
NEUROINFORMATICS

(1) Every model in the simulation is embedded within the three-
dimensional coordinate system of a neural tissue;

(2) Coordinates for all models are available during initialization 
and simulation;

(3) Model dependencies, communication, and calculation are 
some functions of these coordinates.

These requirements affect not only how a neural tissue simula-
tion is initialized and calculated, but also its possible outcomes 
and the types of scientific questions it can be used to answer. We 
therefore review essential constraints derived from these require-
ments together with their associated simulation techniques and 
expected effects on a simulation’s outcome and scientific value.

Structural constraints
Structural constraints on neural tissue simulation guide the 
arrangement and coupling of compartments, channels, and syn-
apses to compose neurons and neural tissue. These constraints 
permit only certain compositions of structural elements and thus 
aim to create a three-dimensional replica of a real neural tissue.

Consider first a neuron model’s branch topology. Branches 
constrain the geometry and number of compartments coupled to 
create a compartmental neuron model. Compartmental models 
of neurons simulate the currents that flow within and across a 
neuron’s membrane in order to calculate the voltage of each com-
partment. The distance between branch points in a compartmental 
model directly impacts the model’s simulated electrophysiology, 
and thus its signaling properties in a circuit (Krichmar et al., 2002). 
Neuronal and neural circuit models often incorporate these topo-
logical constraints, derived from morphological reconstructions of 
real branched neurons, and with them become more  predictive of 

The Problem of large-Scale Neural TiSSue 
SimulaTioN
Techniques to simulate the electrophysiology of neurons have pro-
gressed steadily since the middle of the last century, from single 
compartment models of Hodgkin and Huxley (1952) to multi-
compartment models of single fibers (Cooley and Dodge, 1966), 
branched neuronal arbors (Parnas and Segev, 1979), and whole neu-
rons (Traub et al., 1991). Coupling neuronal compartments through 
models of synaptic release and receptors (Destexhe et al., 1994) and 
through models of gap junctions has provided a basis for the creation 
of diverse synapse models and the extension of neuronal modeling 
to neural circuit modeling (Traub et al., 2005). Each step has created 
more comprehensive simulations, and each has involved the impo-
sition of additional structural and functional constraints and the 
development of new methods to exploit these constraints efficiently.

With each technique now established in the field, a next step 
in extending simulations of the nervous system is to impose con-
straints derived specifically from neural tissue (Markram, 2006) 
and to construct simulations that efficiently exploit these con-
straints on large supercomputers (Hines et al., 2008a). We first 
review the constraints, components, and tools that support neural 
tissue simulation.

DefiNiTioN of Neural TiSSue SimulaTioN
We define neural tissue simulation first to include multi-compart-
ment Hodgkin–Huxley models of neurons derived from anatomical 
reconstructions of real neurons. Second, simulations must support 
synaptic coupling between compartments and attempt to match 
synaptic distributions from real tissue. Finally, neural tissue simu-
lations must meet the following additional requirements, which 
distinguish them from other neural circuit simulations:
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real neuron and circuit physiology (Schutter and Bower, 1994a). 
Neural tissue simulation therefore also incorporates these topo-
logical constraints.

The placement of channel models within the topology of a neu-
ron contributes to the topology’s impact on simulation outcomes 
(Schutter and Bower, 1994b). Unlike topological constraints on 
branching, which derive from standard anatomical reconstruction 
techniques, channel placement is poorly constrained because meas-
uring channel densities across a neuronal arbor is technically chal-
lenging (Evers et al., 2005). Therefore, placement is typically a free 
structural parameter in simulations constrained by branch topology. 
Elegant methods have addressed the problem of optimal placement 
of channels given existing structural constraints and functional tar-
gets for fitting neuronal simulations (Druckmann et al., 2008).

Beyond topological constraints, neural tissue simulations impose 
geometrical constraints on neurons, branches, and compartments, 
derived from measurements of real neuron reconstructions. These 
constraints first assign three-dimensional tissue coordinates to 
each compartment and branch point. Coordinates do not change 
a neuron’s simulated physiology directly, however, since the solu-
tion to the Hodgkin–Huxley model for a cable depends not on the 
precise spatial locations of its compartments, but only their size 
and coupling. Instead, geometrical constraints affect a neuron’s 
physiology when other models (such as other neuron branches) 
are coupled to it (such as through synapses) by some function of 
its tissue coordinates (such as a proximity measure).

For example, in neural circuit models, a synapse is generated 
by first identifying a specific pair of compartments to which the 
pre- and post-synaptic components of the synapse are coupled. 
Similar to branch junctions and channels, the precise distance along 
branches where synapse models occur may affect the physiology 
and signaling properties of certain neurons (Ascoli and Atkeson, 
2005), though some appear less sensitive to these constraints 
(Schutter and Bower, 1994c). Because of this risk that synapse place-
ment will affect neuron physiology, constraining synapse placement 
accurately is a goal of neural tissue simulation. By computing the 
distance between branches from different morphologically accu-
rate neurons in the three-dimensional tissue coordinate system, 
those compartments available for synapse creation are identified 
(Kozloski et al., 2008). Synapse are then created between those 
compartments where branches of neurons are in close proximity.

In addition to compartment, channel, and synapse placement, 
other relationships between neuron models can be derived from neu-
ral tissue coordinates. For example, when every simulated membrane 
conductance is associated with a coordinate in the tissue, the ability 
to calculate extracellular field potentials Traub et al. (2005), model 
ephaptic interactions between neurons (Anastassiou et al., 2011), and 
generate a forward model of EEG is greatly facilitated. Furthermore, 
local relationships between tissue compartments and the extracellular 
space expressed as models of diffusion become possible, and could 
allow for tissue-scale modeling of drug interactions and brain injury 
effects such as spreading depression (Church and Andrew, 2005).

Functional constraints
Modeling the functional properties of neural tissue involves simu-
lating tissue dynamics at many scales, from the electrodynamics 
of individual cell membranes, to emergent neuron, circuit, and 

whole tissue phenomena. Functional constraints, such as the types 
and parameters of ion channel, axonal compartment, and synapse 
models used, each have significant effects on what results a simula-
tion can achieve.

To capture the varied electrical properties of the membrane of 
a single neuron (Achard and Schutter, 2006) and different neu-
ronal types (Druckmann et al., 2007), neuron models incorporate 
a variety of ion channel models, each responsible for changing 
membrane permeability to specific ions. Given ionic concentra-
tion differences between the inside and outside of a compartment, 
a characteristic time course for changing ionic conductance, and 
a maximal value for this conductance, channel models determine 
how electrical current flows (and thus how voltage changes) in 
compartments in a neuron model.

Channel models often exhibit highly non-linear relationships 
between conductance changes and their dependencies (for example, 
the voltage-dependent conductance of the fast sodium channel 
model). In practice, this makes neuron models’ simulated physi-
ology susceptible to small changes in the parameters of their ion 
channel models (e.g., time constants, peak conductances). These 
susceptibilities are pronounced in dendrites (Segev and London, 
2000), where most synaptic integration occurs. Strategies exist for 
automatically and simultaneously finding parameters for a variety 
of ion channels to achieve a good fit of a neuron model to neuron 
physiology (Druckmann et al., 2008).

Functional constraints on models of presynaptic axonal com-
partments vary by approach. Most neural circuit and neural tissue 
simulations do not model presynaptic compartments explicitly but 
instead assume axons are independent of the electrical integra-
tion properties of the neuron and never fail to transmit an action 
potential (or “spike”) generated at the soma. Greater functional 
constraints can be imposed on neural tissue simulations by solv-
ing the Hodgkin–Huxley equations for compartments representing 
the complete or partial axonal arbor. These constraints then allow 
certain phenomena to emerge that could influence a neural tissue 
simulation. First, failures of action potential propagation can occur 
at certain points along an axon, introducing uncertainty surround-
ing the signaling role of action potentials transmitted through 
otherwise reliable axons (Mathy et al., 2009). Second, electrical 
synapses between axons can initiate action potentials without first 
depolarizing the axon initial segment (Schmitz et al., 2001). Third, 
action potentials may be generated by a mechanism that depends 
on the length of the axon. For example, bursts of action potentials 
of a particular duration may be generated when a calcium spike 
from the cell body depolarizes an axon of a particular length (Mathy 
et al., 2009).

Functional constraints on synapse models also vary by approach 
and are closely related to the chosen model of the presynaptic 
compartments. When presynaptic voltages are calculated, kinetic 
models of presynaptic voltage-dependent neurotransmitter release 
(Destexhe et al., 1998), which couple presynaptic voltages directly 
to conductance-based models of postsynaptic receptors, can be 
used. In addition, models of resistive coupling across gap junctions 
become possible. These result in a network of coupled equations, 
which can then model, for example, subthreshold, voltage-depend-
ant leakage of neurotransmitter, or electrical coupling between 
axons (Schmitz et al., 2001). When the presynaptic compartment’s 
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The assumptions about axons made by logical spike passing (i.e., 
fully reliable action potential transmission and complete isolation 
from dendritic and somatic integration) are known to be false for 
axons exhibiting certain functional constraints, as discussed above 
(Schmitz et al., 2001; Mathy et al., 2009). Furthermore, excluding 
axons from simulations also limits the types of additional phenom-
enological models that may be incorporated into a neural tissue 
simulation. In particular, models of neural development and extra-
cellular signaling and physiology, which depend on the intracel-
lular physiology of axons, are precluded when this physiology is 
not modeled. Measurements or perturbations of these phenom-
ena (e.g., EEG, BOLD, deep brain stimulation, etc.) also cannot be 
incorporated without some indirect coupling to a model of the 
intracellular voltage of axonal compartments.

