
NEUROINFORMATICS

(1) Every model in the simulation is embedded within the three-
dimensional coordinate system of a neural tissue;

(2) Coordinates for all models are available during initialization
and simulation;

(3) Model dependencies, communication, and calculation are
some functions of these coordinates.

These requirements affect not only how a neural tissue simula-
tion is initialized and calculated, but also its possible outcomes
and the types of scientific questions it can be used to answer. We
therefore review essential constraints derived from these require-
ments together with their associated simulation techniques and
expected effects on a simulation’s outcome and scientific value.

Structural constraints
Structural constraints on neural tissue simulation guide the
arrangement and coupling of compartments, channels, and syn-
apses to compose neurons and neural tissue. These constraints
permit only certain compositions of structural elements and thus
aim to create a three-dimensional replica of a real neural tissue.

Consider first a neuron model’s branch topology. Branches
constrain the geometry and number of compartments coupled to
create a compartmental neuron model. Compartmental models
of neurons simulate the currents that flow within and across a
neuron’s membrane in order to calculate the voltage of each com-
partment. The distance between branch points in a compartmental
model directly impacts the model’s simulated electrophysiology,
and thus its signaling properties in a circuit (Krichmar et al., 2002).
Neuronal and neural circuit models often incorporate these topo-
logical constraints, derived from morphological reconstructions of
real branched neurons, and with them become more predictive of

The Problem of large-Scale Neural TiSSue
SimulaTioN
Techniques to simulate the electrophysiology of neurons have pro-
gressed steadily since the middle of the last century, from single
compartment models of Hodgkin and Huxley (1952) to multi-
compartment models of single fibers (Cooley and Dodge, 1966),
branched neuronal arbors (Parnas and Segev, 1979), and whole neu-
rons (Traub et al., 1991). Coupling neuronal compartments through
models of synaptic release and receptors (Destexhe et al., 1994) and
through models of gap junctions has provided a basis for the creation
of diverse synapse models and the extension of neuronal modeling
to neural circuit modeling (Traub et al., 2005). Each step has created
more comprehensive simulations, and each has involved the impo-
sition of additional structural and functional constraints and the
development of new methods to exploit these constraints efficiently.

With each technique now established in the field, a next step
in extending simulations of the nervous system is to impose con-
straints derived specifically from neural tissue (Markram, 2006)
and to construct simulations that efficiently exploit these con-
straints on large supercomputers (Hines et al., 2008a). We first
review the constraints, components, and tools that support neural
tissue simulation.

DefiNiTioN of Neural TiSSue SimulaTioN
We define neural tissue simulation first to include multi-compart-
ment Hodgkin–Huxley models of neurons derived from anatomical
reconstructions of real neurons. Second, simulations must support
synaptic coupling between compartments and attempt to match
synaptic distributions from real tissue. Finally, neural tissue simu-
lations must meet the following additional requirements, which
distinguish them from other neural circuit simulations:

An ultrascalable solution to large-scale neural tissue
simulation

James Kozloski1* and John Wagner 2

1 Computational Biology Center, IBM Research Division, IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
2 IBM Research Collaboratory for Life Sciences – Melbourne, Victorian Life Sciences Computation Initiative, Carlton, VIC, Australia

Neural tissue simulation extends requirements and constraints of previous neuronal and neural
circuit simulation methods, creating a tissue coordinate system. We have developed a novel
tissue volume decomposition, and a hybrid branched cable equation solver. The decomposition
divides the simulation into regular tissue blocks and distributes them on a parallel multithreaded
machine. The solver computes neurons that have been divided arbitrarily across blocks. We
demonstrate thread, strong, and weak scaling of our approach on a machine with more than
4000 nodes and up to four threads per node. Scaling synapses to physiological numbers had
little effect on performance, since our decomposition approach generates synapses that are
almost always computed locally. The largest simulation included in our scaling results comprised
1 million neurons, 1 billion compartments, and 10 billion conductance-based synapses and gap
junctions. We discuss the implications of our ultrascalable Neural Tissue Simulator, and with
our results estimate requirements for a simulation at the scale of a human brain.

