence on
physical (Sumioka et al., 2013) and mental (Yamazaki et al., 2016) health as well as quality of
learning (Nakanishi et al., 2016).

Although it is crucial for these synthetic agents to be able to provide appropriate feedback
on estimation of the brain activity of whose their operators are communicating with (Kumaran
et al., 2016b), it is rather intractable to realize the internal state of cognitive activity of humans
at highly sophisticated and complex behavioral level. Therefore, it is necessary to devise agents
with mathematical models that are trained on basic cognitive activities, thereby providing them
with adequate means to detect and/or measure such activities during interaction with human.
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Furthermore, it is of utmost important for these models to have
the capacity for generalization and scalability on their available
data, thereby reducing the time and effort that is, otherwise,
required to interact with different individuals.

To this end, Near Infrared Spectroscopy (NIRS) presents
an intriguing option for enabling these systems to act as
timely and accurate analytical gateways into brain activity and
emotional state of their human subjects. Cui et al. (2010b)
define NIRS as a technology for functional brain imaging
based on hemodynamic signals from the cortex. NIRS, in
principle, is similar to functional magnetic resonance imaging
(fMRI) (Cui et al., 2010a) without requiring the human subject
laying motionless in the confined fMRI monitoring chamber. Its
use for monitoring of brain activity becomes more attractive,
considering the non-invasive operational setup of NIRS-related
devices that are available at considerably lower cost along with
their ease of use with portable, light-weighted headsets and their
comparatively immunity to body movement (Dieler et al., 2012),
unrestrictiveness, accessibility, as well as compact experimental
setting (Moriai-Izawaa et al., 2012).

1.1. An Overview of NIRS-Based Brain
Activity Prediction
There exists a rich body of research pertaining to NIRS-based
brain activity and emotional state classification. Naito et al.
(2007) present communication means for patients struggling
with amyotrophic lateral sclerosis (ALS) using quadratic
discriminant analysis (QDA). Their model utilizes maximum
amplitude and phase change as features to achieve an average
accuracy of 80% on binary “yes/no” answers of forty male and
female patients. Tai and Chau (2009) compares the performance
of linear discriminant analysis (LDA) and support vector
machine (SVM) on NIRS signals associated with the single-trail
classification of the positively and negatively induced emotional
tasks at individual level. Their results suggest that classification
accuracy of these models vary with the length of the input
signals. Luu and Chau (2009) apply linear discriminant analysis
(LDA) on mean signal amplitude of NIRS data of nine human
subjects to achieve an average accuracy of 80% on evaluating the
choice of drinks among two available options in a single-trial
scenario. Cui et al. (2010c) apply linear SVM on NIRS-related
finger tapping task performed by six participants. Furthermore,
they present an insightful investigation of the effect of the
different feature spaces on classification accuracy. Their results
suggest that features that provide the best classification for one
dataset may not be optimal for all NIRS data, thereby suggesting
their further optimization for individual participants. Holper and
Wolf (2011) apply Fisher’s linear discriminant analysis (FLDA)
on motor imagery tasks of simple and sequential finger-tapping
to report an average classification accuracy of 81.0% that is
computed based on the classification performance of FLDA on
NIRS data of the participants at the individual level. Hu et al.
(2012) utilize contrast-to-noise ratio (CNR) as feature to decode
deception on eight male subjects. They report classification
accuracies of 83.44 and 81.14% using RBF and linear support
vector machines (SVM), respectively. Furthermore, the accuracy

of their model increases to 87.5% when applying their approach
on an inter-subject setting (seven out of eight subjects). Naseer
and Hong (2013a) use LDA on mean and slope of NIRS data
as features to perform a left- and right-motor imagery by ten
participants. Their approach achieves 73.35 and 83.0% accuracies
on right- and left-wrist imagery tasks, respectively. Furthermore,
they report an improvement in accuracy of their model by
focusing on 2–7 s out of entire 10 s trials while extracting features,
achieving average accuracies of 77.56 and 87.28% for right and
left wrists, respectively. Herff et al. (2013a) apply LDA for binary
discrimination between relax state and three different tasks (i.e.,
mental arithmetic, mental rotation, and word generation). They
obtain 71% accuracy on mental arithmetic, 62% accuracy on
mental rotation task, and 70% accuracy on word generation
with respect to relax state on ten subjects. Nguyen et al. (2013)
compare the performance of SVM in contrast with one-hidden-
layer artificial neural network (ANN) for two hands tapping
tasks performed by three human subjects. They use polynomial
regression coefficients as features to report best average accuracy
of 82.5% on right and left hands tapping of these subjects,
using SVM. Furthermore, they obtain 85% on right and 75%
on left hands tapping, using ANN. Herff et al. (2014) use fNIRS
data along with LDA to classify between n-back (n ∈ {1, 2, 3})
and resting state to achieve up to 78% accuracy for single-trail
discrimination. Naseer et al. (2014) compare the performance
of LDA and SVM on online binary classification of mental
yes/no answers (i.e., performing mental arithmetic vs. relax state
in response to given questions) to report average classification
accuracies of 74.28 and 82.14%, given the performance of these
classifiers at the individual level. Xu et al. (2014) adopt χ2 statistic
for feature extraction through discretization of NIRS data and
apply linear SVM to achieve classification accuracy of 69–81% on
right hand clench force motor imagery and clench speed motor
imagery on six subjects. This article presents a useful literature
review on the topic as well. Naseer and Hong (2015a) apply
multi-class LDA for classification of the motor imagery based
responses to four-choice questions (e.g., left-hand motor imagery
to indicate option A) to report an accuracy of 73.3%, averaged
on performance of their classifier at the individual level. Hong
et al. (2015) use mean and slope of NIRS signal and multi-
class LDA to classify between mental arithmetic, left hand motor
imagery, and right hand motor imagery. They report an average
accuracy of 75.6% on ten participants. Naseer et al. (2016) study
the choice of optimal feature selection for binary classification
of mental arithmetic and relax states, using LDA. Their results
indicate that combination of the mean and the peak values of
the signals associated with the individuals result in a significant
improvement of the accuracy of their classifier. Naseer and Hong
(2015b) present a comprehensive review of this topic.