In addition to integrating inputs across chemical synapses, 
neural tissue simulation requires the ability to simulate currents 
across electrical synapses created by gap junctions. The numerical 
approach employed in previous neural tissue simulation appli-
cations to solving the dendritic compartments’ voltages requires 
that electrical synapses between compartments be solved differently 
than chemical synapses and separately from the integration of the 
neuronal arbor, since they affect coupled compartments instanta-
neously. Because the numerics of electrical synapses are not very 
stiff, however, the computation of gap junctional currents at each 
time step (which ignores the off diagonal Jacobian contribution) 
is sufficient for numerical stability using fixed-point iteration 
methods (Hines and Carnevale, 1997; Traub et al., 2005). These 
methods impose computational and communication demands on 
the numerical solver, and can limit the number and placement of 
electrical synapses (Traub et al., 1991).

Previous scalability
One important measure of a parallel computational approach is 
scalability, and we therefore considered these solutions’ scalability 
and efficiency. Strong scaling refers to a solution’s ability to solve 
problems of constant size faster with more processors. Weak scal-
ing describes how a solution’s runtime varies with the number 
of processors for a fixed problem size per processor. Speedup is 
the ratio of the runtime of a sequential algorithm to that of the 
parallel algorithm run on some number of processors. A solu-
tion that exhibits ideal strong scaling has a speedup that is equal 
to the number of processors, whereas one exhibiting ideal weak 
scaling has a runtime independent of the number of processors. 
Efficiency is a measure of a solution’s ability to use processors 
well, and is defined as a solution’s speedup relative to the ideal 
speedup. Solutions that exhibit excellent scaling are those with 
efficiencies close to 1.

The problem of balancing the load of computation between 
processors on a parallel machine has also motivated techniques 
for splitting compartmental models of neurons across multiple 
processors in certain simulators (Hines et al., 2008a). Good load 
balancing ensures all processors compute continuously with none 
sitting idle, until communication occurs. Communication then 
proceeds between all nodes of a load balanced parallel machine 
until computation resumes. Load balance is particularly important 
in neural tissue simulation, given that the computational complex-
ity of heterogeneous neurons in a tissue varies greatly. While logical 

voltage is not modeled, a stereotyped modification of postsynaptic 
currents or voltage potentials in response to the logical determina-
tion of a presynaptic action potential is often employed to model 
the synapse.

PreviouS SoluTioNS, Parallel NeuroN, aND The blue braiN 
ProjecT
Certain simulation packages allow users to perform neural tissue 
simulations, including GENESIS (Bower and Beeman, 1998) and 
NEURON (Hines and Carnevale, 1997), which first exploited the 
parallelism of vector machine architectures (Hines, 1993). Today, 
both applications support versions that run on parallel comput-
ers (Goddard and Hood, 1998; Migliore et al., 2006), and thereby 
attempt to satisfy one of the most pressing technical challenges that 
neural tissue simulations face: the efficient exploitation of greater 
computing resources as simulations grow in scale. In describing 
these solutions, we therefore focus on their computational approach 
to satisfying the requirements and constraints imposed by neural 
tissue simulation.

Previous simulation approaches
Briefly, these applications initially calculated large networks of many 
neurons by solving each wholly on a single computational node of 
a parallel machine, then communicating spikes logically over the 
machine’s network to nodes where others are also wholly solved. 
Communication between nodes in these applications, as in the Blue 
Brain Project, models the network of neurons specified by the neural 
tissue simulation, such that “processors act like neurons and con-
nections between processors act as axons” (Markram, 2006). This 
communication scheme exploits the method of modeling axons 
without compartments and instead as reliable transmitters of spikes 
to the synapses where postsynaptic currents or potentials are then 
generated. Typically some threshold condition must be satisfied in 
the soma or axon initial segment (for example, dV

m
/dt > u, where 

V
m
 is the compartment’s membrane potential, and u is a spiking 

threshold) (Brette et al., 2007) for a spike to be transmitted logi-
cally as an all-or-none event. This “logical spike passing” approach 
therefore limits the types of models that may be used to generate 
the presynaptic voltage via axonal propagation, resulting in a less 
costly calculation, as it solves the Hodgkin–Huxley equations only 
for the dendritic, somatic, and first several axonal compartments. 
While the savings depend on many factors, we estimate the resulting 
speedup at 2–5×, despite the larger number of compartments in 
many axonal arbors, in part because axonal compartments typically 
require an order of magnitude fewer channel types than dendritic 
and somatic compartments.

Because the propagation of spikes along the axon is not mod-
eled physiologically, as in a compartmental solution of the axonal 
arbor’s voltages, logical spike passing requires parameterizing each 
synapse with an estimate of the interval between spike initiation at 
the soma and arrival at the synapse. The technique makes use of 
computational event buffers for integrating synaptic inputs in the 
order in which presynaptic neurons spiked. These buffers receive 
spike times from presynaptic neurons, sent at simulation intervals 
longer than the numerical integration time step, and corresponding 
to the presumed minimum spike delay in the network (Morrison et 
al., 2005), which synapses then integrate at expected times of arrival.
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The Neural TiSSue SimulaTor
We have exploited the structural constraints of neural tissue simu-
lation to create new methods that decompose a neural tissue into 
volumes, then map each volume and the models it contains directly 
to a computational node of a parallel machine to create the ultras-
calable Neural Tissue Simulator. Our approach computes the volt-
age in every axonal compartment, allowing spikes to propagate 
between nodes of a parallel machine over the shortest possible 
paths, ultimately arriving at synapses based on the dynamics of 
our physiological model of the whole axon. This novel approach 
to communication in the tissue is ultimately scalable, since no long 
range communication in the machine’s communication network is 
required. Furthermore, the approach allows for a broader range of 
scientific questions to be addressed in more accurate models of the 
tissue, for example by obviating the need to estimate conductance 
times between somata and synapses or to restrict gap junctions to 
only certain regions of the neuron.

iNiTializaTioN
The simulations we employed to test the Neural Tissue Simulator 
included several physiological models, coupled according to the 
structural and functional constraints of neural tissue simulation. 
Our simulations deviated from biological accuracy (for example, 
our cortical columns were stacked along the radial axis of the tissue) 
whenever necessary to provide a better test of the simulator (for 
example, to examine scaling in all three-dimensions). The simu-
lator supports all requirements of neural tissue simulation and 
therefore can be used to create biologically validated simulations 
of neural tissue.

Model graph specification
To create the simulator, we employed a model graph simulation 
infrastructure (Figure 1; Kozloski et al., 2009), written in the 
C++ programming language. We refer to this infrastructure as the 
Model Graph Simulator, upon which the Neural Tissue Simulator 
was built. Motivated by the extreme scale, dense connectivity, and 
rich heterogeneity of neural tissue components, and by the variety 
of methods in Neuroscience used to study it, the Model Graph 
Simulator allows specification of arbitrary networks of arbitrary 
models. Because the field continues to add new observations that 
require modification to existing tissue models, the Model Graph 
Simulator is extensible both in terms of network scale and the 
heterogeneity of its components. It achieves this by supporting 
the interoperability of existing network elements and new ele-
ments, defined using the declarative model definition language 
(MDL) and composed into directed graphs of arbitrary size using 
the declarative graph specification language (GSL; Kozloski et 
al., 2009).

Models include declared types and computational phases, 
executed in parallel across multiple threads referencing shared 
memory, multiple processes referencing distributed memory, or 
both. Each model is implemented once during initialization on 
a single computational node. It then connects to other models 
throughout the simulation. When a model attempts to connect 
to a model implemented on another node, it is noted as a sending 
model to that node. When a model attempts to receive a connection 
from a model on another node, a model proxy is created, and the 

spike passing is often viewed as a means to minimize communica-
tion over a parallel machine’s network, neuron splitting has been 
viewed as a load balancing solution only.

To provide for efficient communication between parallel calcula-
tions, an algorithm must exploit knowledge of the physical network 
that carries messages between nodes in the parallel machine. Ideally 
a simulation will minimize the number of nodes a message must 
traverse to arrive at its destination (Almasi et al., 2005). However, 
the topology of the networks of neurons expected within large 
neural tissues is irregular and largely unpredictable. Partly for this 
reason, these applications resort to a random “round robin” work 
distribution algorithm to assign neurons to nodes (Migliore et al., 
2006; Hines et al., 2008a). Such an approach approximates load 
balance without optimizing communication, reasoning that a ran-
domly generated communication network topology is as good as 
any for approximating the complex network topology present in 
neural tissue simulations. This is likely the best that can be expected 
for neuronal network simulations with long distance connections 
that employ logical spike passing, though hierarchical optimiza-
tions of both load balance and communication based on topologi-
cal analysis may be possible.

Limiting long term scalability of certain approaches has been their 
implementation of communication between computational nodes. 
Both point to point strategies (Goddard and Hood, 1998), and the use 
of MPI_Allgather for collective communication (Migliore et al., 2006) 
may overwhelm the network as simulation sizes grow in a logical 
spike passing scheme. While MPI (Message Passing Interface) collec-
tives have been optimized for the Blue Gene architecture (Almasi et 
al., 2005), certain collectives require greater network bandwidth than 
others, especially in the context of the complex but sparse communi-
cation patterns present in neural tissue simulations scaled beyond the 
volumes of local microcircuits [e.g., a “column” (Markram, 2006)]. 
Because all to all connectivity between neurons is a reasonable expec-
tation for simulations of smaller tissue volumes, MPI_Allgather is a 
reasonable choice for these simulations, since it gathers data from 
all processors then distributes it to all processors. Certain rare spikes 
not required by a given processor because no postsynaptic neuron is 
simulated on it are still communicated to that processor. As simu-
lated neural tissue volumes increase in size and the required node 
to node communication matrix grows sparser, however, the number 
of unnecessarily communicated spikes will be expected to grow dra-
matically, ultimately saturating the communication network.

A more reasonable choice when this inevitability arises is the 
MPI collective MPI_Alltoall, by which each node sends distinct data 
to each receiving processor1. To address this problem, a novel spike 
exchange solution on Blue Gene/P using a non-blocking multisend 
collective (by which spikes are sent only to the processors requiring 
them) has recently been implemented for parallel NEURON (Kumar 
et al., 2010). Here, hardware communication overlaps with compu-
tation, promising to allow scalability to continue beyond the previ-
ously published 8,192 nodes of Blue Gene/L (Hines et al., 2008b).