Keywords: neural tissue, simulation, parallel computing, distributed computing, Hodgkin–Huxley, numerical methods,
ultrascalable, whole-brain

Edited by:
Markus Diesmann, RIKEN Brain
Science Institute, Japan

Reviewed by:
Michael Hines, Yale University, USA
Abigail Morrison, Bernstein Center
Freiburg, Germany

*Correspondence:
James Kozloski, Computational Biology
Center, IBM T. J. Watson Research
Center, 1101 Kitchawan Road, Room
05-144, Yorktown Heights, NY, USA.
e-mail: kozloski@us.ibm.com

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 1

Methods Article
published: 19 September 2011
doi: 10.3389/fninf.2011.00015

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00015/abstract
http://www.frontiersin.org/people/jameskozloski/5043
http://www.frontiersin.org/people/johnwagner/24377
http://www.frontiersin.org/Neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/editorialboard

real neuron and circuit physiology (Schutter and Bower, 1994a).
Neural tissue simulation therefore also incorporates these topo-
logical constraints.

The placement of channel models within the topology of a neu-
ron contributes to the topology’s impact on simulation outcomes
(Schutter and Bower, 1994b). Unlike topological constraints on
branching, which derive from standard anatomical reconstruction
techniques, channel placement is poorly constrained because meas-
uring channel densities across a neuronal arbor is technically chal-
lenging (Evers et al., 2005). Therefore, placement is typically a free
structural parameter in simulations constrained by branch topology.
Elegant methods have addressed the problem of optimal placement
of channels given existing structural constraints and functional tar-
gets for fitting neuronal simulations (Druckmann et al., 2008).

Beyond topological constraints, neural tissue simulations impose
geometrical constraints on neurons, branches, and compartments,
derived from measurements of real neuron reconstructions. These
constraints first assign three-dimensional tissue coordinates to
each compartment and branch point. Coordinates do not change
a neuron’s simulated physiology directly, however, since the solu-
tion to the Hodgkin–Huxley model for a cable depends not on the
precise spatial locations of its compartments, but only their size
and coupling. Instead, geometrical constraints affect a neuron’s
physiology when other models (such as other neuron branches)
are coupled to it (such as through synapses) by some function of
its tissue coordinates (such as a proximity measure).

For example, in neural circuit models, a synapse is generated
by first identifying a specific pair of compartments to which the
pre- and post-synaptic components of the synapse are coupled.
Similar to branch junctions and channels, the precise distance along
branches where synapse models occur may affect the physiology
and signaling properties of certain neurons (Ascoli and Atkeson,
2005), though some appear less sensitive to these constraints
(Schutter and Bower, 1994c). Because of this risk that synapse place-
ment will affect neuron physiology, constraining synapse placement
accurately is a goal of neural tissue simulation. By computing the
distance between branches from different morphologically accu-
rate neurons in the three-dimensional tissue coordinate system,
those compartments available for synapse creation are identified
(Kozloski et al., 2008). Synapse are then created between those
compartments where branches of neurons are in close proximity.

In addition to compartment, channel, and synapse placement,
other relationships between neuron models can be derived from neu-
ral tissue coordinates. For example, when every simulated membrane
conductance is associated with a coordinate in the tissue, the ability
to calculate extracellular field potentials Traub et al. (2005), model
ephaptic interactions between neurons (Anastassiou et al., 2011), and
generate a forward model of EEG is greatly facilitated. Furthermore,
local relationships between tissue compartments and the extracellular
space expressed as models of diffusion become possible, and could
allow for tissue-scale modeling of drug interactions and brain injury
effects such as spreading depression (Church and Andrew, 2005).

Functional constraints
Modeling the functional properties of neural tissue involves simu-
lating tissue dynamics at many scales, from the electrodynamics
of individual cell membranes, to emergent neuron, circuit, and

whole tissue phenomena. Functional constraints, such as the types
and parameters of ion channel, axonal compartment, and synapse
models used, each have significant effects on what results a simula-
tion can achieve.

