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The self includes complicated and heterogeneous functions. Researchers have divided
the self into three distinct functions called “agency,” “ownership,” and “narrative self”.
These correspond to psychiatric symptoms, behavioral characteristics and neural
responses, but their relationship with brain structure is unclear. This study examined
the relationship between the subjectivity of self-related malfunctions and brain structure
in terms of gray matter (GM) volume in 96 healthy people. They completed a recently
developed self-reported questionnaire called the Embodied Sense of Self Scale (ESSS)
that measures self-related malfunctions. The ESSS has three subscales reflecting
the three distinct functions of the self. We also determined the participants’ brain
structures using magnetic resonance imaging (MRI) and voxel-based morphometry
(VBM). Multiple regression analysis revealed a significant negative correlation between
ownership malfunction and the insular cortex GM volume. A relationship with brain
structure could thus only be confirmed for the ESSS “ownership” subscale. This finding
suggests that distinct brain structures feel ownership and that the ESSS could partly
screen for distinct brain structures.
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INTRODUCTION

For centuries, researchers have searched for the ‘‘self’’ (consciousness) in the brain, but no specific
region seems to be dedicated to this (Legrand and Ruby, 2009). This is probably because the entire
brain is involved in multiple functions and works as a network, forming what is called the default
mode network (Northoff et al., 2006; Grimm et al., 2011; Qin and Northoff, 2011; Lipsman et al.,
2014). The self can be regarded as surveilling the body, actions, and even the external environment
(i.e., perception), which suggests that activity and functions corresponding to the self are distributed
throughout the brain.

To better understand the self and its neural correlates, researchers have divided the
self into essential and distinct functions. For example, Gallagher (2000) has postulated two

Abbreviations: DARTEL, diffeomorphic anatomical registration through exponentiated Lie algebra; DLPFC,
dorsolateral prefrontal cortex; ESSS, Embodied Sense of Self Scale; GM, gray matter; VBM, voxel-based morphometry.
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components of the self: the minimal self and the narrative self.
The minimal self is the online sensation of self and includes
the sense of body (i.e., ownership) and action (i.e., agency). The
narrative self is the offline storage for maintaining the sense
of past and future self and includes autobiographical memory,
personality and identity.

This categorization is still used in many studies because these
concepts can be studied and, more importantly, tested using
cognitive or neuroscientific methodologies. These functional
selves have been examined theoretically through philosophy,
clinical investigations and even computer models; subjectively
through questionnaires and interviews; behaviorally through
observations and experiments; electro-physiologically through
electroencephalography (EEG) and skin conductance responses;
and neurologically through functional and structural brain
imaging. For example, the rubber hand illusion modulates our
sense of ownership of our hand (Botvinick and Cohen, 1998).
This has been examined using behavioral responses (Pavani et al.,
2000), skin conductance responses (Armel and Ramachandran,
2003), skin temperature (Moseley et al., 2008), EEG (Kanayama
et al., 2007, 2017; Press et al., 2008; Evans and Blanke, 2013),
functional magnetic resonance imaging (fMRI; Ehrsson et al.,
2004; Tsakiris et al., 2010; Brozzoli et al., 2012), and Bayesian
causal modeling (Samad et al., 2015). The relationship between
ownership and agency has also been experimentally investigated
(Kalckert and Ehrsson, 2012, 2014). As a result, we now know
that in healthy people, the subjectively reported minimal and
narrative selves are expressed through behavior, physiological
responses and brain activity.

