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et al., 2005; Bassett et al., 2006). As the study of brain networks con-
tinues to expand, validation of network reproducibility is needed 
to substantiate findings.

Excellent reproducibility of graph metrics has been reported for 
MEG (Deuker et al., 2009) and diffusion tensor imaging (DTI) net-
works (Vaessen et al., 2010).  Although these results are promising, the 
use of fMRI is more ubiquitous, which makes it important to verify 
the reproducibility of fMRI-based brain networks. Graph metric 
reproducibility is essential for test–retest purposes. If network met-
rics are significantly different from scan to scan, the statistical power 
of the measurement is greatly decreased, which can make network 
analysis unreliable. The focus of this paper is to evaluate the repro-
ducibility of measured graph metrics between two fMRI runs.

Network reproducibility was assessed using intraclass correlation 
coefficient (ICC) statistics to test the absolute agreement for mean 
and voxel-wise graph metrics. For voxel-wise reproducibility, various 
network statistics were compared at each node between two time 
points in the same set of subjects. Bland–Altman plots were also 
produced to test measurement reliability of mean graph metrics.

Materials and Methods
study ParticiPants
Data for this study consists of 45 healthy older adults that par-
ticipated in a separate experiment evaluating a cognitive training 
program (Mozolic et al., 2009, 2010). The age range of subjects 
was 65–75 with an average age of 69 (±3 SD) years. Demographics 

introduction
Application of graph theory analysis to the human brain has pro-
vided further insight into the complex interactions of different 
regions in the brain. Functional relationships within the brain net-
work has been studied in functional magnetic resonance imaging 
(fMRI), electroencephalography (EEG), magnetoencephalography 
(MEG), and multielectrode array (MEA) (Bullmore and Sporns, 
2009). Graph network theory has also proven useful in the study 
of human disease, including various brain diseases (Bassett and 
Bullmore, 2009). Network analysis of the functional connectivity in 
Alzheimer’s disease patients revealed a significant difference in the 
mean small-world coefficient between patients and a control group 
(Supekar et al., 2008). Small-world properties were also shown to be 
disrupted in the network for schizophrenia patients (Micheloyannis 
et al., 2006; Bassett et al., 2008). These observed differences in net-
work topology suggest that monitoring changes in the network can 
be a useful tool in understanding different pathologies of the brain. 
More importantly, the ability to use graph metrics to compare differ-
ent populations is appealing in both research and clinical settings.

Study of functional connectivity in the brain reveals how dif-
ferent regions of the brain interact and is of particular interest 
in network science. The at-rest fMRI network has been used to 
study the modular structure and small-world properties of the 
brain (Ferrarini et al., 2009; Wang et al., 2009). In addition, several 
studies have used task-based fMRI and MEG data to assess con-
nectivity during various cognitive and motor processes (Eguíluz 
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for the study included 25 females and 20 males, who comprised 
of 43 White (including one Hispanic or Latino), and two Black or 
African American participants.

All participants gave written informed consent approved by 
the Institutional Review Board at Wake Forest University School 
of Medicine, Winston-Salem, NC. Participants were compensated 
approximately $20/h for their participation in the study.

scanning Protocol
All data reported here are from scans collected at a baseline session 
prior to any intervention. For each subject, two independent scans 
were collected, one after the other, during the same scan session. 
Thus, each person completed the task described below two sequen-
tial times to produce two datasets. The subjects were not removed 
from the MRI scanner between the two scans. During each scan, 
gradient-echo EPI images (TR/TE = 2100/40 ms) were acquired 
over a period of 5 min 23 s (154 images) on a 1.5 T GE twin-
speed LX scanner with a birdcage head coil (GE Medical Systems, 
Milwaukee, WI, USA).