1Note that Alltoall refers to the required full specification of a processor to processor 
communication matrix in the arguments to the MPI collective. Somewhat confu-
singly, this allows specification of a sparse processor to processor communication 
matrix. In contrast Allgather assumes a full processor to processor communication 
matrix, and therefore does not require its specification.
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(3) Fast sodium and delayed rectifier potassium channel models, 
based on the original Hodgkin–Huxley model. These channel 
models were coupled to all axon and soma compartments and 
solved in a single phase prior to all branches and junctions.

(4) Conductance-based AMPA and GABA
A
 synapse models 

(Destexhe et al., 1998) solved together with channels.
(5) A gap junction model comprising two connexons, for elec-

trically coupling compartments from different neurons 
through a fixed resistance and solved together with chemical 
synapses and channels.

A “functor” in our simulation infrastructure is defined in MDL 
and expresses how the simulator instantiates, parameterizes, and 
connects specific models based on arguments passed to it in GSL. 
All functors are therefore executed during simulation initiali-
zation and iterate over specified sets of models. We designed a 
Neural Tissue Functor as a key component of the Neural Tissue 
Simulator (MDL definition available as Supplementary Material). 
Its arguments include a file containing a neural tissue structural 
specification and parameter files targeting channels and syn-
apses to specific components of the tissue (examples available as 
Supplementary Material). The structural specification comprises 

connection is made from the model proxy to the model. Models 
sharing a computational phase have no data dependencies and 
reference other models or model proxies through MDL-declared 
model interfaces. Interprocess communication occurs only on 
declared phase boundaries, when data changed by models within 
that phase is marshaled, communicated to other processes, and 
demarshaled into model proxies (Figure 1).

To create the extensible Neural Tissue Simulator, we defined a 
core set of models in MDL (available as Supplementary Material). 
This list can be extended using MDL and the existing application 
to include any number of additional tissue components from neu-
roscience. The core models included:

(1) A model of a neuron branch, parameterized with the number 
of branch compartments, and solved implicitly at different 
Gaussian forward elimination and back-substitution com-
putational phases.

(2) Two models of a junction between neuron branches (inclu-
ding somata), one solved explicitly at different predictor and 
corrector computational phases preceding and following 
Gaussian elimination in branches, and the other solved 
implicitly as part of its proximal branch.

Figure 1 | Architectural overview of the Model graph Simulator. Two 
languages (left) define model state and interfaces (“model definition language,” 
MDL), and specify graph composition and connections (“graph specification 
language,” GSL). The specified graph is initialized and partitioned (left center). In 
the case of the Neural Tissue Simulator, partitioning is according to a tissue 
volume decomposition. Relationships between models through interfaces 

define connections (expanded view) and are parameterized separately from the 
models themselves. Models are initialized together in memory and computed 
by phase and by model type (right center). Communication between models 
(right) occurs at phase boundaries and is achieved when state from models is 
marshaled, communicated, then demarshaled into model proxies. Model 
proxies connect locally to downstream nodes to complete the connection.
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in a three-dimensional grid. This mapping provides a means to 
automatically decompose the tissue into network partitions that are 
easily mapped onto the computational nodes and communication 
network topology of a supercomputer such as Blue Gene (e.g., one 
volume per grid coordinate per Blue Gene node). In addition, these 
volumes allow access to tissue components by grid coordinates. 
For example, recording and stimulation electrode models declared 
directly in GSL (i.e., not initialized by the Neural Tissue Functor) 
are connected to tissue components by targeting volumes according 
to their grid coordinates, much as real electrodes are targeted to 
coordinates in a real neural tissue using a stereotax.

Touch detection
The model initialization methods we employ build on existing 
computational techniques. First, we utilize a touch detection tech-
nique developed in our lab in collaboration with the Blue Brain 
Project (Kozloski et al., 2008) to generate chemical and electri-
cal synapses during the initialization of tissue simulations. Touch 
detection in the Neural Tissue Simulator is performed by the Neural 
Tissue Functor, and involves the calculation of geometric distances 
between branch segments of morphologically accurate neurons in 
the tissue specification, where each segment in a branch is logically 
related to a compartment in the physiological model. By finding 
segments that touch, compartment pairs available for synapse crea-
tion are identified. We designed an algorithm to accomplish this 
task for large tissues using a parallel code that runs on the Blue 
Gene supercomputer. The algorithm and software architecture have 
been reported previously (Kozloski et al., 2008), but are reviewed 
here in the context of those problems and solutions they share with 
neural tissue simulation.

Touch detection requires performing a costly calculation of 
distance between two line segments up to n2 times, where n is the 
number of branch segments in the tissue. At this upper limit, the 
calculation cannot possibly scale to large tissues. Fortunately, in 
practice, it operates on data that can be partitioned logically into 
local volumes within the coordinate system of the neural tissue, and 
then distributed to the nodes of a parallel machine. Relevant to the 
methods reported here, this coordinate system is identical to the 
coordinate system in which neural tissue simulation is performed.

Tissue volumes are right rectangular prisms created by slic-
ing a neural tissue multiple times in each of its three-dimensions. 
The number of volumes created in this way equals the number of 
computational nodes of the machine. Slicing planes are chosen 
to accomplish histogram equalization of branch segments across 
slices in each of the three-dimensions of slicing (Kozloski et al., 
2008). In this way, we approximate an optimally balanced distri-
bution of touch detection work among the computational nodes 
of Blue Gene.

During work partitioning, each node of Blue Gene loads some 
number of unique neuron reconstructions from the structural 
specification, then all nodes in parallel calculate which volumes in 
the tissue are intersected by each of the neurons’ branch segments. 
Because each machine node is assigned a single tissue volume to 
aggregate segments for touch detection, partitioning determines 
which nodes receive each branch segment during redistribution of 
the tissue data. Whenever a segment traverses a slice plane, all nodes 
assigned the volumes it intersects aggregate it for touch detection. 

neuron  identifiers (structural layer, structural type, and physi-
ological type) and coordinates that embed the neuron in the three-
dimensional coordinate system of the tissue.

We derived the current tissue specification from cortical tis-
sue. Unlike cortex, which scales in two-dimensions, our tissue 
specification scaled in three, with the sole purpose of studying the 
performance of the simulator and evaluating the novel numerical 
methods reported here for accuracy and stability. The specification 
included the following structural patterns:

(1) Minicolumns, comprising 20 reconstructed neurons from 
http://NeuroMorpho.org (Table 1; Ascoli et al., 2007) uplo-
aded by the Markram lab (Wang et al., 2002). Each neuron 
was spaced at 25 μm intervals along the radial cortical axis 
in an order that reflects its relative laminar position in cor-
tex, rotated randomly about the radial axis in order to ensure 
each minicolumn in the simulation was unique.

(2) Columns, comprising 20 × 20 minicolumns, spaced at 25 μm 
intervals within the two-dimensions of the cortical sheet, 
whose component neurons’ axons and dendrites extended 
hundreds of micrometers beyond the boundaries of the 
minicolumn or column.

(3) Tissue blocks, comprising m × n × p columns. The number of 
columns simulated was varied in all three-dimensions to test 
scaling properties of the simulator.

Finally, the simulation graphs we declared using GSL (example 
available as Supplementary Material) express the tissue as a set of 
contiguous, regularly shaped volumes, each mapped to a coordinate 

Table 1 | Tissue simulation neurons.

Neuron Segments Branches Compart- Per Branch Length 

   ments  (×d)

C050896A-P3 1794 187 833 4.5 20

C261296A-P1 3308 437 1400 3.2 20

C261296A-P3 2955 376 1154 3.1 20

C261296A-P2 3652 302 1171 3.9 30

C040896A-P3 2910 241 1074 4.5 30

C120398A-P3 2140 135 644 4.8 40

C010600A2 3120 303 1473 4.9 30

C050800E2 2965 178 861 4.8 40

C200897C-I1 3863 399 1495 3.7 30

C120398A-P2 1490 80 437 5.5 40

C010600B1 9436 720 2868 4.0 40

C120398A-P1 1400 61 273 4.5 40

C190898A-P2 1873 122 540 4.4 30

C190898A-P3 2268 146 699 4.8 20

C250500A-I4 3097 191 1375 7.2 20

C180298A-P2 2863 186 1326 7.1 20

C040600A2 3871 301 1401 4.7 40

C240797B-P3 1407 110 468 4.3 30

C050600B1 4626 539 1987 3.7 30

C280199C-P1 2390 149 592 4.0 40

Mean 3071.4 258.2 1103.6 4.6 30.5

SD 1744.0 167.9 611.9 1.1 8.3
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be studied. Our parallel, multithreaded algorithm has successfully 
simulated the growth of axons for a single column (8,000 neurons) 
on 4,096 nodes of Blue Gene/P in 24 h (Kozloski, 2011).

Volumetric data decomposition, local synapses, and exploiting link 
bandwidth
The neurons in the neural tissue simulations we used to test the 
Neural Tissue Simulator (Table 1) are reconstructions of real neu-
rons, rotated and positioned within simulated tissue blocks and 
connected via synapses and gap junctions to neighboring neurons. 
Neurons consisted of a soma, an axon, and one or more dendrites, 
with O(100) branches and O(10,000) chemical synapses per neu-
ron, as well as a very small number of gap junctions per neuron 
(<10), which couple dendrites of inhibitory interneurons, and 
axons of excitatory pyramidal and spiny stellate neurons. Axons 
and dendrites are composed using the same branch models, and 
are indistinguishable in their numerical solutions, despite differ-
ent couplings to channel models (i.e., different channel types and 
densities)2. Neurons are decomposed into branches, branch points, 
and somata, which in turn are decomposed into compartments. 
Branches comprise one or more compartments, while branch 
points and somata correspond to a single compartment each. All 
of a neuron’s coordinates are relative to the (x, y, z) center of the 
soma, and undergo rotation and translation about this point before 
insertion into the tissue coordinate system. Coordinates and radii 
are then resampled to create a neuron comprising a contiguous 
set of tangent spheres, each bounded by the hull of the original 
reconstruction. In this procedure, branch points may be displaced 
slightly when the last tangent sphere in a branch is created. Spheres 
are downsampled by reserving the first sphere of some regular 
sphere interval (for example, “1 every 10”) and the last sphere of 
a branch. The reserved spheres then demarcate the endpoints of 
compartments. The result of this process is the creation of O(1,000) 
branch compartments per neuron, each of which is described by 
two endpoints (i.e., sphere centers) and a radius. The somata and 
branch point compartments are then described by single spheres 
within this scheme.