1.2. Motivation and Contributions
Despite impressive and promising results on classification
of different brain activities using NIRS and fNIRS time
series, all aforementioned approaches unanimously focus on
improvement of the performance of different classification
approaches at the individual (i.e., intra-subject) level, reporting
their results that are averaged on the performance of these
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classifiers on single-participant basis. The major drawback
of such an evaluation paradigm is the strong dependency of
the accuracy of the adapted model on the performance of
the individuals, thereby exhibiting high variation/bias. More
specifically, there is a paucity of research on modeling and study
of classification approaches that aim for generalization and
scalability. Our approach addresses this issue via training
on combined data of all participants (i.e., inter-subject
level), thereby narrowing the gap between intra- and inter-
subject brain activity prediction. It is apparent that such
an approach facilitates the deployment and integration
of these models in real-time systems since their learning
mechanism is independent of the individual that they interact
with.

Kamran and Hong (2014) argue that the NIRS time
series data is a linear combination of various components,
ranging from dynamical characteristics of the oxy-(HbO)
and deoxy-hemoglobin (HbR) changes in a specific brain
region and the influence from previous stimuli, to the
physiological signals that prevail such time series data, and
the baseline effect. This claim is further supported by Cui
et al. (2010c) whose comparative analysis suggest that the
slope (i.e., a linear correlate) of the NIRS data forms an
important and highly informative feature in comparison to
various feature spaces. These results explain the emergence
of linear classifiers as dominant approaches to brain
activity detection based on NIRS time series as presented
in Section 1.1.

We take this observations and results into consideration while
formulating our novel approach to brain activity prediction.
In cognitive psychology, cognitive load refers to the total
amount of mental effort utilized by the working memory
while conducting a mental activity (Sweller, 1988). As such,
the mental workload classification refers to the ability to
distinguish between various level of brain activity that are
pertinent to the same family of working memory through
mathematical modeling of their corresponding time series data.
In particular, we address the prediction of n-back task (Kirchner,
1958) as a proxy measure of mental workload. The n-back
task is a continuous performance assessment, frequently used
in cognitive neuroscience, to measure the working memory
capacity (Gazzaniga et al., 2014). In this setting, the human
participant is presented with a sequence of stimuli and the task
consists of indicating when the current stimulus matches the
one from n steps earlier in the sequence. The simple operational
principles of such tasks provide opportunity to model changes
in mental workload of human subjects through analysis of the
effect of their level of difficulty on NIRS-related patterns of brain
activity. Our study and its subsequent results focus on training a
model on labeled data of human participants performing 1- and
2-back tasks, thereby distinguishing between these tasks during
their prediction to infer the level of task difficulty based on its
effect on mental workload. Our contributions are as follows:

1. We introduce a novel non-parametric approach to NIRS-
based brain activity prediction that specifically exploits the
intrinsic linearity exhibited by NIRS time series. Moreover,

we demonstrate its correctness and convergence through
analysis of its mathematical formulation. Our empirical results
suggest that our model significantly improves upon prediction
accuracy of n-back task as a proxy measure of mental
workload using NIRS time series.

2. We introduce the potential that the utilization of differential
entropy (DE) as a feature can offer to the solution concept of
NIRS-based mental workload classification. Our experimental
results suggest that DE empower a certain class of classifiers
to achieve a higher prediction accuracy, compared to other
commonly employed feature spaces. To the best of our
knowledge, this is the first time that the utilization of DE in
contrast with other NIRS-related feature spaces is reported in
the literature. Moreover, these results are based on combined
data of all participants (i.e., inter-subject level) and therefore
the learned model is independent of data associated with any
individual included in our experiment.

3. We provide empirical evidence on effect of the gender
differences on mental workload prediction accuracy during
n-back task through a comprehensive analysis of the results
obtained by our model as well as a broad range of classifiers
that are dominantly applied to NIRS-based prediction
problem. This observation is in accord with the results in the
literature on gender-specific brain activities (Weiss et al., 2003;
Haut and Barch, 2006; Li et al., 2010).

The remainder of this article is organized as follows.We elaborate
on formulation of our approach in Section 2. Section 3 provides
details on data acquisition and experimental setup along with
the data preprocessing and feature extraction steps. Results and
comparative study of our model in contrast with state-of-the-art
techniques in NIRS literature are presented in Section 4. Section 6
presents conclusion and some insight on the future direction of
this research.

2. METHDOLOGY

Without loss of generality, letT1 andT2 represent two task spaces
with the labels of their members being zero and one, respectively.

Moreover, let Ep(Tj), j = 1, 2 be a feature vector in jth task space.
Given the labels associated with these task spaces, we calculate
their expected ratio of dissimilarity as:

r =
E[‖Ep(T1)

i ‖]

E[‖Ep(T2)
j ‖]

, ∀Epi ∈ T1,∀Epj ∈ T2 (1)

where E[.] returns the expected value of its argument (in this case,
the mean of the array of Euclidean distances of feature vectors of
respective task spaces) and ‖.‖ gives the norm of its input vector
i.e., the norm of feature vector Epi, i = 1, . . .N ∈ R

n, (n ≥ 1) of
the jth task space, with N representing the task space cardinality.
We use this ratio to broaden the dissimilarity between T1 and T2:

Epi =

{

r × Epi Epi ∈ T1

max(τ , 1.0− r)× Epi, otherwise
(2)
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with τ being a threshold to reduce the squashing effect of second
term in max function. It is worth noting that the effect of such a
scaling of the original distribution of the elements of task spaces
resembles approaches that seek for discriminative subspaces
where the variance for one class is maximized while minimizing
the variation in the second class (Fukunaga and Koontz, 1970;
Kang and Choi, 2012). However, it differs from these approaches
in that it captures a crude dissimilarity representation of these
task spaces, thereby avoiding rather more computationally
involved steps to define such dissimilarity. Although, r acts as
an scaling factor between the two task spaces to refine their
boundary via manipulation of their relative spatial distributions
with respect to one another given their intrinsic dissimilarities
and without modification of their inherent distribution (please
refer to the Remark below), we use τ = 0.5 in present
implementation to limit the effect of r if E[T2]≫ E[T1].

