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PALEONEUROLOGY AND THE FRONTAL LOBES

Broca’s area has represented a major issue in evolutionary anthropology since the discovery of
its association with language impairment. It was generally presumed that the whole frontal lobes
had undergone important changes in our phylogenetic lineage, also because of their involvement
in personality and executive functions. Accordingly, plenty of authors have declared so far that
the fossil record supplies patent evidence of frontal lobe evolution, despite the fact that the fossil
record, to date, has supplied none. In terms of frontal sulcal pattern, all human species display a
similar scheme, at least from two million years (Tobias, 1987; Holloway, 1995). In terms of volume,
there are still disagreements on whether or not humans and living apes share a similar allometric
proportion of frontal cortex, and whether any minor difference may be statistically or functionally
significant, (e.g., Semendeferi et al., 1997; Rilling, 2006; Barton and Venditti, 2013; Smaers, 2013;
Gabi et al., 2016). If there are such critical uncertainties when dealing with living species, it can be
easily imagined that these same issue can be particularly difficult to investigate in fossils, which can
only provide information on the external gross anatomy of the brain and according to extremely
reduced sample sizes. Many statements concerning the evolution of specific frontal cortical traits
in fossil hominids are based on individual and fragmented cranial remains. Such punctual and
partial information may be useful to delineate further hypotheses, but we don’t have to forget
that it can only provide incomplete and speculative perspectives (Bruner, 2013). These limitations
may generate blurred frontiers between opinions (i.e., personal and subjective assessments) and
hypotheses (perspectives that can be evaluated through experimental or quantitative approaches).

An actual increase of the frontal or prefrontal cortex volume cannot be tested in fossils
because of the many operational limits (like for example the localization of reliable boundaries).
Apart from variation in absolute size, Neandertals and modern humans display relatively wider
frontal lobes, when compared with other human species (Bruner and Holloway, 2010). In
these two species, the breadth of the anterior fossa at the Broca’s cap is larger, relative to
the general brain width. Therefore, the term “wider” refers to endocranial proportions, and
not necessarily to an absolute enlargement or expansion of the lobes. It is worth noting that
modern humans and Neandertals are also the only hominids in which the frontal lobes lie
entirely above the orbits (Bruner et al., 2014a). The eyeball and the prefrontal cortex are
separated by a tiny bony layer (this was the unfortunate principle of lobotomy), and these two
districts exert reciprocal spatial constraints during morphogenesis. Orbits are anterior to the
braincase in chimps, inferior to the frontal lobes in Neandertals and modern humans, and in
an intermediate position in archaic humans (Bruner et al., 2014a; Beaudet and Bruner, 2017;
Figure 1). Therefore, we cannot exclude that the lateral frontal widening displayed in modern
humans and Neandertals could be a secondary structural consequence (lateral redistribution
of the neural mass) of this vertical spatial limitation, with no functional meaning in terms of
neural organization. Furthermore, in modern humans, the facial block (the bones forming the
face) is much reduced when compared with earlier hominids or apes, and the temporal muscle
is reduced accordingly (Cachel, 1978). The Broca’s cap is adjacent to the temporal fossa, and
the reduction of the muscle further decreases any possible lateral spatial constraints, if any.
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FIGURE 1 | (Above) Projected parasagittal MRI slices (in red) showing the spatial relationship between the frontal cortex and upper face in modern humans, and

projected midsagittal MRI slices (in blue) showing the parietal, occipital, and cerebellar areas. (Middle) Digital reconstruction of a chimp, of an African Middle

Pleistocene fossil human, and of a modern human skull, showing the endocranial cavity (blue) and the orbital space (pink) (after Beaudet and Bruner, 2017). (Below)

CT scout views of chimpanzees, Homo heidelbergensis and Homo sapiens, showing the position of the orbital boundaries; on the left, the thin-plate spline

deformation pattern that separates chimps from modern humans, with fossil humans displaying an intermediate morphology (after Pereira-Pedro et al., 2017).

This does not mean that frontal widening inmodern humans and
Neandertals was not associated with true brain changes, but only
that the influence of cranial architecture cannot be ruled out, and
such frontal widening cannot be hence indisputably interpreted
as evidence of change in brain organization.