Unlike previous approaches, neurons are divided at points within 
branches where a single branch intersects a slicing plane and is 
divided into two branches (i.e., at “cut points”). A single neuron is 
therefore most often mapped to multiple machine nodes in our data 
decomposition. The neural tissue is first divided into volumes by the 
Neural Tissue Functor and each volume assigned to a machine node. 
Slicing planes are chosen to accomplish a weighted histogram equali-
zation of compartments across slices in each of the three-dimensions 
of slicing. Weights for each compartment are calculated based on a 
sum of weights of its associated channel and branch models. These 
weights were determined experimentally and reflect the expected 
computational load of each model. In this way, we approximate an 
optimally balanced distribution of work for solving branches on 

This ensures that every touch will be detected at least once. We call 
this method of distributing data according to neural tissue volumes 
a “tissue volume decomposition.”

The touch detection algorithm proceeds within each volume and 
on each node in parallel, creating a unique set of touches across 
the distributed memory of the machine, then writes touch data 
to disk or redistributes it for use by the Neural Tissue Functor to 
initialize synapses. The parallel algorithm can detect billions of 
touches per hour (for our largest calculation, 25.5 billion touches 
in 2.5 h on 4,096 nodes of Blue Gene/P (Sosa, 2008), using a new 
algorithm optimized to run multithreaded on Blue Gene/P’s multi-
core compute nodes), emphasizing the efficiency of the tissue vol-
ume decomposition for large parallel calculations of neural tissue 
simulations.

Geometric constraints on touch detection may be relaxed 
by increasing the minimum distance between branch segments 
required for a touch to occur. Typically this criterion distance is 
defined as the sum of the two segments’ radii, but our application 
allows it to be increased arbitrarily. Increasing the touch criterion 
distance allows for the identification of more compartment pairs for 
possible selection and synapse creation, and thus the possibility of 
constructing a greater diversity of neural circuits from a single tissue 
by sampling a larger distribution of touches. For certain distances 
and certain branch types, the approach is also a reasonable model 
of the constraints on neural circuit development within a tissue, 
since dendritic spines have been identified as a critical mechanism 
for neurons to increase the distance over which synapses may form 
(Chklovskii, 2004).

An additional approach to modifying touch distributions and 
thus synapse creation and potential circuit configuration involves 
the simulation of neural tissue development. In real neural tis-
sue, concentration and electrical gradients, and fields generated by 
surrounding neurons are capable of deforming the trajectory of a 
growing branch in predictable and stereotyped ways. They accom-
plish this by their interaction with sensing and motility components 
packed into the specialized tip of a growing branch, known as the 
growth cone (Hong and Nishiyama, 2010).

We created a modeling abstraction of these mechanisms and 
implemented a neural tissue growth simulator (Kozloski, 2011), 
which like our touch detection algorithm, is implemented by 
the Neural Tissue Functor. Here, branch segments are added to 
a structural model sequentially, and each is subjected to “forces” 
that act upon segment tips. These forces model the interactions 
between growing fibers and neurons, first preventing fibers from 
penetrating each other, and second modeling the concentration 
gradients of signaling molecules and local field potentials within a 
tissue that influence growing fibers. The simulator employs a tissue 
volume decomposition to distribute the work of calculating and 
aggregating all forces acting on a particular branch segment from 
other segments. In this way, neuron morphologies may be modified 
to achieve touch distributions different from what is possible by 
incorporating rigid neuron morphologies into a simulated tissue 
and increasing the touch distance criteria. Finally, because each 
branch segment type can be parameterized to generate and sense 
a unique and arbitrary set of forces within the tissue, the dynamics 
of neuronal growth, and the mapping from a set of developmental 
parameters to stereotyped microcircuit structure and function may 

2Note that the Model Graph Simulator allows easy replacement of any model with 
another. For example, the axon branch model could easily be replaced by a simpler 
model of logical spike propagation, should this be desirable to a user. Note that 
such an approach would propagate a spike to each branch point in the axonal ar-
bor (rather than to each synapse), at which point it would continue as two spikes, 
thereby potentially reducing communication required by the standard logical spike 
passing approach.
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dimensional torus, which attempts to maximize the bisection 
bandwidth of the machine, while ensuring that a large number 
of adjacent nodes (nearest neighbors) exist for any node on the 
network. Bisection bandwidth is the bandwidth across the mini-
mum number of links that divide the machine into two partitions 
with equal numbers of nodes (Al-Fares et al., 2008) and determines 
the amount of time required for all nodes to communicate to all 
nodes, (typically referred to as “all to all” communication). For 
Blue Gene/P, link bandwidth is maximum between nearest neigh-
bors and measures 6.8 GB/s, while bisection bandwidth varies 
between 1.7 and 3.8 TB/s, depending on the machine size (Sosa, 
2008).

The Neural Tissue Simulator exploits nearest neighbor com-
munication in the massively parallel architecture of Blue Gene to 
create fixed communication costs that are wholly dependent on 
the local structure of neural tissue (Figure 3). Because synapses, 
like neuron compartments, are simulated as structural elements 
embedded within the tissue’s three-dimensional coordinate sys-
tem, the communication cost for most synapses is zero, since 
nearly all components of each synapse are wholly contained 
within a single tissue volume (Figure 2). State necessary for mod-
eling synaptic transmission as a coupling between presynaptic 
voltages and postsynaptic conductance changes (Destexhe et al., 

the computational nodes of Blue Gene. Each compartment is then 
assigned to the volume containing the compartment’s proximal end-
point (except for branch points, which are assigned to the same vol-
ume as their proximal compartment) and initialized on the machine 
node assigned their volume (Figure 2). Initialization of branches 
proceeds as compositions of consecutive branch compartments and 
junctions are assigned to the same volume. As a result, branches 
whose compartments were assigned to more than one volume are 
effectively cut into multiple branches (Figure 2). The Neural Tissue 
Functor is responsible for initializing branches and junctions, and 
their proxies, in order to ensure that the Model Graph Simulator’s 
collective communication is consistent and matched across all vol-
ume boundaries (node–node pairs; Figure 2).

For a parallel architecture, link bandwidth typically measures the 
number of bytes per second that can be communicated from one 
machine node to another through any number of wires that con-
nect the pair directly. Despite some overhead involved in sending 
data in packets, link bandwidth is a good estimate of the effective 
bandwidth between adjacent nodes on the machine’s communica-
tion network (Al-Fares et al., 2008).

Because not all nodes are adjacent on today’s large parallel 
machines, a network topology determines the number of links 
that separate nodes. For Blue Gene/P, this topology is a three-

Figure 2 | Tissue volume decomposition and creation of models and 
model proxies depicted as two neurons embedded in a tissue, and sliced 
along two orthogonal planes. The Neural Tissue Simulator slices along three 
planes. Computation of the neuron is decomposed into models (branches and 
junctions) which are initialized in different volumes (represented by their 
different colors). Synapses are also initialized within the volumes containing 
their presynaptic and postsynaptic compartments (magenta). A portion of 

these volumes is expanded (cube; upper right) to depict models that span the 
slicing plane. To support communication between these models (lower right) 
model proxies are initialized (striped colors) such that models that connect to 
models in other volumes do so via a model proxy on that volume. 
Communication occurs once between computational nodes on each phase 
boundary, requiring state from models to be marshaled and demarshaled into 
proxies.
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from network congestion due to irregular communication patterns 
that require longer communication paths and/or greater message 
lengths as the simulation and machine size grow, though at the 

1994) is therefore referenced within local memory of a single 
machine node rather than requiring a costly communication over 
the machine’s network.

Because communication across synapses by simulation elements 
imparts almost no additional machine network communication 
cost, the marginal cost of adding a synapse to a simulation is there-
fore the constant cost of computing the synapse’s state and cur-
rent (Figure 4). In our study of simulations comprising 256,000 
neurons on 1,024 nodes of Blue Gene/P, while varying synapse 
counts from 0 to 11,265 per neuron, the measured cost was approxi-
mately 50 μs per synapse per simulated second3. This negligible 
linear relationship between number of synapses and compute time 
has profoundly favorable implications for simulations that aim 
to replicate the physiological and anatomical constraints imposed 
by real neural tissue (Markram, 2006), where synapse densities may 
approach one per cubic micron (Braitenberg and Schuz, 1998), and 
synaptic counts per postsynaptic neuron easily achieve 105–106 (for 
example in neocortex and cerebellum).

Thus, in our tissue volume decomposition, nearly all commu-
nication in a simulation occurs between adjacent nodes of Blue 
Gene/P and traverses only one link. Communication efficiency 
in our simulation is therefore determined by link bandwidth not 
bisection bandwidth. For this reason, the amount of data com-
municated over links remains constant as the size of the simula-
tion grows proportionally with the size of the machine (i.e., its 
number of nodes). In contrast, poor scaling almost always results 

3All simulations used to test the Neural Tissue Simulator simulated 100 ms of neu-
ron physiology.