Remark 1. Application of the expected ratio of dissimilarity r on
between-task individual data elements preserves the originality of
data. This is evident through the observations that:

1. r = 0: This scenario implies that at least one of the task
spaces is an empty set, thereby indicating that no distinction is
necessary.

2. r = 1: This occurs if and only if T1 and T2 represent the same
data, a contradiction to existence of two task spaces.

3. r ∈ R & r 6= 0 & r 6= 1: Equation (2) implies an affine
transformation on all members of the same task space to
uniformly scale these members as f = {Ti → T

′
i | Ep =

α × Ep + β}, ∀Ep ∈ Ti, i = 1, 2 with β = 0 and α = r or
α = max(τ , 1.0 − r), given the task space. Moreover, r has an
intrinsic property to scale the different task spaces in opposing
directions as it is evident in Equation (2). Additionally, such an
scaling factor follows the same direction for members of the
same class, preserving their overall within-class distribution.

After scaling the data of the task spaces through the application of
their dissimilarity ratio in Equations (1) and (2), we compute the
respective geometric median (Lin, 1992; Fletcher et al., 2009) of
these task spaces with equally weighted data [i.e., wi = 1, ∀Epi ∈
Tj, j = 1, 2 in Definition 7.1, Appendix 7 (Supplementary
Material)]. The geometric median of a given task space is always
closest to the maximally formed cluster of a given task space than
its respective outliers, as shown in the following Proposition.

Proposition 2.1. Given a Task space T, its calculated geometric
median is closest to the cluster associated with its observations than
its outliers [please refer to Appendix 5 (Supplementary Material)
for the proof].

Lemma 2.2. Given a Task spaceT, the cumulative sum of distances
of ∀Epi\Ec ∈ T to the geometric median Ex ∈ Twith respect to outliers
∀Ec ∈ T is minimum [please refer to Appendix 5 (Supplementary
Material) for the proof].

2.1. Weight Matrix Computation and
Refinement of Decision Boundary
Let X represent the input feature matrix that corresponds to the
combined data of task spacesT1 andT2. Furthermore, let y be the

row vector associated with X whose ith row entry represent the
label of the ith feature vector in X. The weight vector that maps X
onto y using the normal equation is (Cormen et al., 2001):

W = (XTX)−1XTy (3)

Let Ex1 ∈ T1 and Ex2 ∈ T2 be the geometric medians of task spaces
T1 and T2, respectively. We compute the midpoint of these task
spaces as a mean of their corresponding geometric medians with
respect to their coordinates (i.e., their respective feature vectors):

Ex =
1

2
(χ

(j)

Ex1
+ χ

(j)

Ex2
), j = 1, . . . , |Exi|, i = 1, 2 (4)

with χ
(j)

Exi
being the jth coordinate (i.e., feature) of geometric

median of the ith task space, i.e., Exi ∈ Ti, i = 1, 2 and |.|
returns the cardinality of its argument. Given Ex and the weights
W in Equation (3), the new Sigmoidal boundary condition for
Ti, i = 1, 2 is:

β =
1

1+ e−(W
TEx)

(5)

i.e., new boundary condition, β , is obtained through application
of Sigmoid activation function on inner product of weight vector
W and midpoint Ex. We utilize β to predict the labels of new
data as:

yi =

{

1 1

1+e−(W
T Ep)
≥ β

0 otherwise
(6)

with Ep being the new feature vector associated with the recently
generated input NIRS data.

Claim 2.3. The midpoint of the geometric medians of the two task
spaces T1 and T2, defines the most linearly optimal boundary
between them [please refer to Appendix 5 (Supplementary
Material) for the proof].

3. PRELIMINARIES

3.1. Data Acquisition and Experimental
Setup
Twenty-eight healthy right-handed volunteers (11 male and
17 female, M = 30.96 years, SD = 10.84) participated in
the experiment. Prior to data collection, we received approval
from the ethical committee at Advanced Telecommunications
Research Institute International (Approval Code: 16-601-1),
along with the informed consent from all participants. The data is
acquired with a wearable optical topography system “HOT-1000,”
developed by Hitachi High-Technologies Corporation (please
refer to Figure 1). It is wore on the forehead of participants
and collects data through four channels (i.e., Left1, Left3, Right1,
and Right3, as shown in Figure 1). Furthermore, it allows
for recording of the measurement of brain activity through
detection of total blood flow via emitting a wavelength laser
light (810 nm) at the 10 Hz sampling rate. The participants
were requested to sit in front of a screen where the on-
screen 1- and 2-back instructions (please refer to Section 1.2
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FIGURE 1 | The NIRS device used during the N-Back task (left) along with the schematic of the locations of the left and right channels associated with the data

collection procedure during the experiments (right). The numbered squares refer to the left and right channels of depth 1.0 and 3.0 cm that are considered in this

study, respectively.

for details) are presented. We use the FLANDERS (Nicholls
et al., 2013) handedness questionnaire to measure the skilled
hand preference of the participants. After a resting period of
1 min, they were instructed to focus on the voice, listening to
a sequence of numbers in two separate tasks, clicking on the
left mouse bottom if they recognize a repeated number meeting
the 1- or 2-back repetition in the first and the second tasks,
respectively.

3.2. Data Preprocessing
First, we normalize the data corresponding to the four NIRS
channels via subtracting the mean of the 1 min resting period as
a baseline from this data. Next, we apply a 5-degree polynomial
butter worth filter on each channel with 0.01 and 0.6 Hz for
low and high bandpass, respectively. This is followed by linear
detrending of the time series signals associated with each of these
four channels. Lastly, we apply a 2-degree polynomial non-linear
detrending.