To capture the varied electrical properties of the membrane of
a single neuron (Achard and Schutter, 2006) and different neu-
ronal types (Druckmann et al., 2007), neuron models incorporate
a variety of ion channel models, each responsible for changing
membrane permeability to specific ions. Given ionic concentra-
tion differences between the inside and outside of a compartment,
a characteristic time course for changing ionic conductance, and
a maximal value for this conductance, channel models determine
how electrical current flows (and thus how voltage changes) in
compartments in a neuron model.

Channel models often exhibit highly non-linear relationships
between conductance changes and their dependencies (for example,
the voltage-dependent conductance of the fast sodium channel
model). In practice, this makes neuron models’ simulated physi-
ology susceptible to small changes in the parameters of their ion
channel models (e.g., time constants, peak conductances). These
susceptibilities are pronounced in dendrites (Segev and London,
2000), where most synaptic integration occurs. Strategies exist for
automatically and simultaneously finding parameters for a variety
of ion channels to achieve a good fit of a neuron model to neuron
physiology (Druckmann et al., 2008).

Functional constraints on models of presynaptic axonal com-
partments vary by approach. Most neural circuit and neural tissue
simulations do not model presynaptic compartments explicitly but
instead assume axons are independent of the electrical integra-
tion properties of the neuron and never fail to transmit an action
potential (or “spike”) generated at the soma. Greater functional
constraints can be imposed on neural tissue simulations by solv-
ing the Hodgkin–Huxley equations for compartments representing
the complete or partial axonal arbor. These constraints then allow
certain phenomena to emerge that could influence a neural tissue
simulation. First, failures of action potential propagation can occur
at certain points along an axon, introducing uncertainty surround-
ing the signaling role of action potentials transmitted through
otherwise reliable axons (Mathy et al., 2009). Second, electrical
synapses between axons can initiate action potentials without first
depolarizing the axon initial segment (Schmitz et al., 2001). Third,
action potentials may be generated by a mechanism that depends
on the length of the axon. For example, bursts of action potentials
of a particular duration may be generated when a calcium spike
from the cell body depolarizes an axon of a particular length (Mathy
et al., 2009).

Functional constraints on synapse models also vary by approach
and are closely related to the chosen model of the presynaptic
compartments. When presynaptic voltages are calculated, kinetic
models of presynaptic voltage-dependent neurotransmitter release
(Destexhe et al., 1998), which couple presynaptic voltages directly
to conductance-based models of postsynaptic receptors, can be
used. In addition, models of resistive coupling across gap junctions
become possible. These result in a network of coupled equations,
which can then model, for example, subthreshold, voltage-depend-
ant leakage of neurotransmitter, or electrical coupling between
axons (Schmitz et al., 2001). When the presynaptic compartment’s

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 2

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The assumptions about axons made by logical spike passing (i.e.,
fully reliable action potential transmission and complete isolation
from dendritic and somatic integration) are known to be false for
axons exhibiting certain functional constraints, as discussed above
(Schmitz et al., 2001; Mathy et al., 2009). Furthermore, excluding
axons from simulations also limits the types of additional phenom-
enological models that may be incorporated into a neural tissue
simulation. In particular, models of neural development and extra-
cellular signaling and physiology, which depend on the intracel-
lular physiology of axons, are precluded when this physiology is
not modeled. Measurements or perturbations of these phenom-
ena (e.g., EEG, BOLD, deep brain stimulation, etc.) also cannot be
incorporated without some indirect coupling to a model of the
intracellular voltage of axonal compartments.

In addition to integrating inputs across chemical synapses,
neural tissue simulation requires the ability to simulate currents
across electrical synapses created by gap junctions. The numerical
approach employed in previous neural tissue simulation appli-
cations to solving the dendritic compartments’ voltages requires
that electrical synapses between compartments be solved differently
than chemical synapses and separately from the integration of the
neuronal arbor, since they affect coupled compartments instanta-
neously. Because the numerics of electrical synapses are not very
stiff, however, the computation of gap junctional currents at each
time step (which ignores the off diagonal Jacobian contribution)
is sufficient for numerical stability using fixed-point iteration
methods (Hines and Carnevale, 1997; Traub et al., 2005). These
methods impose computational and communication demands on
the numerical solver, and can limit the number and placement of
electrical synapses (Traub et al., 1991).