However, previous studies have produced inconsistent results
even when using the same measurements. This suggests the
existence of individual differences in consciousness of the self.
Traditional psychological studies have repeatedly shown the
impact of individual differences using validated questionnaires
(for schizophrenia, see Asai et al., 2011; Kanayama et al., 2009
for depersonalization; and Kanayama et al., 2008 for dissociative
disorder). In cognitive neuroscience, some recent studies have
shown that neural responses may be modulated by cortical
structure (Suzuki et al., 2013), spontaneous cortical activation
(Northoff et al., 2010; Nakao et al., 2013), and their interaction
(Tavor et al., 2016), suggesting individual differences in neural
responses as well. For a deeper understanding of the functional
self, including the individual differences found in cognitive
neuroscience studies, it is important to elucidate the relationship
between individual differences measured using subjective reports
and those measured neurologically. Some studies have shown
that experience and learning induce structural changes in
the human brain (Draganski and May, 2008; May, 2011). It
may therefore be informative to compare anatomical brain
structure with individual differences in the subjectively reported
functional self. However, the relationship between anatomical
brain structure and subjectivity of the functional self remains
unclear. While some neuropsychological and psychiatric studies
of patients with schizophrenia or brain lesions have investigated
this, they did not measure subjectivity of the functional self in
healthy subjects in daily life (rather than during a specific task) as
an individual difference variable.

A previous study that applied exploratory factor analysis
to a self-related questionnaire (Longo et al., 2008) showed
that the factor structures of subjective response were related
to the functional self, but the study was highly optimized
for its own data. This data-driven approach failed to find a
common factor structure for the functional self across studies.
One difficulty was the lack of correspondence with studies
that used different methodologies (e.g., fMRI). Therefore, a
self-reported questionnaire for conceptions of the self was
recently developed in a theory-driven manner. It is called the
Embodied Sense of Self Scale (ESSS), and it measures three
subfactors: ‘‘agency,’’ ‘‘ownership,’’ and ‘‘narrative’’ (Asai et al.,
2016). The ESSS was developed by first listing 120 items
related to the embodied sense of self, including items to
assess schizotypal, depersonalizing and dissociative tendencies
that relate to agency, ownership and narrative, respectively.
Twenty-five items were ultimately selected for the short
version, which is a reliable, valid and statistically usable
scale. It significantly correlates with some related scales and
clearly distinguishes healthy controls and patients with chronic
schizophrenia (thought to be a disorder of the embodied sense of
self).

This is the first study to examine how the subjectivity
of self-related malfunctions correlates with brain structure in
healthy people. For this, we searched for correlations between the
ESSS subscales and measured gray matter (GM) volumes.

We focused on cortical regions that were related to the
self-subscales in previous studies. We have a clear model of
agency-related brain area networks because many experimental
and schizophrenia patient studies have examined self-agency.
These studies indicated that the cerebellum and left dorsolateral
prefrontal area were involved in agency-related psychological
functions. Cerebellar activation in particular was observed in
subjects predicting the sensory consequences of self-action
(Blakemore et al., 1999; Farrer and Frith, 2002) and those
recognizing discrepancies between actual and predicted sensory
consequences (Blakemore et al., 2001; Leube et al., 2003).
Some studies have shown that the middle frontal gyrus detects
visuomotor incongruencies (David et al., 2007; Farrer et al.,
2008) and the agency of a self-propelled moving ball (Stosic
et al., 2014). Schnell et al. (2007) also showed that a wide
area of the middle frontal gyrus responded to the onset of
visuomotor incongruence in a video game. This suggests that
the dorsolateral prefrontal cortex (DLPFC) could be involved
in switching the internal model of visuomotor contingency to
predict body movement and sensory feedback (Imamizu et al.,
2004; Imamizu and Kawato, 2008). The DLPFC is anatomically
connected to the cerebellum (Kelly and Strick, 2003), which
suggests that the DLPFC also has a role in switching the
internal visuomotor model stored in the cerebellum in response
to changing circumstances. However, structural abnormalities
of the prefrontal cortex have been repeatedly reported in
schizophrenic (Nickl-Jockschat et al., 2011; Schnack et al.,
2014) and schizotypal individuals (Nenadic et al., 2015), while
cerebellum atrophy has been less frequently reported (Zhang
et al., 2015). We therefore focused on the DLPFC as an area of
interest for the agency subscale.
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We do not have as clear a model of the cortical networks
and structural abnormalities relevant to the ownership subscale.
The postcentral gyrus and insular cortex might be relevant
because they are activated during the synchronous visuotactile
stimulation of the rubber hand illusion (Ehrsson et al., 2004;
Tsakiris et al., 2010). Additionally, the angular gyrus is a
sensory association area commonly damaged in patients who
frequently have out-of-body or autoscopic experiences (Blanke
et al., 2004). Of these areas, the postcentral gyrus is an unlikely
candidate because it is a primary somatosensory area with
no reported abnormalities even in depersonalization disorder
(Sierra et al., 2002), which is closely related to ownership
dysfunction. The inferior parietal cortex, which contains
the angular gyrus, is structurally abnormal in schizophrenic
(Schnack et al., 2014) and schizotypal individuals (Nenadic
et al., 2015), suggesting that it is not exclusively related to
body ownership dysfunctions. However, the insular cortex
is a good candidate because a body ownership-related task
activates it (Tsakiris et al., 2007), but damage to this area
has no impact on self-agency as measured by a task that
requires distinguishing between self-generated and other-
generated actions (Philippi et al., 2012). Additionally, a positron
emission tomography study reported that the feeling of
movement control in schizophrenia patients was related to
regional cerebral blood flow in the right angular gyrus but
not in the insular cortex (Farrer et al., 2004). We therefore
examined the insular cortex as an area possibly correlated
with the ownership subscale and irrelevant to the agency
subscale.