It is customary in NIRS data preprocessing to apply
segmentation on the original data of participants, thereby
increasing the size of samples that are, in most cases, small.
However, we strongly believe that such segmentations degrade
the performance of any supervised classifier, preventing its true
accuracy to be estimated. Figure 2 shows the Euclidean norm
distribution of NIRS data associated with 1-back (red-colored
circles) and 2-back (circles in blue) tasks of seven randomly
selected female participants in our study. In this figure, there are
a number of participants whose data do not follow the general
trend, namely, having their 2-back Euclidean norms above those
associated with 1-back task. Although such misleading data are
customary in many applications, segmentation of such cases
introduces a rather redundant source of misclassification by
prediction models. In fact, the negative effect of segmentation
on estimation of true accuracy of any supervised classifier is
significant as shown below.

Theorem 3.1. Segmentation reduces the accuracy of any
supervised classifier by a factor that is exponential to the depth

of segmentation [please refer to Appendix 5 (Supplementary
Material) for the proof].

Corollary 3.1.1. Segmentation reduces the accuracy of any
supervised classifier by 1

2 × s(d−1) in worst case scenario [please
refer to Appendix 5 (Supplementary Material) for the proof].

3.3. Adopted Feature Spaces
Features can be directly extracted from raw NIRS data (Power
et al., 2010). Alternatively, they are extracted from data after
its transformation into hemoglobin concentration using Beer-
Lamberts law (Hong et al., 2015). Luu and Chau (2009) show
that effect of these two feature extraction strategies on prediction
accuracy is insignificant. Moreover, Power et al. (2010) argues
that the use of raw data for extracting features facilitates the
integration of models into real world setting due to its less
computational intensity. We adapt the same perspective for
feature extraction in this article.

We compute separate sets of identical features for each of the
four channels of our NIRS data. More specifically, we extract
mean and slope of the signal (i.e., SM and SS, respectively) (Hong
et al., 2015), contrast-to-noise-ratio (CNR) (Hu et al., 2012),
and the moving average (Luu and Chau, 2009). In addition,
we calculate the differential entropy (DE) of the data associated
with these channels [please refer to Appnedix 6 (Supplementary
Material)]. Although, DE is used as a feature in classification
of brain activity and emotional state estimation based on
electroencephalogram (EEG) data (Herff et al., 2013b; Shi et al.,
2013; Kumaran et al., 2016a), this is the first time, to the best of
our knowledge, that it is utilized for NIRS-based brain activity
prediction. While calculating features, we divide the stream of
NIRS data that correspond to each channel into four equal
length sub-streams. Next, we compute the respective features
for each of these sub-streams. This result in a four-dimensional
feature vector in case of CNR, and DE for every channel. It
is apparent that it is an eight-dimensional vector in case of
SM and SS.
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FIGURE 2 | Segmented (depth d = 1, as described in proofs 3.1 and 3.1.1) representation of the Euclidean norm distribution of NIRS data,

corresponding to 1-back (red-colored circles) and 2-back (circles in blue) tasks - Female participants only (seven out of seventeen randomly

selected). Cases that do not follow the general trend are indicated by dashed-line rectangles in this figure.

4. CASE STUDIES

4.1. Comparison Strategy
We compare the performance of our approach in contrast
with the prominent state-of-the-art techniques in NIRS-based
classification. An overview of the literature pertinent to NIRS-
based classification reveals that linear discriminant analysis
(LDA) (Herff et al., 2013a; Naseer and Hong, 2013b; Hong et al.,
2015), linear support vector machine (SVM) (Cui et al., 2010c;
Hu et al., 2012; Hai et al., 2013), and quadratic discriminant
analysis (QDA) (Naito et al., 2007) are dominant approaches
that are adopted by the research community in this field.
This is mainly due to the underlying linear trends of various
components (e.g., oxy-(HbO) and deoxy-hemoglobin (HbR)
changes in a specific brain region, etc.) that form the NIRS
data time series (Cui et al., 2010c; Kamran and Hong, 2014).
However, in addition to these methodologies, we include the
comparative analysis of our approach in contrast with logistic
regression (Freedman, 2009), RBF SVM (Chang et al., 2010),
k-nearest-neighbor (KNN) (Fix and Hodges, 1951), decision
tree (Breiman et al., 1984), random forest (Shi et al., 1995), and
Naive Bayes (Stuart and Norvig, 2003) algorithms to ensure a
thorough analysis of the performance of our model. We use
Python scikit-learn1 package for this purpose. It is worth noting
that the best setting of the parameters of these models are K = 3,
d = 3, n = 10, c = 1e5 for number of neighbors in KNN, depth
in decision tree, number of estimators in random forest, and
penalty term in logistic regression, respectively. Furthermore, the
penalty terms for linear and RBF SVM are c= 0.025 and c= 1.0,
respectively.

1http://scikit-learn.org/stable/

4.2. Results Collection
Algorithm 1 summarizes the procedure for acquiring the average
prediction accuracy of a given classifier during the experiment.
More specifically, we adopt a percentage-wise, N-Fold cross-
validation strategy, starting with assigning 90% of total number
of participants in random and without replacement (indicated by
split variable) for training and finishing with splitting the data
into half between train and test sets in a 5% countdown steps
(line 14) which results in nine times of splitting in total. While
assigning subjects for training and testing, we ensure that all
data corresponding to a given participant is entirely assigned to
one of these two sets, thereby preventing any potential similarity
and/or shared representation of the individual information
affecting/biasing the prediction accuracy of the classifiers. For
each of these splits, we perform the prediction by a given
classifier, C, and collect its estimate, for a total number of 20
rounds (i.e., lines 6 through 9). We follow these procedure for
every calculated feature (please refer to Section 3.3) and on every
four NIRS channels. Finally, we report the best average prediction
accuracy of the classifier, along with the type of feature and the
channel leading to this result.