The field-of-view was 24 cm (frequency) × 15 cm (phase) with an 
image acquisition matrix of 64 × 40 yielding an in-plane resolution 
of 3.75 mm × 3.75 mm. Each volume had full brain coverage and 
was composed of 28 slices 5-mm thick with no gap. T1-weighted 
anatomical images were collected for tissue segmentation pur-
poses. The high-resolution, structural scans were obtained using 
an inversion recovery 3D spoiled gradient-echo sequence (matrix 
size = 256 × 256; field of view = 24 cm; 1.5 mm sections, no gap; 
128 slices; in-plane resolution = 0.94 mm).

Participants performed an executive function task (Eriksen and 
Eriksen, 1974) that required them to focus attention on a central 
visual stimulus and ignore other visual stimuli to either side of the 
central stimulus. The task was presented using a rapid event-related 

design (Burock et al., 1998). Stimuli were controlled with E-Prime 
software1 and presented with MR-compatible visual display gog-
gles (Resonance Technology Inc.2). Images were motion corrected, 
normalized to Montreal Neurological Institute (MNI) space, and 
resliced to a 4 × 4 × 5 mm voxel size using SPM99 (Wellcome Trust 
Centre for Neuroimaging, London, UK). The anatomical image was 
normalized to MNI space and segmented into gray matter, white 
matter, and cerebrospinal fluid (CSF) using the unified segmenta-
tion algorithm in SPM5 (Ashburner and Friston, 2005). Tissue 
maps were generated by averaging all signals from the segmented 
images and applying a threshold. White matter and CSF maps were 
thresholded at 0.8 and used to calculate the mean signal from each 
tissue type. The gray matter maps were thresholded at 0.2 and used 
to mask the functional images. The threshold for gray matter is 
more lenient than those used for white matter and CSF. This is done 
to increase sensitivity and to capture most of the gray matter con-
taining voxels. The mask serves to limit the analysis to gray matter 
voxels and to reduce the computation time in network analysis.

network analysis
As diagrammed in Figure 1, fMRI time courses were extracted for 
each voxel in gray matter (approximately 16,000) and band-pass 
filtered to remove signal outside the range of 0.009–0.08 Hz (Fox 
et al., 2005; van den Heuvel et al., 2008). Network analysis was 
based on subject specific gray matter tissue maps with mean white 
matter and CSF signal regressed from the filtered time series to 
account for physiological noise. The six rigid-body motion param-
eters from the motion correction process were also regressed from 
the time series.

FIguRe 1 | Schematic of network and reproducibility analysis. Voxel time 
courses are extracted from the fMRI time series and computing the Pearson 
correlation between all voxel pairs, a correlation matrix is produced. A 
threshold is applied to the correlation matrix to generate a binary adjacency 

matrix. From the adjacency matrix, graph metrics are calculated at every  
node in the network and averaged to produce mean network metrics. From 
these graph metrics, ICC(k) scores, Bland–Altman plots and ICC(1) maps 
are produced.

1www.pstnet.com
2www.mrivideo.com
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Bland–Altman (BA) plots were generated for the paired runs 
to assess the repeatability of mean graph metrics. BA plots meas-
ure the difference of means between runs. For repeated meas-
urements, a mean difference of 0 indicates perfect repeatability. 
Using a one-way analysis of variance with subject as the factor, 
the within-subject standard deviation (σ

w
) was calculated to 

determine the repeatability coefficient (RC = ± ×1 96 2. σw ). 
The mean difference is expected to be less than the RC val-
ues, which serve as the 95% limit of agreement (Bland and 
Altman, 1999).

To quantify the spatial pattern of reproducibility across the brain, 
a one-way model for single measurements, designated ICC(1), was 
used to calculate the reproducibility of individual voxels in net-
works across subjects. It was calculated as
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where n is number of subjects, σr
2 is the between subject variance 

and σw
2  is the within subject variance.