It is difficult to identify any specific cortical region that
is likely associated with the narrative self-ubscale. Araujo
et al. (2015) tried to separate the core (minimal) self and
autobiographical self using fMRI and showed that numerous
cortical regions, including the temporal pole, precuneus and
lateral occipital cortex, were involved in autobiographical self-
recognition as measured with personality trait questionnaires.
Legrand and Ruby (2009) showed that a task requiring
self-relatedness evaluation, which is closely related to personality
as an important concept of narrative self, activated cortical
areas distributed over a wide cerebral network, including
the medial prefrontal cortex, precuneus, temporoparietal
junction and temporal poles. They suggested that this cortical
network could be explained by two cognitive processes:
inferential processing and memory recall. If the narrative
self is a temporal expansion of the minimal self (Gallagher,
2000), it must include a process to retrieve autobiographical
memory (memory recall) and a process to use these retrieved
memories to generate behavioral patterns (e.g., personality)
for optimizing future behavior (inferential processing). We
therefore examined the network areas from Legrand and
Ruby (2009) for possible correlations with the ESSS narrative
self-subscale.

We hypothesized that in healthy participants regularly
experiencing self anomalies in daily life, ESSS-measured
subjectively reported self-related malfunctions would
predict GM volume in the target cortical areas mentioned
above.

MATERIALS AND METHODS

Participants
Ninety-six healthy participants were recruited from two sites
(Site A and B). Fifty-one participants (26 women and 25 men,
mean age = 22.50 years, standard deviation (SD) = 3.39 years)
were recruited from Site A. Forty-five participants (10 women
and 35 men, mean age = 22.60 years, SD = 4.81 years)
were recruited from Site B. All participants were right-handed,
had no history of psychiatric or neurological disorders, and
met our magnetic resonance imaging (MRI) safety criteria
(e.g., not wearing any magnetic material, non-claustrophobic).
Participants were paid for their participation.

This study was carried out in accordance with the
recommendations of Human Research Ethics Committee of
Hiroshima University and the Research Ethics Committee of
Kochi University of Technology with written informed consent
from all subjects. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the Human Research Ethics Committee of
Hiroshima University and the Research Ethics Committee of
Kochi University of Technology independently.

Questionnaires
Participants from Site A completed an 80-item version of the
ESSS, while participants from Site B completed a 25-item version.
Fifty-five items from the Site A ESSS were excluded, and the
remaining 25 items were identical to those of the Site B ESSS. The
total score and sub-scores were calculated from these 25 items.