It is worth noting that we include an additional step in
case of our model to compute the best number of polynomial
features to our model (i.e., line 9 in this algorithm). More
specifically, we add a brute-force step in Algorithm 1 to add a
polynomial feature to the input feature matrix X in Equation (3).
The degree of this polynomial features is selected from the
range [0, 12] with 0, indicating the original feature matrix X
and without addition of any polynomial feature. We can afford
this extra polynomial degree evaluation on our model due
to its overall low-cost computational complexity, as outlined
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in Appendix 8 (Supplementary Material). Considering this
procedure, there are 4(channels)×4(features)×9(random splits)×
20(repetition of random splits) = 2880 steps involved to
obtain the accuracy of each of the comparative classifiers. These
steps increase to 2880 × 12(polynomial feature selection) =
34, 560 in case of our approach [indicated as SNC i.e., Sigmoid-
Normal form Classifier due to the normal form regression in
Equation (3)].

4.3. Performance Results
This section provides details on performance results of our
proposed approach in comparison with the selected classification
strategies, outlined in Section 4.1. We present the average
prediction accuracy of these techniques that are acquired through
the steps described in Algorithm 1, along with the precision,

Algorithm 1: Percentage-wise, N-Fold Cross-Validation

Data: split = 0.9
; // 90% of participants

Data: N : total number of participants
Data: Rounds= 20
Data: C : Given classifier
Result: best feature F and channel Ch along with overall

accuracies, associated with C

1 if C== SNC then

2 degree= 12; ; // i.e., range of polynomial

degrees in our model

3 for every Channel Ch do
4 for every Feature space F calculated for Ch do
5 while split ≥ 0.5 do

; // upto 50% split between Train

and Test

6 estimates= [];
7 max = −1.0;
8 d = 0;
9 while d ≤ degree do
10 for Rounds do

; // these many times

11 Train← ⌊N × split⌋ randomly selected
participants;

12 Test← the remainder of participants;
13 if d 6= 0 then
14 Apply polynomial degree on Train and

Test

15 estimates.appaned(C(F));

16 d = d + 1;

17 if E[estimates] > max then
18 max = E[estimates];
19 Result = [F,Ch];
20 bestEstimates = estimates

21 splitRatio = splitRatio− 0.05;
; // 5% countdown

the recall, and the F1-score of these classifiers. In addition,
we outline the channel type and the type of feature, leading
to their best average performances, respectively. Furthermore,
we apply statistical analysis on these results to realize the
degree of statistical significance in their performance differences.
While conducting these comparative analyses, we consider three
different settings of data, thereby empirically investigating the
effect of gender difference on verbal working memory task (Li
et al., 2010). More specifically, we consider the data associated
with female only, data associated with male only, and the
combined data of male and female participants.

4.3.1. Female Participants

Table 1 shows the average performance accuracy of different
classifiers on the NIRS data pertinent to the female participants
in our 1- and 2-back workload prediction. It is worth noting that
we assign the positive label to 2-back tasks during the predictions.
Furthermore, we use the “precision_score,” the “recall_score,”
and the “f1_score” from scikit-learn to compute the precision,
recall, and F1-score of these classifiers. Entries “Feature” and
“Channel” refer to the NIRS data channel and type of the feature
that are preferred by each model, respectively. Furthermore,
“Deg.” shows the number of polynomial degree features that
are selected by our model. This entry is hyphenated for other
classifiers as it is not applied to their settings. In addition, we
abbreviate our approach as SNC which stands for Sigmoid-
Normal form Classifier where the termNormal form refers to the
normal form regression in Equation (3) (Cormen et al., 2001).

It is interesting to observe that differential entropy (i.e., DE
entries in Feature column of this table) is the feature that is
predominantly selected by the classifiers. The only exceptions are
the linear SVM and naive Bayes classifiers that both choose the
moving average as their preferred choices of feature. However,
the overall poor performance of linear SVM as shown in Figure 3
suggests that it is not a good choice for prediction of such
mental tasks. As a result, its choice of feature as an indicative
of strength of moving average is not warranted. Moreover, Left1
is the channel of choice for majority of the classifiers. The only
exception to this observation is the RBF SVM. Furthermore,
the “Average Accuracy” entry of Table 1 indicate that, given the
procedure elaborated in Algorithm 1, the performance of our
model on average, using the NIRS data of female participants
outperforms all the other classifiers. More specifically, the
difference between these averages is above one standard deviation
(SD = 4.76). Moreover, this observation is supported by the
multiple comparison ANOVA using Bonferroni on the average
accuracies of all steps involved in Algorithm 1 (p < 0.00002, F
= 24.44, SD = 1.41)2. Figure 3 shows the distribution of these
average prediction accuracies that are exhibited by each model. It
is apparent in this figure that, all the classifiers achieve an above
75% accuracy on their overall averaged predictions. The only
exception is the linear SVM that performs significantly below this
trend. Moreover, this figure shows that naive Bayes and QDA
are the closest to our model (p < 0.00011, t = 97.0, SD = 1.43,
one-sample t-test).

2All statistical analyses reported in this article are based on MATLAB R2016a
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TABLE 1 | Female participants—average performance accuracy of our model in contrast with K-neatest-neighbor (KNN), Linear SVM, RBF SVM, Decision

Tree, Random Forest, Naive Bayes, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (Logistic reg).

Classifier Accuracy (%) Precision Recall F1-score Feature Channel Deg.

SNC 82.5 0.85 0.90 0.84 DE Left1 0

KNN 77.5 0.81 0.75 0.76 DE Left1 –

Linear SVM 65.0 0.61 0.66 0.60 Moving Avg Left1 –

RBF SVM 75.0 0.73 0.87 0.76 DE Right1 –

Decision tree 77.0 0.81 0.75 0.75 DE Left1 –

Random forest 74.29 0.83 0.59 0.67 DE Left1 –

Naive bayes 80.0 0.78 0.90 0.80 Moving Avg Left1 –

LDA 78.0 0.88 0.70 0.76 DE Left1 –

QDA 80.0 0.87 0.78 0.80 DE Left1 –

Logistic reg 77.5 0.8 0.86 0.80 DE Left1 –

SNC entry represent the results obtained by our model. DE and Moving Avg are the differential entropy and the moving average features.