Figure 3 | The Neural Tissue Simulator exploits a tissue volume 
decomposition, and therefore communication in a simulation of arbitrary 
scale can be estimated. This is due to all communication occurring at interfaces 
between neural tissue blocks, where a micrograph (courtesy of the Department of 

Histology, Jagiellonian University Medical College and Wikipedia.org) can provide 
sufficient information to perform the estimate. Here we estimate based on our 
models from the Neural Tissue Simulator a communication requirement which can 
be accommodated easily by the link bandwidth between Blue Gene/P’s node cards.
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Figure 4 | Synapse scaling. Plot of both initialization times and simulation 
times (100 ms of physiology) vs. synapses/neuron for a constant number of 
neurons on a fixed machine size (inset table). Increasing synapse density by 
four orders of magnitude causes compute time to approximately double.
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Physiological initialization requires iterating through branch 
segments and touches, and identifying which segments require 
connections to local instantiations of the neural tissue models, 
and which must connect to model proxies (Figures 1,2). Making 
this distinction involves multiple searches of multiple maps that 
relate the various models to each other, and to the tissue volume 
decomposition. These searches, using Standard Template Library 
map containers, proceed with O(logN) complexity, such that if 
the amount of tissue (N) that must be searched within a volume 
grows, initialization may be slowed. We note the importance then 
of limiting the size of tissue volumes in order to ensure timely 
initialization, which is readily achieved using massively parallel 
machines such as Blue Gene. During the study reported here, we 
continued to optimize physiological initialization, for example by 
improving our disk access times for reading the tissue structural 
specification. Our results indicate that both strong and weak scal-
ing are properties of all three stages of initialization performed 
by the Neural Tissue Functor, with expected total initialization 
times of 1–2 min per neuron per processor across all simulation 
and machine sizes reported here with on average 10,000 synapses 
per neuron. Furthermore, the relationship between synapses per 
neuron and initialization time is linear over the physiological ranges 
we studied (Figure 4).

NumericS
Our model simulation methods build on existing numerical 
approaches for solving Hodgkin–Huxley type mathematical models 
of branched neurons, as described in Supplementary Information. 
Here we report our numerical approach to solving these equations, 
which can be considered a tunable hybrid of Hines’ method (Hines, 
1984), and that of (Rempe and Chopp, 2006). We first review the 
two methods, emphasizing aspects relevant to our hybrid. We 
then discuss how our approach allows for novel adjustments to 
the decomposition of a neuron into implicitly solved tree partitions 
separated by explicit junctions, and how using our tuning param-
eter (“maximum compute order”), a trade off occurs between the 
numerical stability and accuracy of the combined method, and the 
efficient parallel execution of the computational algorithm that 
implements it.

The Hines algorithm
The “Gold Standard” for numerically solving Hodgkin–Huxley neu-
ron models is the Hines algorithm (Hines, 1984), which improved 
and extended to branched neurons the numerical scheme originally 
proposed by Cooley and Dodge (1966) for computing action poten-
tials in a cable. Cooley and Dodge showed that a backward implicit 
scheme for computing the membrane potential, combined with 
an iterative scheme for solving the non-linear channel equations, 
could be used to efficiently implement the second-order accurate 
Crank–Nicholson method for Hodgkin–Huxley type models. Hines 
provided two critical insights. First, he showed it is possible to main-
tain second-order accuracy while eliminating the need to iterate 
when solving the channel state equations by staggering the time 
points at which the membrane potential equations and channel 
state equations are satisfied. He then derived a branch and com-
partment numbering scheme that made it possible to construct a 
single linear system for a branched neuron that can be diagonalized 

scale of present neural tissue simulations, this does not appear to 
be the case for other approaches (Hines et al., 2008b; Kumar et 
al., 2010).

Our tissue volume decomposition is able to exploit Blue Gene’s 
innovative toroidal network topology because it provides a natural 
mapping from nearest neighbor volume to volume communication 
in a neural tissue to nearest neighbor node to node communication 
on the machine’s network (Figure 3). Thus, while other applications 
employ a neuron decomposition, equating communication between 
nodes with the communication between neurons in a network, our 
volume decomposition employs node to node communication that 
models the fixed planar interfaces between neural tissue volumes. 
We exploit the fact that these fixed planar interfaces have a fixed 
cross-sectional composition determined by the ultrastructure of 
neural tissue, resulting in a fixed communication cost per unit area.

Despite the constraints and advantages of nearest neighbor com-
munication, the communication engine we devised for the Neural 
Tissue Simulator supports communication across all possible paths 
in the network and uses only the MPI_Alltoallv communication 
collective. We chose this collective for communication at iteration 
phase boundaries (Figure 1) for two reasons. First, under certain rare 
circumstances, compartments, or synapses may span non-adjacent 
nodes (for example if a compartment is very long), and therefore 
the calculation of a branch or synapse’s state within a time step 
will require communication through multiple links on the network. 
More significantly, we aimed to support models that require global 
communication (for example, models of EEG, deep brain stimula-
tion, etc.). We do not report results for simulations using these glob-
ally communicating models since we aimed here to study only the 
scalability of fundamental simulation functions of the Neural Tissue 
Simulator. We anticipate that the scaling properties reported here 
will be minimally impacted when such models are added however, 
due to the high bisection bandwidth of the Blue Gene architecture, 
and its optimized collective communication (Almasi et al., 2005).

Scalability
Initialization of the simulation has three stages: tissue development, 
touch detection, and physiological initialization (each performed by 
the Neural Tissue Functor). We showed previously that both tissue 
development and touch detection scale with the number of branch 
segment interactions (i.e., touches, forces, etc.) calculated within a 
volume (Kozloski et al., 2008; Kozloski, 2011). Our tissue volume 
decomposition therefore allows for both strong scaling, where the 
total number of interactions is held constant and the number of 
volumes increases (resulting in a constant decrease in compute 
time) and weak scaling, where the number of interactions and the 
number of volumes grows proportionally (resulting in a constant 
compute time). For larger touch criterion distances or longer range 
forces, however, these scaling properties break down as interactions 
must be computed in more than one volume, and the algorithms 
lose the benefits of parallelism. Fortunately, the need for either long 
distance touch criteria or long range force calculations is typically 
small in neural tissue simulations, and their number much less 
than the total number of branch segments [for example, typically 
only axons are subjected to long range forces, while all branches 
experience short range forces due to direct physical interactions 
(Kozloski, 2011)].
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posed the neuron into implicitly solved branches, and introduced 
an explicit predictor–corrector scheme for the membrane poten-
tial at branch points (Figure 5C). In this approach, an explicit 
step is used to predict the value of the membrane potential at the 
branch point at the forward time. This predicted value is then 
used in place of the junction’s unknown membrane potential in 
solving for the membrane potential at the forward time in the 
branches to which the junction is attached. Once the membrane 
potential at the forward time in the branches is determined, the 
value is used to correct the membrane potential at the branch 
point at the forward time. This approach effectively decouples the 
solution of the membrane potential between branches, permit-
ting an implicit scheme within each branch. Hines’ large linear 
system is thus replaced with a set of much smaller linear systems 
that are truly tridiagonal and decoupled from each other, and 
can therefore be solved efficiently and simultaneously in paral-
lel within a single neuron. Their approach also lends itself to 
computational gains derived from spatially adapting solutions 
depending on gradients in the membrane potential within each 
branch, a technique that is greatly aided by the decomposition 
and the simple computation of individual branches (Rempe and 
Chopp, 2006; Rempe et al., 2008).

It is important to note that Rempe and Chopp (2006) formu-
lated the problem in the same fully implicit manner as Hines, but 
utilized an explicit, predictor–corrector approach to estimate the 
solution at all junctions. As Hines noted, “Very strong coupling 
between adjacent compartment voltages demands implicit methods 
for numerical stability with reasonable time steps” (Hines, 2008a), 
and so Rempe and Chopp’s (2006) approach limits the stability and 
accuracy of their numerical method at junctions, and therefore of 
the method overall. Surprisingly however, they were able to show 
empirically that their method was sufficiently stable and accurate 

efficiently. This numbering scheme corresponds to a depth-first 
visit of branches and compartments, where the soma is considered 
the root of multiple trees corresponding to axons and dendrites.

These observations, combined with a fully implicit, nearest 
neighbor numerical method (Figure 5A), produced a linear sys-
tem that is tridiagonal except for rows and columns correspond-
ing to branch points, yet can still be diagonalized efficiently using 
a slight modification to the Thomas algorithm (Thomas, 1949; 
Bruce et al., 1953). Such a scheme makes it impossible to solve arbi-
trary branches of a single neuron simultaneously using a parallel 
machine, though subtrees that originate at the same neuron root 
have been successfully solved in parallel (Figure 5B; Hines et al., 
2008a), and neuron splitting techniques have now been extended 
to take many forms (Hines et al., 2008b). Furthermore, this fully 
implicit approach yields a stable and accurate solution at the level 
of the neuron, even when neurons are coupled via chemical syn-
apses, but can not be extended to include electrical synapses (Hines, 
1984). As a result, when applied to a tissue containing electrical 
synapses, Hines’ approach must be modified to include explicit 
terms everywhere electrical synapses occur. This has the effect of 
decoupling the neurons, which can then be solved implicitly. The 
introduction of explicit terms and fixed-point iteration to solve for 
electrical synapses limits the stability and accuracy of the overall 
numerical method, however. Moreover, these explicit terms occur 
wherever electrical synapses occur, rather than at specific, well-
defined locations like junctions, such that their numerical effects 
may be difficult to control.

The Rempe–Chopp algorithm
In contrast to Hines’ approach to solving the neuron’s membrane 
potential with an implicit numerical scheme and a single linear 
system for the entire neuron, Rempe and Chopp (2006) decom-

Figure 5 | Components of our numerical approach. (A) The Hines 
algorithm (left) solves the entire neuron implicitly (indicated by blue), 
represented here as a neuronal arbor comprising branches, compartments, 
and implicit junctions. Inset image depicts how a parallel solver can calculate 
this solution, with the matrix A representing the portion of the neuronal arbor 
that must be solved in a single phase (i.e., the whole tree). (B) Hines’ 
neuronal splitting algorithm allows different trees originating from the soma to 
be solved separately and implicitly, here depicted by different colors. The 

soma is then solved in a manner Hines describe as implicit equivalent 
(purple). Inset depicts each tree solved in parallel, assigning a different 
subscript to matrices An to represent this parallelism (dotted lines demarcate 
different trees). (C) Rempe–Chopp’s explicit algorithm transforms each branch 
point into an explicit junction (orange) and all branches can be solved implicitly 
and in parallel (inset; wherein the matrix An indicates parallelism, its 
subscripts labeled on each branch, and the dotted line demarcates all 
instances of An).
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order (defined neuroanatomically as the number of junctions 
between the branch and the soma) are computed within a single 
phase, and branches of different branch orders are assigned to 
different phases. Specifically, branch order phases are structured 
such that the maximum branch order’s Gaussian forward elimi-
nation phase occurs first, followed by the next highest branch 
order, and so on until finally zeroth order branches undergo both 
a forward elimination and a back-substitution phase. Each sub-
sequent branch order then undergoes back-substitution until all 
branches are solved. At each implicit junction (solved with the 
proximal branch to which it is connected), the numerics of Hines’ 
approach are applied to solve the off diagonal elements of the 
branched cable’s matrix.