Participants answered each item by clicking a radio button
on a personal computer, with ratings on a 5-point Likert scale
ranging from ‘‘Strongly disagree’’ to ‘‘Strongly agree’’. Based
on a previously reported factor analysis of this questionnaire
(Asai et al., 2016), we calculated three sub-scores. The
first was ‘‘ownership,’’ which included nine items related to
malfunction of bodily awareness or body perception. The second
was ‘‘narrative,’’ which included eights items describing the
consistency of personality or self-identification. The last was
‘‘agency,’’ which included eight items related to the sense of
controlling oneself or one’s own movement. The details of these
subscales are described in Asai et al. (2016).

MRI Data Acquisition
The participants at Site A and B both underwent MRI on
a 3.0-tesla Siemens Verio Scanner (Siemens Ltd., Munich,
Germany). We obtained structural MRI scans using a 32-channel
head coil and whole-brain T1 weighted volumetric sequence
using magnetization-prepared rapid-acquisition gradient
echo (MP-RAGE). The following acquisition parameters
were identical at both sites: inversion time = 900 ms, flip
angle = 9◦, matrix size = 256 × 256, voxel size = 1 × 1 × 1 mm,
slice thickness = 1 mm, and sagittal acquisition. The
Site A-specific parameters were as follows: echo time
(TE) = 2.98 ms, repetition time (TR) = 2300 ms, field of
view (FOV) = 256 × 256 × 176 mm, and number of slices = 176.
The Site B-specific parameters were as follows: TE = 3.06 ms,
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TR = 2250 ms, FOV = 256 × 256 × 192 mm, and number of
slices = 192.

Preprocessing and Voxel-Based
Morphometry (VBM) Analysis
Before voxel-based morphometry (VBM) analysis, all images
were aligned to the anterior-posterior commissure axis to set the
origin to the anterior commissure and set the images parallel
to the axis. This was done using the auto_reorient.m MATLAB
(MathWorks, Natick, MA, USA) script1, and unexpected errors
were confirmed by visually inspecting the aligned images.

VBM analysis was conducted using SPM12 (rev 6225; The
Welcome Department of Cognitive Neurology, London, UK) in
MATLAB v. 8.3. First, all images were segmented into GM, white
matter, cerebrospinal fluid, or non-brain parts after intensity
non-uniformity correction. For this segmentation, we used the
strong criterion (labeled ‘‘Thorough’’) in SPM12 because we
observed that non-brain tissue remained when we used the light
criterion (‘‘Light’’). Furthermore, for anatomical normalization
(affine regularization), the East Asian Brain template was
selected. All other parameters were SPM12’s default settings.

Next, GM and white matter population templates were
generated from all dataset images using the diffeomorphic
anatomical registration through exponentiated Lie algebra
(DARTEL; Ashburner, 2007). The DARTEL technique was
implemented in SPM12 with default settings. First, an affine
transformation was initially applied to the GM and white matter
DARTEL templates to align them to the tissue probability maps
in Montreal Neurological Institute space2. The GM images
were then non-linearly warped to the DARTEL GM template
in Montreal Neurological Institute space. The warped images
were modulated using Jacobian determinants calculated by the
nonlinear deformation field to preserve relative GM volumes
even after spatial normalization. The modulated images were
smoothed with an 8-mm full-width at half-maximum Gaussian
kernel. The smoothed, modulated and normalized GM datasets
were then statistically analyzed.

Statistical Analysis
We performed multiple regression analysis to investigate
correlations between ESSS subscale scores and regional GM
volumes. For all subsequent regression analyses, the covariates
included age, sex and total intracranial brain volume. The three
ESSS subscales were registered as independent variables, and
regional GM volume was registered as a dependent variable. To
exclude any effect of site on correlations between GM volumes
and ESSS scores, we made the site a dummy variable (0 = Site A,
1 = Site B) and made the dummy variable a statistical test
covariate based on a suggestion made by Pardoe et al. (2008).