FIGURE 3 | Female data—distribution of the overall averaged prediction accuracies of the classifiers. From left to right: our approach (SNC), KNN, linear

SVM, RBF SVM, naive Bayes, LDA, QDA, and logistic regression. It is apparent that the performance of the linear SVM is significantly poorer than other classifiers on

NIRS data associated with the female participants.

4.3.2. Male Participants

Table 2 corresponds to the average performance accuracy of
the classifiers on NIRS data pertinent to the male participants.
“SM and SS” refers to the signal mean and signal slope features
(please see Section 3.3). In this table, the first observation to
note is the non-uniformity on preferred type of feature by
different models. However, two out of three classifiers with
highest average prediction accuracies i.e., our approach (SNC)
and logistic regression prefer DE (the third one is naive Bayes
that chooses moving average as its preferred feature space). The
same observation hold valid in case of the channel selection
where the number of models with Left1 as their preferred choice

is comparably smaller than those in female case. However, it is
still the dominant trend (five out of ten with Left3 and Right3
being selected one and four times, respectively). Furthermore,
ourmodel prefers an increase in its polynomial features, adopting
a four degree polynomial for its input features, compared to
female case in Table 1.

Our model achieves a significantly higher result compared
to other classifiers, as it is evident in Table 2 and Figure 4.
Additionally, it improves upon its performance on female data
significantly (p < 0.014, t = 43.31, SD = 2.76, one-sample
t-test). Furthermore, it obtains higher precisions and recalls,
resulting in better F1-score than its average performance on

Frontiers in Human Neuroscience | www.frontiersin.org 8 February 2017 | Volume 11 | Article 15

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Keshmiri et al. Working Memory Cognitive Load Classification

TABLE 2 | Male participants—average performance accuracy of our model in contrast with K-neatest-neighbor (KNN), Linear SVM, RBF SVM, Decision

Tree, Random Forest, Naive Bayes, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression (Logistic reg).

Classifier Accuracy (%) Precision Recall F1-score Feature Channel Deg.

SNC 86.4 0.87 0.94 0.87 DE Left1 4

KNN 73.3 0.65 0.78 0.70 SM and SS Left3 –

Linear SVM 70.0 0.65 0.75 0.67 Moving Avg Left1 –

RBF SVM 76.0 0.80 0.74 0.75 Moving Avg Left1 –

Decision tree 77.5 0.84 0.67 0.71 SM and SS Right3 –

Random forest 77.50 0.83 0.67 0.71 SM and SS Right3 –

Naive bayes 80.0 0.78 0.90 0.80 Moving Avg Left1 –

LDA 78.33 0.81 0.81 0.79 Moving Avg Left1 –

QDA 75.0 0.78 0.72 0.71 DE Right3 –

Logistic reg 80.0 0.78 0.75 0.74 DE Right3 –

SNC entry represent the results obtained by our model. DE, SM, and SS, and Moving Avg are the differential entropy, the signal mean and slope, and the moving average features.

FIGURE 4 | Male data—distribution of the overall averaged prediction accuracies of the classifiers. From left to right: our approach (SNC), KNN, linear SVM,

RBF SVM, naive Bayes, LDA, QDA, and logistic regression. It is apparent that the performance of the linear SVM considerably poorer than other classifiers on NIRS

data associated with the female participants.

female data, as the comparison of these entries in Tables 1, 2

suggests. Moreover, Figure 4 shows the significant improvement
on overall averaged prediction accuracy that is achieved by our
model in comparison with other classifiers which is supported by
multiple comparison ANOVAwith Bonferroni (p< 0.00004, F =
19.41, SD= 1.41).

4.3.3. Combined Data of Female and Male

Participants

Table 3 presents the results obtained by these algorithms on
combined data of male and female participants. Although our
model is significantly improving upon prediction accuracies in
comparison with other classifiers (p < 0.000009, F = 26.14,

SD = 5.11, one-way ANOVA with “bonferroni”), it is apparent
that combined data of different genders has a negative effect on
average performance of all these algorithms. More specifically,
the average accuracy of these algorithms is significantly worsened
once the data of male and female participants are combined
(MEAN = 13.0, SD = 4.77 and MEAN = 13.79, SD = 3.29 with
respect to female only and male only data). Our proposed model
shows an 11.07% decay in its average accuracy. This is followed
by a significant increase in its choice of polynomial degree, from
0 and 4 in female and male only cases, respectively, to 9 in case
of combined data. It is worth noting that such an increase in
preferred polynomial feature degree (MEAN = 4.33, SD = 4.51)
indicates a significant increase in non-linearity exhibited by the

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2017 | Volume 11 | Article 15

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Keshmiri et al. Working Memory Cognitive Load Classification

TABLE 3 | Female and male participants—average performance accuracy of our model in contrast with K-neatest-neighbor (KNN), Linear SVM, RBF

SVM, Decision Tree, Random Forest, Naive Bayes, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Regression

(Logistic reg).

Classifier Accuracy (%) Precision Recall F1-score Feature Channel Deg.

SNC 75.33 0.75 0.81 0.76 DE Left1 9

KNN 65.46 0.69 0.67 0.66 Moving Avg Left1 –

Linear SVM 58.33 0.61 0.73 0.64 Moving Avg Left3 –

RBF SVM 64.26 0.60 0.79 0.67 DE Left3 –

Decision tree 63.75 0.74 0.47 0.53 SM and SS Right3 –

Random forest 61.67 0.76 0.63 0.62 Moving Avg Left1 –

Naive bayes 60.63 0.59 0.62 0.60 Moving Avg Left1 –

LDA 65.00 0.67 0.71 0.67 CNR Left1 –

QDA 57.08 0.57 0.52 0.53 DE Left3 –

Logistic reg 66.67 0.68 0.80 0.72 Moving Avg Left1 –

SNC entry represent the results obtained by our model. DE, SM and SS, and Moving Avg are the differential entropy, the signal mean and slope, and the moving average features.

combined data of different genders. However, it continues with
Left1 and DE as its best choice of channel and the selected feature
as in previous data settings. The degradation of the average
accuracy is evident in second and third best performing classifiers
in case of male only data (i.e., Naive Bayes 19.37% and logistic
regression 13.33%) and female only (i.e., Naive Bayes 19.37% and
LDA 13.00%).