The advantage of this approach is that all branches of the same 
branch order can be solved fully implicitly and in parallel, allowing 
a tissue volume decomposition to assign branches to machine nodes 
based on volume, where volume boundaries introduce additional 
implicit or explicit junctions at cut points. The disadvantage is 
that the proliferation of computational phases as neurons grow in 
complexity (approaching the physiological range of 10–102 branch 
orders) requires a synchronization point in the parallel algorithm 
wherever communication between contiguous branches of differ-
ent orders occurs, each of which imposes a cost on performance 
of the parallel simulation.

An alternative approach incorporates Rempe and Chopp’s 
explicit junctions at select points in the neuron’s branched 
arbor (Figure 6B). We define a compute order as the branch 
order modulo one plus a specified maximum compute order. 
By replacing branch order computational phases with a smaller 
number of compute order phases we address the problem of 
excessive synchronization points associated with a fully implicit 
branch order approach. Therefore, with a maximum compute 
order of 0, Rempe and Chopp’s approach is replicated with all 

to permit use of a reasonable time step. They found time steps 
up to O(100) μs produced stable and accurate solutions for the 
classic Hodgkin–Huxley model on branched structures compris-
ing branches 80 μm long with radii of 0.2 μm and compartment 
spacings of 8 μm. Moreover, on complex, branched structures, their 
method matched that of Hines at a time step of 15 μs.

The sizable approximations made in constructing these mod-
els, combined with the stability properties of Rempe and Chopp’s 
method, permit a reasonable choice between the accuracy found 
in Hines’ method and the speed increase that Rempe and Chopp’s 
method allows via parallelization and spatial adaptation. Our 
method implements this choice in a manner tunable by a single 
parameter.

A hybrid branched cable equation solver
We developed a hybrid method that trades off the accuracy and 
stability afforded by Hines’ fully implicit numerical method (Hines, 
1984) and the parallelism made possible by Rempe and Chopp’s 
(2006) implicit/explicit numerical method for solving a neuron’s 
branched cable equations. We describe the mathematics of our 
hybrid method in Supplementary Information. Here we describe 
the computational approach and illustrate the trade off graphi-
cally. The computational method of the Model Graph Simulator 
requires identification and ordering of specific phases of a model’s 
computation so as to eliminate data dependencies between models. 
For Rempe and Chopp’s method, these phases are the predictor 
and corrector steps of the explicit junctions’ calculations, sepa-
rated by a fully implicit solution phase for branches between them 
(Figure 5C).

Now consider a fully implicit parallel solver that replaces 
all explicit junctions between branches with implicit junctions 
(Figure 6A). In this approach, which we also implemented using 
the Model Graph Simulator, all branches of a particular branch 

Figure 6 | Creation of our numerical approach. (A) Different branch orders 
may be computed in parallel across the entire neuronal arbor (represented by 
different colors). All junction are computed implicitly. Inset shows various 
matrices An–Dn representing the portion of the neuronal arbor that must be 
solved in a single phase (i.e., whole branch orders). Subscripts label branches 
indicating all branches of an order may be solved in parallel, and dotted lines also 
demarcate branches of an order. (B) By introducing the concept of compute 

orders, we introduce explicit junctions at a fixed branch order interval (in this 
case, determined by a maximum compute order of 2). This allows different 
branch orders to be computed in parallel (e.g., 0 and 3). Colors, matrices, 
subscripts, and dotted lines as in (A,C) By slicing the neuron tissue, additional 
explicit and implicit junctions are introduced at cut points, and all distal compute 
orders are incremented. The numerics of distal junction may also change. 
Colors, matrices, subscripts, and dotted lines as in (A).
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300 electrical compartments in 300 branches per neuron, and did 
not explicitly model the axon (King et al., 2009). Our model neu-
rons comprised 1,104 ± 612(SD) compartments in 258 ± 168(SD) 
branches (Table I), or 4.6 ± 1.1(SD) compartments per branch. 
This resulted in compartment lengths ranging from 20 to 40 times 
the fiber diameter. Given that for parabolic equations, ∆t ∼ ∆s2, it 
is reasonable to employ a smaller time step for the smaller com-
partments, since even for the unconditionally stable, fully implicit 
Crank–Nicolson method, accuracy is controlled by the local trun-
cation error, which is O(∆t2) + O(∆s2). Explicitly modeling the 
propagating action potential in the axon also imposes additional 
constraints on the time step.

SimulaTioN WorkfloW
Here we provide a step by step sequence for the workflow of simu-
lation initialization and execution, complete with required data 
inputs, calculations, and outputs. Note that all steps following 
model code generation are executed by a single executable run on 
Blue Gene/P.

(1) The MDL parser compiles MDL (see Supplementary 
Material) into C++ for models and functors, generating a 
single code to run on multiple platforms. The MDL parser 
generates code stubs for implementing model and functor 
behavior. The simulation designer then implements model 
functionality in C++.

(2) A configure script initiates C++ code compilation, targeting 
the executable for a specific platform (Blue Gene/P for this 
study).

(3) The mpirun command is issued on Blue Gene/P. Because 
all simulation compute threads are bound to cores on Blue 
Gene/P, an additional set of non-bound threads for ini-
tialization and communication are created using an envi-
ronmental variable. Other environmental variables specify 
the maximum message size and the machine mode on Blue 
Gene/P. Arguments passed to the GSLparser executable 
(which parses GSL and creates and runs the simulation) 
configure the number of threads and the GSL file name. For 
example:

mpirun -env "BG_APPTHREADDEPTH=2 DCMF_RECFIFO=48000000"

-partition r0 -c4096 -np 4096 -mode SMP -cwd /NTS  

-exe /NTS/bin/GSLparser -args "-t 4 Tissue0.gsl"

(4) The GSL parser reads GSL (see Supplementary Material) and 
initializes the tissue volume grid based on GSL specified grid 
dimensions. The grid specifies a set of grid layers, each of 
which comprises a single model type that the Tissue Functor 
will generate. Note that “layer” does not refer to a structural 
layer, but to a set of functional model “overlays” within each 
grid coordinate (volume) in the tissue. In this way, different 
types of channels, synapses, and compartments can be gene-
rated and accessed within the grid.

(5) A volume mapper assigns each volume to a node of Blue 
Gene/P, ensuring that tissue volume and node coordinates 
preserve nearest neighbor communication patterns on the 
hardware.

junctions being explicit. With the maximum compute order 
equal to the highest branch order of the neuron, Hines’ approach 
is replicated with all junctions being implicit. We designed the 
Neural Tissue Simulator to allow specification of an arbitrary 
maximum compute order between these two values. With inter-
mediate values, a trade off is achieved between solving a larger 
portion of the neuronal arbor implicitly, while maintaining a 
reasonable number of computational phases and synchroniza-
tion points in the parallel algorithm (Figure 6B). To achieve a 
volume decomposition, additional junctions (either implicit or 
explicit) may be added at cut points between volumes, thereby 
altering all distal compute orders, and changing the numerical 
approach (explicit/implicit) for solving certain distal junctions 
(Figure 6C).

For a test simulation of 128,000 neurons, 42 million branches, 
and 135 million compartments on 512 nodes of Blue Gene/P, 
we varied the maximum compute order from 0 to 7 (Figure 7) 
and observed a reduction in the number of explicit junctions 
of ∼25% per additional compute order. Fewer explicit junctions 
increased the size of implicitly solved neuron branch partitions 
and so presumably improved the stability and accuracy of our 
simulation (instability was never observed). Surprisingly, we 
also observed that simulation performance decreased very little 
as 2–12 additional synchronization points for communication 
between implicit branches were added (one forward elimination 
and one back-substitution communication per compute order; 
0.4–4% slow down per additional compute order). Furthermore, 
initialization compute time was impacted even less by additional 
compute orders.

Our test simulations used a time step of 10 μs, which compares 
favorably to that used in previous work when compartment size is 
taken into account. The largest published simulation to date, for 
example, utilized a time step of 25 μs in simulating approximately 
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branch junction states, evaluate all triggers, and collect data if 
necessary. Between each phase, model state modified during a 
phase and required by other models is marshaled, communi-
cated by MPI_Alltoallv, and demarshaled into model proxies.

(18) The simulation terminates when the end criterion is satisfied. 
All models and simulation data are destructed on all nodes of 
Blue Gene/P.

Public availabiliTy of DaTa, SimulaTioN SPecificaTioNS, aND 
SimulaTor
All neuromorphological data presented derive from the publicly 
accessible database found at www.neuromorpho.org. Scripts written 
in MDL and GSL, and an example tissue specification and parameter-
ization files for creating and running the largest simulation reported 
here, are available as Supplementary Information. The Neural Tissue 
Simulator software is experimental. IBM would like to create an active 
user community. Readers are therefore encouraged to contact the 
authors if interested in using the tool or in the source code.

SimulaTioN ScaliNg reSulTS
Here we report the results of scaling the Neural Tissue Simulator 
using several methods in order to evaluate its performance over a 
variety of simulation and machine sizes and configurations.