ICC(1) analysis requires that a given voxel must be present in 
both realizations of the network for every subject. If a voxel is 
missing in any one network, then that voxel cannot be included 
in the analysis. This occurs because individual subject gray mat-
ter masks result in different sets of voxels being identified as gray 
matter across subjects. To address this issue, a threshold was set 
whereby a given voxel must appear in 80% of the subjects to be 
included in ICC analysis and only those subjects with that voxel 
were included in the calculation. Thus, the specific subjects used 
to calculate ICC in each voxel included a subpopulation of at least 
80% of the total subject pool. ICC(1) scores were used to pro-
duce voxel-wise reproducibility maps that were mapped to brain 
space in unsmoothed and smoothed data. These ICC(1) maps 
were compared to a “hub” map that represents the consistency 
of the highest degree nodes (representing the top 25%) and low-
est degree nodes (representing the bottom 75% of nodes) across 
subjects. A secondary analysis was performed after smoothing 
the individual network metric maps using a Gaussian kernel of 
8 × 8 × 10. This smoothing step helps to reduce noise in the data 

A correlation matrix was then produced by computing the 
Pearson correlation between all possible pairs of voxels within 
the fMRI time series. A threshold was applied to the correlation 
matrix, whereby voxel pairs above the threshold were considered 
connected and assigned a value of 1, and voxel pairs below the 
threshold were considered not connected and assigned a value 
of 0. The discretization of the correlation matrix produces an 
undirected, unweighted adjacency matrix that serves as a topo-
logical diagram of functional connectivity. The threshold was 
defined such that the relationship between the number of nodes 
and average number of connections at each node was consistent 
across subjects. Specifically, the relationship S = log(N)/log(K) was 
the same across subjects, where N is the number of nodes in the 
entire network, K is the average node degree of the network, and 
S represents the average path length of an Erdő s–Rényi network 
(Watts and Strogatz, 1998). For this paper, the threshold S = 2.5 
was used for the majority of analyses, but the effect of threshold 
on network reproducibility was also evaluated for S = 2.0, 3.0, 
3.5, and 4.0. The adjacency matrix represented the largest fully 
connected component in the brain network.

calculated graPh Metrics
From the adjacency matrix, the following graph metrics were cal-
culated at each node as well as averaged to yield means for the 
entire network: degree (K), clustering coefficient (C), minimum 
path length (L), local efficiency (E

loc
), and global efficiency (E

glob
). 

Network metrics used in this study are shown in Table 1 (for more 
details on specific metrics, see Rubinov and Sporns, 2010).

statistical analysis
Intraclass correlation coefficient statistics were used to measure the 
absolute agreement of each graph metric between fMRI runs. ICCs 
are an appropriate statistic for comparing variables that share the 
same metric or category, and are often used for measurements that 
are considered exchangeable (i.e., the order of the measurements 
does not matter; McGraw and Wong, 1996; Gonzalez and Griffin, 
1999). An ICC score of 1 denotes complete agreement, while an 
ICC score of 0 denotes no agreement.

Graph metrics were calculated for the two runs at every node 
in the network and averaged to determine mean graph metrics. To 
test the reproducibility of the mean statistics, a one-way model for 
average measurements, designated ICC(k), was used. The “k” in this 
statistic is not related to network degree (K) and to avoid confusion 
will be abbreviated as ICC. It was calculated as

Table 1 | Description and mathematical definition of graph metrics used in this study.

graph metric Description equation

Degree Measures the connectivity of each node K Ai ij
j

n

=
=

∑
1

Clustering coefficient Measures local neighborhood connectivity, calculated C e K Ki i i i= −2 1/ ( ) 

 as the likelihood that neighbors of a node are also neighbors

Path length Measures the distance between nodes in the network and is calculated L N N dij
ij n i j

= −
∈ ≠
∑1 1/ ( )