Although the Left1 remains the dominant channel of choice
while using the combined data in Table 3, Moving Average
replaces DE as dominantly utilized feature by these models. We
observe this shift in choice of feature from DE toMoving Average
while comparing the feature entries in Tables 1, 2 as well. This
suggests that the increase in non-linearity as well as change in
adopted feature space in case of combined data is mainly due
to the data associated with the male participants. Moreover,
results of one-sample t-test on these accuracies indicate that
such degradations on average accuracy of these models are
significant (p < 0.00001, T = −8.66, SD = 4.76 with respect to
female only and p < 0.0000007, T = −13.25, SD = 3.29 with
regards to male only). This suggests that the gender difference
introduces a significant impact on NIRS related brain activity
while performing 1- and 2-back tasks.

5. DISCUSSION

Table 1 indicates that our model (i.e., SNC), naive Bayes, and
QDA achieve best accuracies on female participants, with SNC
obtaining a significant improvement over the results of other two
models. Moreover, the precision and recall entries of this table
suggest that both SNC and naive Bayes have a better accuracy
on predicting the 1-back as opposed to 2-back tasks. This is
evident in their higher recall entries in this table, compared
to their precision. However, this is reversed in case of QDA
where it achieves a better prediction on 2-back task. In addition,
result of one-sample t-test suggests that their performance
differences on predicting these tasks are significant (p < 0.0012,
t = 30.54 in case of precision and p < 0.0023, t = 21.50
for recall). Furthermore, the same trend is observed in case

of male participants in Table 2, where SNC, naive Bayes, and
logistic regression form the high performing classifiers, with
SNC and naive Bayes having higher accuracy on 1-back tasks
(i.e., higher recall) as opposed to logistic regression that obtains
higher precision (p < 0.0015, t = 27.0 in case of precision
and p < 0.0046, t = 14.92 for recall). This is a complementary
result to Cui et al. (2010c), whose observation indicate that
features that provide the best prediction for one data set may
not be optimal for all NIRS datasets. More specifically, our result
suggests that real time systems can benefit from ensemble models
with classifiers that are primarily trained for and predominantly
better in predicting a subclass of overall task spaces, resulting
in significant improvement of performance on estimation of the
brain activity of human subjects by the systems that they are
deployed in. In addition, Tables 1, 2 suggest a gender difference
effect on the performance of the classifiers, withmale participants
exhibiting a higher non-linearity in their NIRS data brain activity.
This is evident in increase in number of polynomial features
that are adopted by our model as we compare the “Deg.” entries
of these tables. Moreover, we observe a decay in accuracies of
all models on combined data of different genders in Table 3.
These observations are in accordance with the analytical study of
prefrontal cortex during a verbal working memory task (Li et al.,
2010). In addition, the result of the literature on brain region
activation during memory and language processing suggest a
left-lateralized activation in both genders with higher specificity
in females (Weiss et al., 2003; Haut and Barch, 2006; Li et al.,
2010). Our empirical results is in accordance with the literature
as indicated by predominant choice of Left1 NIRS channel by
classifiers in Tables 1–3, with a higher preference on this channel
while using female data.

6. CONCLUSION

We introduce a non-parametric approach to prediction of
n-back task as a proxy measure of mental workload of human
subjects using NIRS data. Our approach takes advantage of
subtle underlying linearity exhibited by the components of the
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NIRS data to emphasize the idiosyncratic characteristics of brain
activity through application of their dissimilarity. Furthermore,
it adopts a one step regression strategy to compute its weights,
thereby allowing our model to further explore the potential that
is offered via introduction of polynomial features to further
improve its accuracy.

We choose 1- and 2-back tasks as a typical proxy measure
of mental workload to examine the prediction accuracy of
our approach. The simple operational principles of such tasks
provide opportunity to model changes in brain activity. The
comparative analysis of the performance of our model in contrast
with state-of-the-art techniques shows a significant improvement
on prediction accuracy of these tasks. Furthermore, our results
suggest that adaptation of differential entropy (DE) to compute
features of NIRS data introduces a potential for extracting
features that help increase the accuracy of certain class of learning
algorithms. This is, to the best of our knowledge, the first time to
utilize DE in NIRS-based prediction.

An interesting observation that is revealed through our results
is the effect of gender differences on the performance of the
classifiers. Whereas our approach achieves 86.40 and 82.50% on
male and female participants, respectively, its accuracy reduces to
75.33% once data associated with different genders is combined.
This suggests that devising real time systems with classifiers that
take into account such gender specificity on the nature of signals
corresponding to brain activity leads to higher accuracy of such
systems while interacting with humans. Furthermore, such a
degradation of the performance accuracy is exhibited by all the
classifiers whose performance are studied in contrast with our
proposed approach. Although our findings are supported by a
number of analytical studies on the influence of gender on brain
activation pattern and hemodynamics, this empirical observation
is at its very early stage and drawing a definitive conclusion
demands further statistical and experimental analyses.

In this study, we carry out our analysis on human subjects
whose NIRS data are collected during real time sessions.
However, results reported in this article are based on offline
use of this data. Therefore, future of this research pertains to
deployment of our model on real time system to determine its
utility to the solution concept of state estimation of the brain
activity of human subjects. Furthermore, it is crucial to increase
the number of participants to acquire larger amount of data,
thereby analyzing the effect of higher variation of brain activity
patterns on the prediction accuracy of our model due to increase
in amount of NIRS data.

We collect our results on the accuracy of ourmodel in contrast
with different classifiers while treating the NIRS channels
independently. However, it is interesting to analyze the effect of
the features that are calculated based on various combination of
these channels on the overall accuracy of these classifiers in the
future.

Another important factor that demands special consideration
is to test the performance of our approach in scenarios with more
than two classes of tasks (e.g., N-back task with N ≥ 3, up
to an upper bound threshold), thereby evaluating its ability to
generalize on more complex scenarios.