Region of Interest (ROI) Analysis
For statistical VBM analysis, a mask image of the cortical region
of interest (ROI) wasmade for each ESSS subscale. For the agency
subscale, we used amask image of Brodmann area 46 to represent

1http://www.nemotos.net/?p=17
2http://www.mni.mcgill.ca/

the middle and inferior frontal gyri. For the ownership subscale,
we used a mask image of the insular cortex. For the narrative
subscale, we used amask image of the superiormedial frontal and
medial orbitofrontal cortices to represent the medial prefrontal
cortex, the precuneus and the angular gyrus and a mask image
of the supramarginal gyrus to represent the temporoparietal
junction and the middle and superior temporal poles. The mask
images were generated based onAutomatedAnatomical Labeling
and the Brodmann area separations. Statistical significance was
defined as p < 0.05 after correction with the family-wise error
(FWE) method at peak level.

Whole-Brain Analysis
We conducted whole-brain analysis using several statistical
thresholds. Based on Lieberman and Cunningham (2009),
we first created a statistical map with an uncorrected
p < 0.001 threshold and 20-voxel extent to balance Type-I
and Type-II errors, but the 20-voxel extent was arbitrary and
insufficiently strict for controlling Type-I errors, as shown in a
study using permutation testing (Eklund et al., 2016). To confirm
a statistically significant voxel extent, we calculated alternative
cluster size thresholds using: (1) permutation testing of the
participants’ original questionnaire scores and GM volumes;
(2) the original questionnaire score sets and 96 GM volume
sets randomly sampled from two open datasets (198 Beijing
participants and 198 Cambridge participants) registered with
the Functional Connectomes Project (Biswal et al., 2010); and
(3) 96 dummy questionnaire score sets randomly generated in
ranges appropriate for each scale (for example, 9–45 for the
ownership subscale because it has nine 5-point scale items) and
96 GM volume sets from the same open sources used in (2).
For (1), each individual’s questionnaire score set was randomly
assigned to another individual’s GM volume set. For (2) and
(3), 51 GM volume sets were selected from one data source and
another 45 volume sets were selected from the other to imitate
the original data sets coming from two different sites.

The preprocessing and statistical testing for the permuted and
random sampled data were identical to those for the original data.
Statistical tests were repeated 1000 times, and the 1000maximum
brain region cluster sizes that were significantly correlated with
the ESSS subscales (uncorrected p < 0.001) were calculated and
sorted in ascending order. The 950th highest value in the sorted
vector was used as a statistical significance threshold for cluster
size. By testing for positive or negative correlations for three
subscales, we conducted six tests and generated six cluster size
significance thresholds for each repetition. The maximum value
among these six thresholds was finally adopted as the statistical
analysis threshold.

RESULTS

Averages and SDs of ESSS total and subscale scores are listed in
Table 1, and total brain volumes are listed in Table 2.

ROI Analysis
Correlation analysis revealed a significant negative correlation
between ownership subscale scores and GM volumes in the

Frontiers in Human Neuroscience | www.frontiersin.org 4 May 2017 | Volume 11 | Article 232

http://www.nemotos.net/?p=17
http://www.mni.mcgill.ca/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kanayama et al. Self Sense and Brain Volume

TABLE 1 | Average ESSS total and subscale scores.

ESSS agency ESSS ownership ESSS narrative ESSS total

Average 22.40 16.75 24.56 63.71
SD 5.79 5.88 5.91 15.00

Abbreviations: ESSS, Embodied Sense of Self Scale; SD, standard deviation.

left posterior insular cortex (peak coordinates: x = −47, y = 2,
z = −2; number of voxels = 42; t = 3.91, p < 0.05 after
FWE correction at peak level; Figure 1). There were no other
significant correlations between regional GM volumes and ESSS
subscale scores.

Whole-Brain Analysis
Permutation testing of the original data calculated 615 as the
minimum significant cluster size. Random sampling tests that
paired open source cortical structure data with either the original
questionnaire scores or randomly generated questionnaire scores
calculated significance thresholds of 797 or 682, respectively.