,

 

 as the shortest geodesic distance between each node and every other node

Global efficiency Measures the closeness of an individual node to all other nodes in the network E E G N N d
i j G

ijglob = = −
≠ ∈
∑( ) / ( ) /1 1 1

Local efficiency Describes how interconnected the neighbors are in a particular area of the network E N E Gi
i n

loc =
∈
∑1/ ( )
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effect of threshold on reProducibility
The in-depth evaluation of reproducibility was limited to a single 
network threshold. However, the results presented above generally 
hold regardless of the chosen threshold. Figure 4 shows repro-
ducibility across thresholds (S). These data demonstrate that the 
reproduciblity of C, L, and both measures of efficiency was generally 
stable across different thresholds, particularly 2.0–3.5. However, 
there are some trends that appear at the extremes with L and glo-
bal efficiency exhibiting poor reproducibility at the most stringent 
threshold and local efficiency having poor reproducibility at the 
most lenient threshold. The only metric that exhibited considerable 
threshold effects was degree. Reproducibility was high at S = 2.0. 
At S = 2.5 reproducibility dropped precipitously but increased at 
successively higher thresholds. The changes in reproducibility for 
K may be related to the change in network size. As seen in Figure 5, 
the consistency of high degree nodes (top 25%) decreases at higher 
thresholds. At lower thresholds there is greater consistency of high 
degree nodes across the brain, but as the threshold becomes more 
stringent, only the cores of the network remain connected. The 
effects of network topology is further evaluated in the voxel-wise 
analyses below.

Voxel-wise network Metric reProducibility
Intraclass correlation coefficient scores represent reproducibility 
for mean measurements, but do not convey information about 
reproducibility of network metrics in various brain regions. Thus, 
ICC(1) statistics were evaluated on a voxel-wise basis to gain a bet-
ter perspective of reproducibility in brain space. For reference, the 
spatial distribution of reproducibility was compared to the spatial 
locations of the most connected brain regions (hubs). Population-
based hub maps were generated using a degree threshold chosen to 
classify the top 25% of nodes as high degree and the bottom 75% as 
low degree. Across all subjects, this threshold corresponds to K > 48 
for the proportion of high degree nodes (25.1% ± 0.03 SD). As seen 
in Figure 6, the degree maps across runs for a representative subject 
show that high degree nodes appear to have high spatial reproduc-
ibility while low degree nodes show greater spatial variability.

The population-based hub map (Figure 7A) was derived from 
overlap maps of highest degree nodes (top 25% in orange and yel-
low) and lowest degree nodes (bottom 75% in blue and green). In 
the generated hub map, brighter areas denote higher consistency 
of high degree or low degree nodes across subjects. When ICC(1) 
reproducibility was calculated, path length and global efficiency 
were found to be uniform across the brain (Figures 7C,E). In con-
trast, higher ICC scores co-localized to the same regions contain-
ing high degree nodes in the hub map for clustering coefficient, 
local efficiency, and degree (Figures 7B,D,F). When the data was 
smoothed, the ICC scores increased for all graph metrics. Path 
length and global efficiency were still uniform across the brain, 
while the remaining graph metrics became more uniform such that 
reproducibility was no longer restricted to high degree nodes.

discussion
Mean network Metric reProducibility
Although network reproducibility has been demonstrated for MEG 
(Deuker et al., 2009) and DTI tractography (Vaessen et al., 2010), 
there are no known papers to date on reproducibility in fMRI brain 

and account for small errors in the spatial normalization. The 
data were smoothed after the networks were generated to avoid 
the introduction of spurious local correlations.

All statistical analyses of mean graph metrics were performed using 
SPSS (version 17.0.0, SPSS Inc., Chicago, IL, USA). Statistical calcu-
lations for the voxel-wise metrics were performed using MATLAB 
(version 7.7.0 2008b, The MathWorks, Inc., Natick, MA, USA).

results
Mean network Metric reProducibility
Intraclass correlation coefficient scores for mean graph met-
rics ranged from 0.29 to 0.86 (Figure 2). Clustering coefficient 
had the highest score (ICC = 0.86) and degree had the lowest 
score (ICC = 0.29). Global efficiency (ICC = 0.83), path length 
(ICC = 0.79), and local efficiency (ICC = 0.75) also had high ICC 
scores. For reference, the following ranges can be used for ICC 
interpretation: ICC <0.20 indicates poor agreement; 0.21–0.40 
indicates fair agreement; 0.41–0.60 indicates moderate agreement; 
0.61–0.80 indicates strong agreement; and >0.80 indicates almost 
perfect agreement (Montgomery et al., 2002).