The prime target of our research is to provide synthetic
agents with the ability to engage in meaningful communication
with their human counterparts. We utilize n-back task as
an intermediate, tractable approximation of underlying
mental workload, necessary to conduct such highly complex
communicational tasks. Therefore, we use the results acquired
in this study as a basis to build a representational space based
on which generalization on estimation of the brain activity of
human subjects, in their broader perspectives, is foreseeable.
Our future work will include deployment of our model in a
real-world setting to realize the utility of our approach to the
solution concept of human-robot interaction.
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PROOF

A. Proposition 2.1
PROOF. Definition 7.1 in Supplementary Materials ensures that
the cumulative sum of distances of ∀Epi ∈ T to its geometric
median Ex ∈ T are minimized. In addition, it is the case that:

∀Epi\Ec ∈ T : Q1−1.5×(Q3−Q1) ≤ ‖Epi‖ ≤ Q3+1.5×(Q3−Q1)
(A1)

and

∀Ec 6= Epi ∈ T : ‖Ec‖ < Q1 − 1.5× (Q3 − Q1) or ‖Ec‖ > Q3

+1.5× (Q3 − Q1) (A2)

where Ec,Q1, and Q3 are the outliers, the 25th, and the 75th
quantiles associated with the distance distribution of ∀Ep ∈ T,
respectively. There are two cases to consider:

1. Q1, Q3 ∈ T: This implies that Qj = Epi \ Ec, ∃Epi ∈ T or they
cannot form the boundary condition for the outliers Ec ∈ T.
Therefore,Q1 andQ3 are the outer most data on the convex of
∀Epi \ Ec ∈ T. Moreover, Claims 7.1 and 7.2 in Supplementary
Materials ensure that geometric median Ex ∈ T is within its
convex, resulting in:

‖Epi − Ex‖ < ‖Ec− Ex‖, ∀Epi \ Ec ∈ T, ∀Ec ∈ T (A3)

2. Q1, Q3 /∈ T: This implies that Q1 and Q3 are calculated using
the lower and the upper tails of T pertinent to its 25th and
75th quantiles. It is apparent that at most one of the two values
involved in calculation of Q1 and Q3, respectively, is among
outliers at the given percentile. Furthermore, these outliers (if
existed) are the ones closer to two extreme tails of T. Using
the non-outliers to form the convex of T, the remainder of the
proof follows the previous case.

B. Lemma 2.2
PROOF. There are two cases to consider:

1. Single Outlier: Let Ep1, . . . , EpN ∈ T be the data that form
the task space T. Without loss of generality, let Ec, Ex ∈ T

represent the outlier and the geometric median associated
with the task space T, respectively. Claims 7.1 and 7.2 in
Supplementary Materials, imply that Ex is within the convex of
data that corresponds to T. The pairwise cumulative sum of
distances of Epi \ Ec ∈ T to Ex ∈ T with respect to the outlier
Ec ∈ T is:

(‖Ec− Ex‖ + ‖Ep1 − Ex‖)+ · · · + (‖Ec− Ex‖ + ‖EpN − Ex‖)

= ‖Ec− Ex‖ × (‖Ep1 − Ex‖ + . . . ‖EpN − Ex‖)

= ‖Ec− Ex‖×

N
∑

i= 1

‖Epi − Ex‖ ≥

N
∑

i= 1

‖Epi − Ex‖(A4)

2. Multiple Outliers: Let C = {Ec1, . . . , Ecm} be the set of outliers
with m and N representing the number of outliers and total
number of data associated with task space T, respectively.
Following the case of single outlier, we have:

[(‖Ec1 − Ex‖ + ‖Ep1 − Ex‖)+ · · · + (‖Ecm − Ex‖ + ‖Ep1 − Ex‖)]

+ · · · + [(‖Ec1 − Ex‖ + ‖EpN − Ex‖)+ (‖Ecm − Ex‖ + ‖EpN − Ex‖)]

=

m
∑

i= 1

‖Eci − Ex‖ ×

N
∑

j= 1

(‖Epi − Ex‖ ≥

N
∑

j= 1

(‖Epi − Ex‖ (A5)

It is apparent that Theorem 3.1 and Corollary 3.1.1 hold as the
cardinality of set C approaches N.

C. Claim 2.3
PROOF. Let Ex1 ∈ T1 and Ex2 ∈ T2 be the two geometric
medians. Claim 7.1 in Supplementary Materials, implies that
they are within the convex of data associated with T1 and
T2. Furthermore, Proposition 2.1 and Lemma 2.2 imply that
each Ti, i = 1, 2 has its data maximally clustered around
its Exi. Let Ex represent the midpoint of the line segment,
connecting Ex1 and Ex2. Furthermore, let L be the line segment
that passes through Ex and is orthogonal to Ex1x2. This implies
that Ex1x and Ex2x are the normals to L with respect to the
task spaces T1 and T2, thereby maximally separating Ex1 and Ex2
from L.

D. Theorem 3.1
PROOF. Let s represent the number of segments that each base
stream is segmented to (e.g., s = 2 if the original stream is
split into half). Furthermore, let d be the depth of segmentation
(e.g., d = 2 if segmentation is applied on segmented data after
the first step of segmentation). Given the original unsegmented
data, it splits into s segments at depth d = 1, that are
segmented into another s segments on their own at d = 2.
Continuing in this fashion, we have sd segments at depth d.
Allowing for m to represent the number of mismatched cases
in s segments at d = 1 i.e., the onset of segmentation, the
degradation of the accuracy of a given classifier is m

s × sd =

m× s(d−1).

E. Corollary 3.1.1
PROOF. If m ≪ s then m

s → 0 as s → ∞, implying
a negligible effect of such cases on the accuracy of a given
classifier. On the other hand, m

s ≈ 1 as m → s. Moreover,
m 6= s as it contradicts being mismatched cases in principle.
Furthermore, it is apparent that at most m = s

2 (i.e., the
maximum entropy) since any other case for proportionality
betweenm and s is fixed by reversing their oder, thereby satisfying

the m < s. Substituting for m, we get
s
2
s × s(d−1) = 1

2 ×

s(d−1)

.
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