With an uncorrected p < 0.001 threshold and a 20-voxel
extent, all significant correlations between GM volumes and
questionnaire scores are listed in Table 3. As listed in Table 3,
no cortical area had a cluster size greater than the lowest
statistical threshold (615 voxles). The greatest cluster size which
was found in analysis with our original data was 224 for the
positive correlation between the narrative subscale scores and
GM volumes in the left inferior temporal gyrus. There were
therefore no significant correlations in whole-brain analysis
using corrected cluster size criteria.

The significant correlations between ESSS subscales and
GM volumes in whole-brain analysis with an uncorrected
p < 0.001 threshold and a 20-voxel extent were described below.

Correlation between Agency Subscale Scores and
GM Volumes
Agency subscale scores were positively correlated with GM
volumes in the right cerebellum (peak coordinates: x = 44,
y = −59, z = −36; number of voxels = 90; t = 3.46; Figure 2A).
Agency scores were negatively correlated with GM volumes in
two cortical areas: the left medial orbitofrontal cortex (peak
coordinates: x = −15, y = 38, z = −24; number of voxels = 68;
t = 3.72; Figure 2B) and the left medial frontal cortex (peak
coordinates: x = −30, y = 35, z = 26; number of voxels = 60;
t = 3.69).

Correlation between Ownership Subscale Scores and
GM Volumes
Ownership subscale scores were negatively correlated with GM
volumes in three brain areas: the left insular cortex (peak
coordinates: x = −47, y = 2, z = −2; number of voxels = 134;

TABLE 2 | Average volumes and SDs of gray matter, white matter and total
brain.

Gray matter White matter Total brain

Average (cm3) 773.09 464.86 1237.95
SD (cm3) 58.23 48.59 97.69

Abbreviations: SD, standard deviation.

t = 3.91; Figure 2C), left angular gyrus (peak coordinates:
x = −53, y = −56, z = 30; number of voxels = 31; t = 3.48),
and right postcentral gyrus (peak coordinates: x = 59, y = −21,
z = 47; number of voxels = 32; t = 3.37). Ownership scores were
not significantly positively correlated with GM volumes in any
examined area.

Correlation between Narrative Subscale Scores and
GM Volumes
Narrative subscale scores were positively correlated with GM
volumes in five cortical areas: the left lingual gyrus (peak
coordinates: x = −35, y = −92, z = −20; number of voxels = 96;
t = 3.89), left inferior temporal gyrus (peak coordinates: x = −47,
y = −57, z = −11; number of voxels = 224; t = 3.85; Figure 2D),
right cuneus (peak coordinates: x = 9, y = −101, z = 15; number
of voxels = 60; t = 3.80), left superior temporal pole (peak
coordinates: x = −50, y = 9, z = −2; number of voxels = 107;
t = 3.80), and left precuneus (peak coordinates: x =−11, y =−39,
z = 56; number of voxels = 46; t = 3.37). Narrative scores were
not significantly negatively correlated with GM volumes in any
examined area.

DISCUSSION

We aimed to determine the relationship between subjectively
reported self-related malfunction and GM volume. Self-related
malfunctions were subjectively measured using our recently
developed ESSS questionnaire (Asai et al., 2016). The ESSS
measures daily experiences rather than illusory feelings induced
by specific experimental tasks (e.g., the rubber hand illusion).
ROI analysis showed that ownership subscale scores were
negatively correlated with left posterior insula GM volumes.
This association suggests that daily experiences of self-related
malfunctions could induce cortical structure changes. We
also conducted whole-brain analysis, but this showed no
significant correlations between cortical areas and ESSS subscale
scores.