Previous scalability
One important measure of a parallel computational approach is
scalability, and we therefore considered these solutions’ scalability
and efficiency. Strong scaling refers to a solution’s ability to solve
problems of constant size faster with more processors. Weak scal-
ing describes how a solution’s runtime varies with the number
of processors for a fixed problem size per processor. Speedup is
the ratio of the runtime of a sequential algorithm to that of the
parallel algorithm run on some number of processors. A solu-
tion that exhibits ideal strong scaling has a speedup that is equal
to the number of processors, whereas one exhibiting ideal weak
scaling has a runtime independent of the number of processors.
Efficiency is a measure of a solution’s ability to use processors
well, and is defined as a solution’s speedup relative to the ideal
speedup. Solutions that exhibit excellent scaling are those with
efficiencies close to 1.

The problem of balancing the load of computation between
processors on a parallel machine has also motivated techniques
for splitting compartmental models of neurons across multiple
processors in certain simulators (Hines et al., 2008a). Good load
balancing ensures all processors compute continuously with none
sitting idle, until communication occurs. Communication then
proceeds between all nodes of a load balanced parallel machine
until computation resumes. Load balance is particularly important
in neural tissue simulation, given that the computational complex-
ity of heterogeneous neurons in a tissue varies greatly. While logical

voltage is not modeled, a stereotyped modification of postsynaptic
currents or voltage potentials in response to the logical determina-
tion of a presynaptic action potential is often employed to model
the synapse.

PreviouS SoluTioNS, Parallel NeuroN, aND The blue braiN
ProjecT
Certain simulation packages allow users to perform neural tissue
simulations, including GENESIS (Bower and Beeman, 1998) and
NEURON (Hines and Carnevale, 1997), which first exploited the
parallelism of vector machine architectures (Hines, 1993). Today,
both applications support versions that run on parallel comput-
ers (Goddard and Hood, 1998; Migliore et al., 2006), and thereby
attempt to satisfy one of the most pressing technical challenges that
neural tissue simulations face: the efficient exploitation of greater
computing resources as simulations grow in scale. In describing
these solutions, we therefore focus on their computational approach
to satisfying the requirements and constraints imposed by neural
tissue simulation.

Previous simulation approaches
Briefly, these applications initially calculated large networks of many
neurons by solving each wholly on a single computational node of
a parallel machine, then communicating spikes logically over the
machine’s network to nodes where others are also wholly solved.
Communication between nodes in these applications, as in the Blue
Brain Project, models the network of neurons specified by the neural
tissue simulation, such that “processors act like neurons and con-
nections between processors act as axons” (Markram, 2006). This
communication scheme exploits the method of modeling axons
without compartments and instead as reliable transmitters of spikes
to the synapses where postsynaptic currents or potentials are then
generated. Typically some threshold condition must be satisfied in
the soma or axon initial segment (for example, dV

m
/dt > u, where

V
m
 is the compartment’s membrane potential, and u is a spiking

threshold) (Brette et al., 2007) for a spike to be transmitted logi-
cally as an all-or-none event. This “logical spike passing” approach
therefore limits the types of models that may be used to generate
the presynaptic voltage via axonal propagation, resulting in a less
costly calculation, as it solves the Hodgkin–Huxley equations only
for the dendritic, somatic, and first several axonal compartments.
While the savings depend on many factors, we estimate the resulting
speedup at 2–5×, despite the larger number of compartments in
many axonal arbors, in part because axonal compartments typically
require an order of magnitude fewer channel types than dendritic
and somatic compartments.