The only specimen which goes against this structural
hypothesis is the skull of Maba, found in China and dated to the
transition between the Middle and Upper Pleistocene, that shows
a facial morphology affine to Neandertals (including anterior
fossa which overlap with the orbits), but with a plesiomorph

braincase and narrow frontal lobes (Wu and Bruner, 2016). In
this case, despite the vertical constraints, the frontal cortex is
not wider, possibly supporting the functional (neural adaptation)
and not the structural (mass redistribution) hypothesis. However,
intra-specific variation for these proportions is noticeable, and
larger samples are needed to test hypotheses according to a
proper statistical framework. In general, specimens do not prove
or reject hypotheses, samples do.

Modern humans also display more bulging frontal squama
when compared with other human species, a character which
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is nonetheless very variable, and with differences that are less
pronounced when considering the endocranial profile (Bookstein
et al., 1999; Bruner et al., 2013). Also in this case, the increase in
frontal curvature is apparently proportional to the displacement
of the upper face below the anterior cranial fossa, with fossil
humans displaying a phenotype which is intermediate between
modern humans and apes (Beaudet and Bruner, 2017; Pereira-
Pedro et al., 2017; see Figure 1). The frontal bone integrates the
spatial relationship between face and braincase, and it is therefore
likely that, also for this character, we are dealing with structural
consequences of the cranial architecture and not with a real
change in the organization of the frontal lobe.

Also frontal asymmetry, another hallmark of language, cannot
help in this sense. All human species in the last 2 million
years show a similar asymmetry pattern, in which the frontal
lobe is larger on the right side and the occipital lobe is
larger on the left side (Holloway, 1980, 1981; Grimaud-Hervé,
1997). This pattern is also found in living apes, although to
a minor degree of expression and frequency (Holloway and
De La Coste-Lareymondie, 1982). Currently, we cannot exclude
the possibility that this increased expression in humans is a
secondary consequence of larger brain and allometric effects
(Gómez-Robles et al., 2013). It is worth noting that, even in
modern humans, the relationship between Broca’s area, brain
morphology, and cortical asymmetries, is rather blurred and
inconsistent (Keller et al., 2009; Amunts and Zilles, 2012). Hence,
it is not surprising that the evaluation of this same relationship
is even less reliable when dealing with few incomplete skulls
belonging to extinct species.

Therefore, apparently there is still no firm evidence of crucial
or noticeable morphological changes of the frontal lobes in the
human lineage. Of course, the fact that fossils do not reveal
any patent variation in these areas does not mean that the
frontal lobes have not undergone evolutionary changes in the
genus Homo. Human-specific traits like the proportions of the
prefrontal cortex, the proportions of white matter, extrinsic
neural connections, and specific microstructural variations
(Schoenemann et al., 2005; Rilling et al., 2012; Passingham et al.,
2017) are largely silent to the fossil record, and they cannot be
directly evaluated in paleoneurology.

PARIETAL LOBES AND VISUOSPATIAL
INTEGRATION

In terms of geometry, the most outstanding brain difference
among hominids concerns the parietal surface. Modern humans
have a larger parietal bone (Bruner et al., 2011) and lager parietal
lobes (Bruner et al., 2003; Bruner, 2004). AlsoNeandertals display
wider upper parietal areas, when compared with more archaic
human taxa, but not as expanded as inmodern humans. In fossils,
a detailed analysis of the parietal parcellation is not feasible.
Nonetheless, spatial variations seem to deal with the dorsal areas,
pointing to the two main folds of the parietal lobe, namely the
intraparietal sulcus and the precuneus. The size of the precuneus
is extremely variable among adult modern humans, representing
a main source of midsagittal morphological diversity due to