Correlations between the Left Posterior
Insula and the Ownership Subscale
As expected, we observed a significant correlation between
ownership subscale scores and left posterior insula GM volumes.
The insular cortex has been repeatedly shown to be related to
body ownership through such tests as the rubber hand illusion
(Tsakiris et al., 2007; Limanowski et al., 2014), but it is not
strictly limited to body ownership because agency-related tasks
can also activate it (Leube et al., 2003). Additionally, both the
right and left insular cortices are activated by viewing a video
consistently subject to self-controlled movement (Farrer and
Frith, 2002; Farrer et al., 2004). Given that some lesion studies
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FIGURE 1 | Significant correlations between GM volumes and ESSS ownership subscale scores by ROI analysis. Abbreviations: GM, gray matter; ESSS,
Embodied Sense of Self Scale; ROI, region of interest.

have shown that the bilateral insular cortex is not responsible
for self agency (Philippi et al., 2012; Damasio et al., 2013), the
insular cortex is not solely related to agency or ownership but
includes additional complex cognitive functions. Indeed, Kurth
et al. (2010) conducted a meta-analysis of the insular cortex’s
psychological functions and showed their differentiation into
emotional, chemosensory, sensorimotor and cognitive domains.
From these, interoception in the sensorimotor domain had the
location (−41, 2, 3 for the left hemisphere) closest to that of
the left insular cortex in our results (−47, 2, −2). The insular
cortex is also activated by such tasks as listening to one’s own
heartbeat or suppressing the urge to void, consistent with Seth’s
model in which the insular cortex is related to interoceptive
inference and self-embodiment (Seth, 2013). This suggests
that the insular cortex might be reduced in size by impaired
self-awareness of body ownership due to altered interoceptive
inference.

However, the ESSS ownership subscale includes the following
item: ‘‘Sometimes it feels like my body is jerky like a robot’’.

The term ‘‘jerky’’ in this sentence could mean uncontrollable
movement, suggesting that altered body sensation is closely
related to movement related malfunctions (for all the items,
see Asai et al., 2016). This suggests that the ownership subscale
is not fully separated from the agency domain. Altogether, it
remains unclear whether the twominimal self factors, agency and
ownership, are sufficiently separated in the ESSS. Future studies
should directly investigate this.

Correlations of GM Volume with ESSS
Subscale Scores
Whole-brain analysis based on the criteria by Lieberman and
Cunningham (2009) revealed that ESSS subscale scores were
significantly correlated with GM volumes in some areas, and
these regions were highly predictable based on the findings
from previous studies. For example, agency subscale scores were
correlated with GM volumes in the cerebellum and middle
frontal gyrus, which were activated during active movement
inducing a sense of agency over a rubber hand (Tsakiris et al.,

TABLE 3 | Brain regions in which local GM volume was significantly correlated with ESSS subscale scores.

Location name x y z k t

Negative correlations between GM volumes and ownership scores
L insula (BA 13) −47 2 −2 134 3.91
L angular gyrus (BA 39) −53 −56 30 31 3.48
R postcentral gyrus (BA 2) 59 −21 47 32 3.37

Positive correlations between GM volumes and narrative scores
L lingual gyrus (BA 18) −35 −92 −20 96 3.89
L inferior temporal gyrus −47 −57 −11 224 3.85
R cuneus (BA 18) 9 −101 15 60 3.80
L superior temporal pole (BA 22) −50 9 −2 107 3.80
L precuneus (BA 5) −11 −39 56 46 3.37

Positive correlation between GM volumes and agency scores
R cerebellum crus 1 44 −59 −36 90 3.46

Negative correlations between GM volumes and agency scores
L medial orbitofrontal cortex (BA 11) −15 38 −24 68 3.72
L middle frontal cortex (BA 9) −30 35 26 60 3.69

Regions significantly correlated with each ESSS subscale are listed. The codes in parentheses indicate Brodmann areas (e.g., BA13 = Brodmann area 13). In the first row,

x, y and z refer to Montreal Neurological Institute coordinates, k refers to the number of voxels in each significant area and t refers to the t-score in each brain region (local