ThreaD ScaliNg
The Blue Gene/P runtime system allows applications to run in 
symmetric multiprocessor “(SMP) Mode,” wherein each of its 4 
core nodes is equivalent to a SMP machine (Sosa, 2008). In this 
mode, computational threads may be created by the program and 
run simultaneously on the node’s different cores, each referencing 
the same shared node memory. Our Model Graph Simulator fully 
exploits SMP machines, parallel distributed memory machines such 
as clusters, and hybrid machines such as Blue Gene/P (Kozloski 
et al., 2009). In simulations used to test the Neural Tissue Simulator, 
the four threads of each node compute models within a phase 
simultaneously in SMP mode. Models then reference the state 
of other models on the same node (even if computed by other 
threads) directly at their location in memory, rather than through 
MPI communication and model proxies, which are reserved strictly 
for node to node communication. Such a capability can be valu-
able, especially since subsequent generations of Blue Gene will have 
significantly more cores each supporting an additional thread.

We observed thread scaling in our test simulations of 128,000 
neurons, 40 million branches, and 135 million compartments on 
512 nodes of Blue Gene/P (Figure 8). Different simulation runs 
specified different numbers of threads (and thus utilized different 
numbers of machine node cores). The speed up observed from 
1 thread to 2 was 1.8×, from 2 threads to 3 was 1.4×, and from 
3 threads to 4 was 1.3×. Overall, we observed a 3.1× speed up 
from 1 thread to 4. We anticipate therefore that the Neural Tissue 
Simulator will effectively exploit additional threads on architectures 
with more cores per node, as this scaling appeared sufficiently near 
optimal to continue beyond Blue Gene/P’s core constraints.

STroNg ScaliNg
Strong scaling refers to the ability of an application to perform the 
same sized calculation faster on machines of larger sizes. We observed 
strong scaling of the Neural Tissue Simulator when we performed a 

(6) The Tissue Functor reads the tissue specification file and 
computes a globally consistent scheme for dividing neuron-
related initialization work. The functor loads different neu-
rons from .swc files into memory according to this scheme 
onto each node of the machine.

(7) The Tissue Functor performs a resampling algorithm, tran-
sforming neurons in memory by creating points spaced at 
regular multiples of their containing fibers’ diameters.

(8) Communication between all nodes of the machine enumera-
tes all points in the tissue, constructing a global point histo-
gram, which is then equalized in three-dimensions to create 
a volume slicing.

(9) Neuron segments are communicated to all volumes they tra-
verse, according to the volume slicing scheme.

(10) The Tissue Functor executes a neuron growth algorithm 
(optional), sequentially adding each segment of each neuron 
while subjecting each segment to specified forces from seg-
ments already in the tissue.

(11) The Tissue Functor executes a touch detection algorithm, 
and computes touches between all neuron segments in each 
volume. Touches are detected using a parameterized proba-
bility, which may save memory in extremely dense tissues. 
Globally consistent random number generation allows touch 
detection to remain consistent across all nodes of Blue Gene/P.

(12) The Tissue Functor aggregates computational costs associated 
with each neuron segment based on cost estimates for com-
partments, channels, and synapses, provided by a simulation 
designer in a .par file (see Supplementary Material). A global 
histogram of costs is then equalized in three-dimensions to 
create a second volume slicing scheme for work distribution, 
which ensures the computational load is balanced.

(13) With this scheme, the Tissue Functor communicates touches 
and neuron segments to nodes of Blue Gene/P responsible for 
implementing models or model proxies that depend on these 
data (for example synapses, each of which depends on one touch 
and two segments, and compartments, each of which depends 
on a segment). A simulation designer provides parameterized 
mappings in .par files (see Supplementary Material) that con-
strain which models are created based on a specified association 
between GSL model indices and branch identifiers associated 
with each neuron segment and touch in the tissue specification.

(14) The GSL parser creates all tissue models, including branches, 
channels, and synapses. A simulation designer parameterizes in a 
.par file (see Supplementary Material) the probability of creating 
synapse models of a specific type from a set of valid touches.

(15) The GSL parser initializes other models such as stimula-
tion and recording electrodes, connecting each to specified 
models within the tissue. In addition, specified simulation 
triggers (for example, to control data collection and simula-
tion termination) are initialized.

(16) The GSL parser interprets the specified phase structure of 
the simulation and maps different models’ phases to declared 
simulation phases.

(17) The GSL parser initiates the simulation, in which each itera-
tion comprises a sequence of phases that: solve ion channel 
and synapse states, predict branch junction states, forward 
eliminate branches of appropriate compute orders, back-
substitute branches of appropriate compute orders, correct 
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To express performance results in units more relevant to neural 
tissue simulation, we normalized the simulation times and expressed 
them in terms of the amount of time each processor of any machine 
must compute in order for the entire machine to compute a given 
amount of physiological time for a single neuron. We measured this 
time at 1.0 processor seconds per neuron millisecond when there 
is an average of 250 neurons per node, and 1.8 for an average of 4 
neurons per node. Thus, while strong scaling could likely continue 
to produce shorter overall simulation times on machines larger than 
those we used, the normalized measurements indicate that the ben-
efit of larger machines for problems of this size will likely diminish.

Weak ScaliNg
Weak scaling refers to the ability of an application to perform calcu-
lations of varying sizes in the same amount of time, provided that 
as the calculation size grows, the machine size grows proportionally. 
We observed excellent weak scaling of the Neural Tissue Simulator 
when we performed simulations of different sizes while holding 
the average number of neurons per node constant at 250 on Blue 
Gene/P machine sizes ranging from 64 to 4,096 nodes (Figure 10). 
Simulation times decreased by 15% from 64 nodes to 4,096 as the 
simulation size increased from 16,000 to 1,024,000 neurons. The 
normalized simulation times decreased from 1.0 processor seconds 
per neuron millisecond to 0.88. Thus the largest simulation we 
performed during this weak scaling study calculated 100 ms of 
neurophysiology for over 1 million neurons, 1 billion compart-
ments, and 10 billion synapses (Table 2) in 6.1 h.

DiScuSSioN
imPlicaTioNS of reSulTS
The simulations we performed, while intended to test the per-
formance and scaling of a parallel application for calculating 
the Hodgkin–Huxley equations for branched neurons using a 

simulation of 16,000 neurons on Blue Gene/P machine sizes ranging 
from 64 to 4,096 nodes (Figure 9). Simulations continued to speed up 
even as more branches were divided into separate models by our tis-
sue volume decomposition, potentially impacting scaling negatively.
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novel tissue volume decomposition, has provided additional 
physiological results worth noting. Specifically, we observed by 
recording simultaneously from many basket cell interneurons in 
the upper layers of our tissue simulations, action potentials that 
originated in the axons then back propagated into somata, where 
they failed to regenerate full scale action potentials (Figure 11). 
This observation emphasizes the importance of simulating the 
compartments of axons, in part because sodium channel densi-
ties were constant throughout the axonal arbor. Furthermore, 
complex synaptic integration of the massive AMPA and GABA

A
 

input to each neuron is evident in the dendritic voltage traces. 
These observations provide confirmation that our simulations 
and their novel numerical methods are capable of replicating 
normal physiology similar to that observed from the same neu-
rons in vivo (Wang et al., 2002). They further demonstrate the 
value of the approach of specifying neural tissue simulations 
from structural files comprising real neuron reconstructions and 
synapses placed by touch detection (Markram, 2006; Kozloski 
et al., 2008).

Furthermore, while previous neural tissue simulations employ 
fewer synaptic inputs than we show here, the Neural Tissue Simulator 
clearly achieved physiological scales of synaptic inputs (∼10,000 
synapses/neuron), in part due to our tissue volume decomposi-
tion’s local calculation of synapses. Furthermore, we note that an 
average additional 510 synapses/neuron had a significant effect on 
recordings from the same neurons’ somata (Figure 12), even when 
all other simulation parameters were held constant.

Finally, these recordings represent the first from a tissue simu-
lated at this scale (>1 million neurons, comprising on average 
1,104 compartments/neuron; Table 2). We anticipate that because 
of the excellent weak scaling demonstrated here (Figure 10) as 
machine sizes grow in the future, the simulation sizes achievable 
by the Neural Tissue Simulator and its tissue volume decomposi-
tion will continue to grow proportionally, while simulation times 
will remain constant. This ultrascalable solution therefore has 
profound implications for the future of neural tissue simulations, 
and suggests that human brain scale neural tissue simulations 
are not only feasible but likely within the next decade. We will 
now discuss in greater depth the feasibility of human brain scale 
simulations based on our scaling results from the Neural Tissue 
Simulation.

Table 2 | Scale of largest simulation: neural tissue simulator.

 Total Per node (±SD)

Nodes 4,096 N/A

Threads 16,384 4

Neurons 1,024,000 ∼250

Branches 344,474,059 84,100 ± 7,406

Junctions 208,947,659 51,012 ± 4,026

Compartments 1,083,289,600 264,475 ± 7,582

Na channels 330,613,914 80,716 ± 7,440

KDR channels 330,613,914 80,716 ± 7,440

AMPA synapses 8,186,972,360 1,998,772 ± 720,155

GABAA synapses 2,255,068,948 550,553 ± 169,064

Connexons 7,626,124 1,861 ± 820

Figure 11 | Physiology of basket cells. (A) Recordings were made from 
nine instances of a single basket cell morphology in a simulated tissue (scale 
bar is 100 μm; inset table). (B) Recordings were made from a point in the 
dendrites, somata, and axons of each neuron. Here we plot the first only at 
the correct scale of the recorded voltage. Each subsequent trace is offset by 
10 mV to allow inspection and comparison. A current of 500 pA was injected 
into the first somata at time 30 ms, and remained on for the duration of the 
simulation.
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in a whole-brain simulation very difficult. Because fiber density, 
length, and diameter is a well known parameter of neuroanatomy, 
however, we can use it here to reasonably estimate all connections 
between all compartmental models (within branches, or across 
synapses), and thus all communication in the brain.

Finally, our maximum target simulated time duration is 1 day, 
since a diurnal cycle captures almost all brain dynamics. Our mini-
mum target simulated time duration is 200–500 ms, which con-
stitutes an appropriate timescale for modeling a single brain state 
transition (such as one involved in solving a simple perceptual-
behavioral task).