Bland–Altman plots for mean graph metrics (Figure 3) showed 
that each metric was generally repeatable with the mean difference 
falling within the RC limits for the majority of subjects. In fact, for 
all metrics only three or fewer subjects fell outside the RC limit. 
This indicates a high level of repeatability for all measures (Bland 
and Altman, 1999). While the mean difference was approximately 
normally distributed for most metrics, the absolute value of the 
mean difference for degree increased as the mean increased. The 
increasing mean differences may be related to the degree distri-
bution within subjects, which follows an exponentially truncated 
power law (Achard et al., 2006; Hayasaka and Laurienti, 2010). 
However, distributions across large populations have not been 
investigated to date. Nevertheless, the data indicated that degree 
was within the RC limits for all subjects except those three subjects 
with the highest mean degree difference.

FIguRe 2 | Intraclass correlation coefficient plot of mean graph metrics. 
Clustering coefficient (C), global efficiency (Eglob), local efficiency (Eloc), and 
path length (L) were found to be highly reproducible while degree (K) had a 
noticeably lower ICC score.
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analyses indicate that these network metrics are highly repeatable 
and individual subjects should be expected to have similar metrics 
across repeated measurements of the same network (at least within 
the same MRI session). In contrast, average degree only had fair 
agreement based on the ICC score but did fall within the RC limits 
based on Bland–Altman analysis.

While the exact cause of the poor reproducibility seen in degree 
remains unknown at this time, it is of particular importance because 
degree is one of the most commonly used centrality metrics to 
identify hub structure, assortativity (Newman, 2003; Small et al., 
2008), and hierarchy (Ravasz and Barabási, 2003; Trusina et al., 
2004) within in a network. The degree distribution seen in the 
brain is said to follow a power law or an exponentially truncated 

networks. This is a critical issue given the rapid growth in network 
science studies using fMRI data. The current study demonstrated 
high reproducibility, as determined using ICCs, for mean cluster-
ing coefficient, path length, global efficiency, and local efficiency. 
In fact, the data presented in Figure 2 shows that almost perfect 
agreement was achieved for clustering coefficient and global effi-
ciency, and strong agreement was achieved for path length and local 
efficiency. These values are indicative of high reproducibility. The 
above metrics were also found to fall within the RC limits of their 
respective BA plots as shown in Figure 3. Clustering coefficient and 
local efficiency had only 1 of 45 subjects outside of the repeatabil-
ity coefficient. Path length and global efficiency has 2 and 3 sub-
jects outside the repeatability coefficient, respectively. Again, these 

FIguRe 3 | Bland–Altman plots for network metrics. Network metric differences for each subject generally fell within the repeatability coefficient limit (dashed 
line) suggesting that mean network metrics are generally repeatable.
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FIguRe 4 | Intraclass correlation coefficient plots for graph metrics across different thresholds. Clustering coefficient had the most consistent reproducibility 
across thresholds, while degree appears to change the most as the threshold changes. Reproducibility across thresholds S = 2.5–3.5 appears to be consistent for 
most graph metrics.

power law, where a large proportion of nodes are low degree and 
a small proportion are high degree (Eguíluz et al., 2005; Achard 
et al., 2006; van den Heuvel et al., 2008; Hayasaka and Laurienti, 
2010). The mean of such a distribution is skewed by the high degree 
nodes, thus mean degree does not adequately represent the central 
tendency of the distribution. Another characteristic of these types 
of distributions is a large variance due to an extreme range of values, 

which can vary over several orders of magnitude. Both of these 
issues create problems for the BA plot and ICC analyses, which 
assume a normal distribution for evaluated metrics. Although 
degree appears to be repeatable as assessed by the BA analyses, the 
data is heteroscedastic as the variance increases with larger means. 
This may also explain the low reproducibility in the ICC score 
as a result of high within subject variance. Because degree does 
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changed based on experimental condition or greater practice on 
the same experimental task (Deuker et al., 2009). In the current 
work, spatial variability of nodal metric reproducibility was also 
observed across the brain. When compared to the population hub 
map, clustering coefficient, local efficiency, and degree were more 
highly reproducible in the hubs of the network. In contrast, repro-
ducibility of path length and global efficiency was more uniform 
across the brain.