maxima). Abbreviations: GM, gray matter; ESSS, Embodied Sense of Self Scale; L, left; R, right.
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FIGURE 2 | Significant correlations between GM volumes and ESSS subscale scores by whole-brain analysis. (A) Positive correlations between GM
volumes and ESSS agency subscale scores. The right cerebellum is highlighted in the sagittal, coronal and transverse views [44, −59 −36]. (B) Negative correlations
between GM volumes and ESSS agency subscale scores. The left medial orbitofrontal cortex is focused in the sagittal, transverse view. The left medial orbitofrontal
and left medial frontal cortices are highlighted in the coronal view [−14, 34 −27]. (C) Negative correlations between GM volumes and ESSS ownership subscale
scores. The left insular cortex is focused in the sagittal, coronal and transverse views [−47, 2, −2]. (D) Positive correlations between GM volumes and ESSS
narrative subscale scores. The left superior temporal pole and left inferior temporal gyrus are highlighted in the sagittal view. The left lingual gyrus and right cuneus
are highlighted in the coronal view. The left precuneus is highlighted in the transverse view [−47, −96, 56]. Abbreviations: GM, gray matter; ESSS, Embodied Sense
of Self Scale.
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2010). Ownership subscale scores were correlated with GM
volumes in the postcentral gyrus, insula and angular gyrus,
which might be engaged in bodily self-consciousness, including
body ownership (Blanke et al., 2004; Ehrsson et al., 2004;
Tsakiris et al., 2010). We found that narrative subscale scores
were positively correlated with GM volumes in the left lingual
gyrus, the left inferior temporal gyrus, the right cuneus, the
left superior temporal pole and the left precuneus. These areas
overlapped with the network activated by a self-relatedness
evaluation task (Legrand and Ruby, 2009). However, these
correlations could not survive under strict criteria using
permutation testing, which suggests that they are not statistically
robust.

Limitations
One limitation of this study is that scanning was conducted at
two sites. Although almost all scan parameters were identical, this
might have contaminated the results, asmight other uncontrolled
variables such as region, culture and experimenter. The two
sites were located in different prefectures on different islands,
so the cultural differences could be sufficient to affect the
results. Additionally, the scanning method may have differed
between experimenters (e.g., fixation of the head or the degree
of detail given in instructions), which could have affected the
structural image. We attempted to control for site effects by
following a recommendation in Pardoe et al. (2008). Some
studies (e.g., Moorhead et al., 2009) have shown that a VBM
study’s statistical power can be improved by adjusting probability
maps for the distribution of gray and white matter. Since this
requires at least two scans on each scanner, we could not apply
it to our results, so we should consider the possibility that
important relationships between brain areas and questionnaire
scores may have gone undetected.

One major limitation of our study is that no significant
correlations between regional GM volumes and ESSS subscale
scores were found in cluster size analysis. A recent study
cautioned that statistical significance thresholds using cluster size
tend to cause 60%–80% Type I error rates (Eklund et al., 2016).
This can bemitigated by using permutation testing (Eklund et al.,
2016), but we found that this led to a significance threshold
of more than 600 voxels, far greater than the highest observed
value at 224 voxels. Consequently, our whole-brain analysis
showed no significant correlations between ESSS subscales and
GM volumes. The significance threshold was little different even
if we used open source human brain structure data from the
Functional Connectomes Project (Biswal et al., 2010) that were
also used in Eklund et al. (2016). This analysis assumes that there

is no relationship between ESSS scores and GM volumes, so we
expected a low significance threshold. However, the minimum
significant cluster size was 797, which was even higher than
that obtained with our own data. To further generalize this
criterion, we also conducted the same repetition test using
the same open source GM volume data but with dummy
questionnaire data generated with a score range restriction.
This analysis too calculated a significance threshold of more
than 600 voxels. Altogether, these findings suggest that when
analyzing correlations between GM volumes and questionnaire
scores in a relatively small organ like the cortex, it might not be
appropriate to use cluster size as a criterion, at least if the ESSS is
the questionnaire.

CONCLUSION
Collectively, ESSS-measured, ownership-related self
malfunctions in daily life were confirmed to be associated
with the insular cortex. This is consistent with previous findings
about the cortical areas related to self ownership. It also
shows that the ESSS can be a quick assessment tool to predict
individual differences in cortical volume related to ownership
malfunction.
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