increase/decrease of its longitudinal extension, which depends
on its cortical surface area (Bruner et al., 2014b, 2015, 2017a).
This same feature also represents the main midsagittal brain
difference between humans and chimps, being much larger
in our species (Bruner et al., 2017b). This variation spatially
matches the longitudinal bulging observed in the evolution of
H. sapiens endocranial form. In contrast, the lateral widening
of the dorsal parietal lobules, observed in both modern humans
and Neandertals, can be tentatively associated with the area
occupied by the intraparietal sulcus (Pereira-Pedro and Bruner,
2016). The precuneus is a main hub of brain connectivity,
and has a crucial role in bridging somatosensory experience
(body) with visual information (environment), integrating
mental imagery with self-centered processes in space and
time, and even at social level (Cavanna and Trimble, 2006;
Margulies et al., 2009; Land, 2014; Peer et al., 2015). The
intraparietal sulcus, a fold which is larger and more diversified
in humans than apes, is particularly involved in eye-hand
coordination and attention (Grefkes and Fink, 2005; Tunik
et al., 2007). Most of these parietal functions are generally
labeled as visuospatial integration, underlying cognitive processes
which can be partially investigated in fossils (Bruner and Iriki,
2016; Bruner et al., 2016). Spatial coordination is relevant in
language evolution because of a recognized association between
speech and manual dexterity (see Binkofski and Buccino, 2004).
This perspective has been further emphasized by stressing
the importance of shared processes between body experience
and language processing (Jirak et al., 2010). According to
this view, sensorimotor simulations may link body experience,
mirror neurons, and language coding, associating language to
“embodied” circuits (Buccino et al., 2005; Marino et al., 2012).
Taking into account the possible relevance of body experience
in language processing, we should evaluate to what extent
language capacity was triggered, facilitated, or improved, by
visuospatial capacities. In this case, we should consider whether
the fact that Neandertals and modern humans display enlarged
visuospatial cortical regions may represent evidence of such
association.

CONCLUSIONS

In 1983, Ralph Holloway, in a large and detailed review,
explained why paleoneurology and the fossil record cannot
give any solution to the debate concerning the evolution of
language (Holloway, 1983). He remarked that fossils can supply
corroborations, but not proofs, because of the scanty evidence,
incomplete information, and lack of quantitative replicable
methodologies. Despite the Holloway’s frank conclusion, many
authors and textbooks have continued to state the opposite. The
mantra on the evidence of frontal evolution in human fossils is
so rooted in popular feeling that generally the statement is given
for granted, and not associated with any accompanying reference.
But the relationship between endocranial gross morphology and
cognitive processes is partial and imprecise, and fossils can
only supply additional integrative support to a more complete
scenario, which must be designed according to multiple and
independent sources of information. Modern humans and
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Neandertals both display relatively wider, but probably not
relatively larger, frontal lobes. We don’t know whether this
morphological variation is associated with any functional change.
However, both species also displayed changes at the parietal
cortex, which wasmuchmore apparent and noticeable inmodern
humans. Changes in the parietal areas may supply additional
information on language when recognizing the importance
of embodiment and body experience in language coding. As
Holloway suggested, changes in the parietal areas may imply
changes in social structure which, in humans, is something
intimately associated with language. In general, brain size itself
may be a good proxy to estimate social and cognitive parameters
in primates, also when dealing with language issues (Aiello and
Dunbar, 1993). After all, space, time, and social structure are
all integrated within shared egocentric (self-centered) schemes
based on self-recognition, body relationships, and visuospatial
perspectives (Hills et al., 2015; Maister et al., 2015; Peer et al.,
2015; Erle and Topolinski, 2017). It must be taken into account
that parietal cortex is not only influenced by genetic components
(Chen et al., 2012), but it is also particularly sensitive to
environmental factors including training and culture, in which
ecological, neural, and cognitive elements exert reciprocal and
integrated effects (Iriki and Taoka, 2012).

The fronto-parietal system is a complex cerebral network
largely based on reciprocal signaling (Caminiti et al., 2015)

and with a crucial role in cognitive complexity (Jung and
Haier, 2007). Fronto-parietal spatial changes may also influence
the general organization of the brain, including connectivity
relationships with subcortical areas involved in linguistic
capacities (Boeckx and Benítez-Burraco, 2014). It is therefore
interesting that both modern humans and Neandertals, the two
human species with more derived cultural traits, display species-
specific morphological features in both frontal and parietal brain
areas.
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