The difference in reproducibility across metrics seems to be 
related to how each metric is calculated. Clustering coefficient, local 
efficiency and degree are derived from connections of a node to 
its immediate neighbors while path length and global efficiency 
take into account the relationship of a node to the entire network. 
As a result, clustering coefficient, local efficiency, and degree are 
sensitive to changes in node degree. For instance, adding or remov-
ing a connection to a node of degree 2 represents a 50% change 
in degree, which can have a dramatic effect on the clustering and 
local efficiency of that node. The same change applied to a node of 
degree 100 will not have as large an effect. In contrast, since path 
length and global efficiency take the entire network into account, 
small changes to a node of high or low degree will not affect the 
measurement significantly. Small alterations in node degree may 
represent real changes in the network from run to run or it could 
represent noise in the fMRI time series. Either way, low degree nodes 
appear to exhibit greater susceptibility to these minor alterations 
in connectivity than the high degree hubs.

Another possibility for variable reproducibility is spatial uncer-
tainty in voxels, which leads to voxels not matching exactly across 
runs. Regions with clusters of high degree nodes will not be as 
susceptible to spatial variation because they are close to other high 
degree nodes. As a result, spatial co-localization of high degree 
nodes allows for a certain tolerance of spatial variation, which lends 
to elevated ICC scores in hubs of the network even without perfect 
spatial registration between runs.

graPh Metric reProducibility at different thresholds
As mentioned earlier, high degree nodes were found to be more repro-
ducible than low degree nodes. At S = 2.0, most node connections 
survive the threshold, resulting in very dense networks. As seen in 
Figure 5, at S = 2.0, there is a high consistency of the top 25% of nodes 
for degree across subjects, which likely explains the high ICC score 

not follow a normal distribution, the use of mean degree to assess 
reproducibility is likely inadequate. Future studies may consider 
assessing reproducibility using median degree as it would be less 
susceptible to the influence of high degree hubs that exist in the 
tails of the distribution. Unfortunately, the commonly used analyses 
(ICC and Bland–Altman) are highly dependent on the standard 
deviation, and the use of median values would not alleviate broad 
range of variance in the degree of these networks.

Voxel-wise network reProducibility
Deuker et al. (2009) found that reproducibility of MEG-derived 
networks can vary spatially across the brain even when global met-
rics are highly reproducible. They found a subset of nodes with 
higher reproducibility and the spatial distribution of these nodes 

FIguRe 5 | Consistency of high degree nodes (top 25%) across subjects at different thresholds. At S = 2.0, the consistency of high degree nodes is very high 
across the entire brain. At higher thresholds, this consistency decreases with the high degree cores remaining at the most stringent thresholds (S = 3.5–4.0).

FIguRe 6 | Degree maps for single subject. (A) Spatial localization of high 
degree nodes (K ≥ 48) appears to be highly reproducible. (B) Spatial localization 
for low degree nodes (K < 48) shows high spatial variation. The high variability 
and large proportion of low degree nodes results in a low ICC score.
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FIguRe 7 | Intraclass correlation coefficient (1) maps of reproducibility 
across the brain for smoothed and unsmoothed data. (A) The subject 
degree map reflects the consistency across subjects of the highest degree 
nodes (top 25% in orange and yellow) and lowest degree nodes (bottom 
75% in blue and green) across subjects. Reproducibility was relatively 