Computational requirements
We derive the computational requirements for neural tissue simula-
tion targeting a whole human brain, whose volume equals ∼1 liter, 
by first decomposing it into 107 tissue volumes, yielding:

•	 108 μm3/volume.
•	 106 compartments/volume, assuming 100 μm3/compartment.
•	 1010 flop/50 μs simulated time step/volume, assuming 104 

flop/timestep/compartment (includes Hodgkin–Huxley 
branched cable solutions, plus 10 ion channels or synapses/
compartment).

•	 64	kB	communicated/volume	face/timestep,	assuming	32	bytes	
communicated/spanning compartment in each direction, and 
10 μm2/compartment cross section.

•	 2.25	 GB	 of	 memory/volume,	 including	 250	 MB	 of	 simulation	
overhead, plus 1.60 kB/compartment and 64 bytes/channel or synapse.

These tissue volume requirements for 107 volumes are then 
directly mapped to a massively parallel machine architecture such 
as a hypothetical Blue Gene possessing 107 computational nodes 
(∼10× larger than Blue Gene/P’s scaling limit), yielding the follow-
ing machine requirements:

feaSibiliTy of humaN braiN SimulaTioN
Estimating the computational requirements for simulating an entire 
human brain is difficult for a number of reasons. First, though neural 
tissue simulation is technically most suited to making this estimate 
(for reasons we list below), neuroscience still has no predictive mod-
els for global brain function. Without consensus on which modeling 
approach is most functionally appropriate for whole-brain simula-
tions, any estimate will require an assumption-based approach to 
whole-brain simulation. Second, connectivity in the brain is not fully 
known even among animal models, where the quest for a complete 
connectome has just begun (Eisenstein, 2009). Finally, the appro-
priateness of a simulation’s duration for studying brain function 
depends on the goals of the study: even with a consensus approach 
and known connectivity, a brain simulation needs to proceed for 
some simulated duration that will yield a valuable scientific result.

Assumptions and arguments
The assumptions and arguments we make for the following analysis 
address each of these difficulties. First, we base our analysis on the 
assumption that neural tissue simulation is an appropriate approach 
to whole-brain simulation. This approach has several benefits, 
including its biophysical grounding, its predictive nature, and its 
implementation in connected compartments with known physical 
extent. The difficulties of this approach, however, derive from insuf-
ficient simulation constraints (and therefore a large number of free 
parameters) in existing data sets. Each constraint and parameter, 
however, is at least in principle measurable in real tissue.

Second, we exploit the volume-filling nature of neural tissue to 
make the assumption that all connectivity in the brain is regular 
and local (Figure 3). This assumption is quite different from that of 
other efforts, which model communication in the brain as neuron 
to neuron, and therefore irregular and distant. Because neurons 
have diffuse, long range, and largely unknown connection patterns, 
the latter approach makes estimating communication requirements 

Figure 12 | Physiology of a very large tissue at different synapse densities. 
Recordings from 10 instances of the same basket cell morphology as in 
Figure 11 in a very large simulated tissue (inset table). Recordings were made 
from the somata. Again, we plot the first only at the correct scale of the recorded 

voltage, and each subsequent trace offset by 10 mV to allow inspection and 
comparison. A current of 500 pA was injected into the first somata at time 
30 ms, and remained on for the duration of the simulation. Synapse densities 
were increased by 510 average synapses/neuron from the left to right panels.
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aPPeNDix

hoDgkiN–huxley moDel
Our model simulation methods build on existing numerical 
approaches for solving Hodgkin–Huxley type mathematical mod-
els of branched neurons (Segev and Burke, 1998), which can be 
written as

1
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2

p

p

r s

r
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V

s
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I

∂
∂

∂
∂

∂
∂







= + ,

 

(1)

where V is the membrane potential, I is the specific current across 
the plasma membrane, R is the axial resistivity, C is the membrane 
specific capacitance, r is the radius of the neuron, s is the axial 
distance along the neuron, and t is time. At branch points, conser-
vation of charge requires

1 2

A

r

R

V

s
C

V

t
I± ∂

∂
= ∂

∂
+∑ p

,
 

(2)

where A represents the surface area of the branch point, and the 
sum is over all branches into the branch point. Throughout our 
work, we use the set of units consistent with: mV for membrane 
potential, μm for length, ms for time, and pA for current; and we 
report all parameter values in units consistent with this choice, for 
example, C = 0.01 pF/μm2 and R = 0.0115 GΩ μm.

The current across the membrane at any point along a neuron is 
the sum of all channel and synaptic currents, as well as any exter-
nally applied currents: I = I

C
 + I

S
 + I

A
. In testing our simulation 

approach, we use a channel current I
C
 comprised of the sodium, 

delayed rectifier potassium and leak currents employed by Hodgkin 
and Huxley in their model of the squid giant axon (Hodgkin and 
Huxley, 1952),

I g m h V E g n V E g V EC Na Na K K L L= −( ) + −( ) + −3 4 ( ),
 

(3)

where g Na
2nS m= 2 0. /µ  and g K

2nS m= 0 36. /µ  are the maximum 
specific conductances of the sodium and delayed rectifier potas-
sium channels; g

L
 = 0.003 nS/μm2 is the specific conductance of 

the leak current; and E
NA

, E
K
, and E

L
 are reversal potentials given 

by the Nernst equations,
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,

and E
L
 = −54.4 mV. In the equations, RT/F = 24.21 mV at T = 281 K, 

and the extracellular and intracellular sodium and potassium con-
centrations are assumed to be [Na+]

e
 = 500 mM, [Na+]

i
 = 70 mM, 

[K+]
e
 = 17 mM, and [K+]

i
 = 433 mM. The channel states m, h and 

n are described by

dm

dt
V m V m= − −a bm m( )( ) ( ) ,1

 
(4)

dh

dt
V h V h= − −a bh h( )( ) ( ) ,1

 
(5)

dn

dt
V n V n= − −a bn n( )( ) ( ) ,1

 
(6)

where the rate functions are taken to be:
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We also assume a synaptic current I
S
 consisting of two currents 

due to AMPA and GABA
A
 chemical synapses (Destexhe et al., 1998), 

along with a third deriving from electrical synapses:

I g q V E g r V E

g V V

S AMPA AMPA GABA GABA

ESYN P

A A
= −( ) + −( )

+ −( )
∑∑

∑ .
 

(7)

In these equations, g AMPA
2nS m= 0 1. /µ  and g GABA

2

A
nS m= 0 1. /µ  

are the maximum specific conductances of the AMPA and GABA
A
 

currents, respectively; g
ESYN

 = 1.0 nS/μm2 is the specific conduct-
ance of electrical synapses; E

AMPA
 = 0 mV and E

GABAA
 = −80 mV are 

reversal potentials; V
P
 is the presynaptic voltage at electrical syn-

apses; and the sums are over all synapses of each type that impinge 
upon the neuron at a particular point. The synapse states q and r 
are described by

dq

dt
T V q q= − −a bq q P q( )( ) ,1

 
(8)

dr

dt
T V r r= − −a br r P r( )( ) ,1

 

(9)

where V
P
 is the presynaptic voltage, and

T V
e

T V
eV Vq P r P

P P
( ) =

+
( ) =

+− −( ) − −( )
180

1

185

12 5 2 5/ /
, ,

are the concentrations of neurotransmitter released as func-
tions of presynaptic voltage. In all calculations, we used the 
values a

q
 = 0.0011 ms−1, b

q
 = 0.19 ms−1, a

r
 = 0.005 ms−1, and 

b
r
 = 0.18 ms−1.

NumericS
We describe neurons as a collection of points (x

i
, y

i
, z

i
) with 

radii r
i
, and let s

i
 denote the distance along the neuron of point i 

(from the soma). Discretizing time as t
n
 = n∆t, for some ∆t > 0, 

and defining ∆s
i
 = s

i + 1/2
 − s

i − 1/2
 we approximate the depend-

ent variables, for example, as V V s ti
n

i n≈ ( , ).  We also assume all 
parameters may vary at each point along the neuron, writing 
R

i
 and C

i
 for the axial resistivity and membrane capacitance, 

respectively.
Following Hines (1984) and Rempe and Chopp (2006), we apply 

the Crank–Nicolson method in computing the membrane poten-
tial, while using the Trapezoidal Rule to solve channel and synapse 
states at offset times. We also utilize Cooley and Dodge’s technique 
for combining a backward implicit step with channel and synapse 
states tracked at offset times and solved using the Trapezoidal Rule. 
The backward implicit step is given by
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which can be solved for qi
n +1 2/ :
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imPliciT braNch PoiNTS
At implicit branch points, we have
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which can be rearranged to yield
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Again, to complete the full Crank–Nicolson step, we then update 
as follows:

V V Vi
n

i
n

i
n+ += −1 1 22 / .  

(23)

exPliciT braNch PoiNTS
Following Rempe and Chopp (2006), at explicit branch points we 
first make a prediction,

1

2

2 1 2
1 2

A

r

R

V V

s
C

V V

t
I

i

ij

ij

j
n

i
n

i

i
i
n

i
n

i
n

j

p −
= − +

+
+∑ ∆ ∆

/
/

/
,

 
(24)

which can be rearranged to yield
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Once this predicted value has been used to update all of the 
branches associated with the junction, the junction’s membrane 
potential is corrected with the new branch values:
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Finally, to complete the full Crank–Nicolson step, we update 
as follows:
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where
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To complete the full Crank–Nicolson step, we then update as 
follows:

V V Vi
n

i
n

i
n+ += −1 1 22 / .  

(16)

chaNNelS aND SyNaPSeS
Following Hines (1984) and Rempe and Chopp (2006), channel 
and synapse states are tracked at offset time steps, and solved using 
the Trapezoidal Rule. Taking the channel state m as an example, we 
make the approximation
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which can be solved for mi
n +1 2/ :
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Synapse states are solved similarly. Assuming j denotes the pre-
synaptic compartment,
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