uniform across the brain for L and Eglob (C,e). Comparing the subject map to 
the ICC(1) maps shows that reproducibility was only high in for C, Eloc, and K 
in regions that consistently exhibited hubs across the study population 
(B,D,F). In all cases, smoothing resulted in higher and more uniform 
reproducibility.
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order to confirm this finding, reproducibility needs to be conducted 
under different experimental task conditions to see if reproduc-
ibility co-localizes to the hubs in the network, wherever they may 
lie in the brain. The study here was conducted during an executive 
task, which may account for the higher reproducibility. Deuker 
et al. reported similarly high findings in their MEG study and sug-
gest that resting state data is less reliable due to changes in resting 
state patterns.

conclusion
This study evaluated the reproducibility of graph metrics in fMRI 
brain networks. Comparisons of mean graph metrics were made 
using ICC scores and BA plots. Mean network metrics were found 
to be highly reproducible in all graph metrics except for degree 
while all metrics were highly repeatable according to BA plots. 
In our opinion, with the exception of degree, the mean value of 
the remaining metrics is suitable for use in future studies because 
their distributions are closer to a normal distribution and global 
changes in the mean value reasonably reflect the state or changes 
in the network.

When looking at voxel-wise reproducibility, ICC(1) scores 
were higher in hubs of the brain for clustering coefficient, local 
efficiency and degree. Reproducibility was more uniform across 
the brain for path length and global efficiency. It is unclear why 
reproducibility is lower in low degree nodes, but it is suspected 
that slight degree differences between runs may have a large impact 
on low degree nodes compared to high degree nodes. In all cases 
Gaussian smoothing will increase reproducibility, but reproduc-
ibility in smoothed images may not reflect the true reproducibility 
at a particular voxel.
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for degree at S = 2.0. At S = 2.5, although the networks are about the 
same size, the consistency of high degree nodes decreases (i.e., fewer 
connections survive the threshold). At higher thresholds, and most 
pronounced at S = 3.5–4.0, there is a noticeable decrease in the size of 
the large component of the network. At higher threshold levels, the 
large component reflects the high degree cores of the network, which 
are highly reproducible at lower thresholds. The higher thresholds rep-
resent the cores of these networks, thus ICC scores increase for graph 
metrics that are degree dependent (i.e., E

loc
 and K). In contrast, path 

length and global efficiency are dependent on the global topology of the 
network. As the size of the large component changes, reproducibility 
appears to be affected by these changes with reproducibility decreasing 
as the network becomes more fragmented. However, it appears that 
only the most stringent thresholds (S = 3.5–4.0) significantly affect 
reproducibility. For this study, S = 2.5 was used for the primary analyses, 
but strong reproducibility was also seen at other thresholds except the 
most liberal (S = 2.0) and most stringent (S = 4.0). At S = 2.0, although 
reproducibility is high for metrics like degree, the threshold is far too 
liberal and results in dense graphs that may not reflect the true network 
topology. At S = 4.0, the thresholds appears to be too stringent as the 
network becomes more fragmented.

sMoothed Vs. unsMoothed data
When Gaussian smoothing is applied to the data it increases the 
ICC scores for all metrics. In addition, node degree has less of an 
effect on reproducibility. This occurs because a Gaussian smooth-
ing kernel reflects a weighted average of the voxels in the kernel. 
In effect, the ICC calculation no longer represents reproducibility 
at a particular voxel, but that of multiple voxels. As a result, this 
measure is more akin to ICC than ICC(1), and may not characterize 
the true reproducibility of a particular voxel.

liMitations and future directions
One caveat of this study is that it was done in healthy older adults, 
thus there is a there is a possibility that there are network changes 
with age. A study on modular organization in the brain found dif-
ferences in the number of modules and topological organization 
between older and younger adults (Meunier et al., 2009). For that 
reason, further study in younger populations is warranted.

Another area that requires further exploration is the localiza-
tion of reproducibility in the brain. In this study, reproducibility 
was found to be higher in the hubs of the network. However, in 
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