Because the propagation of spikes along the axon is not mod-
eled physiologically, as in a compartmental solution of the axonal
arbor’s voltages, logical spike passing requires parameterizing each
synapse with an estimate of the interval between spike initiation at
the soma and arrival at the synapse. The technique makes use of
computational event buffers for integrating synaptic inputs in the
order in which presynaptic neurons spiked. These buffers receive
spike times from presynaptic neurons, sent at simulation intervals
longer than the numerical integration time step, and corresponding
to the presumed minimum spike delay in the network (Morrison et
al., 2005), which synapses then integrate at expected times of arrival.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 3

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

The Neural TiSSue SimulaTor
We have exploited the structural constraints of neural tissue simu-
lation to create new methods that decompose a neural tissue into
volumes, then map each volume and the models it contains directly
to a computational node of a parallel machine to create the ultras-
calable Neural Tissue Simulator. Our approach computes the volt-
age in every axonal compartment, allowing spikes to propagate
between nodes of a parallel machine over the shortest possible
paths, ultimately arriving at synapses based on the dynamics of
our physiological model of the whole axon. This novel approach
to communication in the tissue is ultimately scalable, since no long
range communication in the machine’s communication network is
required. Furthermore, the approach allows for a broader range of
scientific questions to be addressed in more accurate models of the
tissue, for example by obviating the need to estimate conductance
times between somata and synapses or to restrict gap junctions to
only certain regions of the neuron.

iNiTializaTioN
The simulations we employed to test the Neural Tissue Simulator
included several physiological models, coupled according to the
structural and functional constraints of neural tissue simulation.
Our simulations deviated from biological accuracy (for example,
our cortical columns were stacked along the radial axis of the tissue)
whenever necessary to provide a better test of the simulator (for
example, to examine scaling in all three-dimensions). The simu-
lator supports all requirements of neural tissue simulation and
therefore can be used to create biologically validated simulations
of neural tissue.

Model graph specification
To create the simulator, we employed a model graph simulation
infrastructure (Figure 1; Kozloski et al., 2009), written in the
C++ programming language. We refer to this infrastructure as the
Model Graph Simulator, upon which the Neural Tissue Simulator
was built. Motivated by the extreme scale, dense connectivity, and
rich heterogeneity of neural tissue components, and by the variety
of methods in Neuroscience used to study it, the Model Graph
Simulator allows specification of arbitrary networks of arbitrary
models. Because the field continues to add new observations that
require modification to existing tissue models, the Model Graph
Simulator is extensible both in terms of network scale and the
heterogeneity of its components. It achieves this by supporting
the interoperability of existing network elements and new ele-
ments, defined using the declarative model definition language
(MDL) and composed into directed graphs of arbitrary size using
the declarative graph specification language (GSL; Kozloski et
al., 2009).

Models include declared types and computational phases,
executed in parallel across multiple threads referencing shared
memory, multiple processes referencing distributed memory, or
both. Each model is implemented once during initialization on
a single computational node. It then connects to other models
throughout the simulation. When a model attempts to connect
to a model implemented on another node, it is noted as a sending
model to that node. When a model attempts to receive a connection
from a model on another node, a model proxy is created, and the

spike passing is often viewed as a means to minimize communica-
tion over a parallel machine’s network, neuron splitting has been
viewed as a load balancing solution only.

To provide for efficient communication between parallel calcula-
tions, an algorithm must exploit knowledge of the physical network
that carries messages between nodes in the parallel machine. Ideally
a simulation will minimize the number of nodes a message must
traverse to arrive at its destination (Almasi et al., 2005). However,
the topology of the networks of neurons expected within large
neural tissues is irregular and largely unpredictable. Partly for this
reason, these applications resort to a random “round robin” work
distribution algorithm to assign neurons to nodes (Migliore et al.,
2006; Hines et al., 2008a). Such an approach approximates load
balance without optimizing communication, reasoning that a ran-
domly generated communication network topology is as good as
any for approximating the complex network topology present in
neural tissue simulations. This is likely the best that can be expected
for neuronal network simulations with long distance connections
that employ logical spike passing, though hierarchical optimiza-
tions of both load balance and communication based on topologi-
cal analysis may be possible.

Limiting long term scalability of certain approaches has been their
implementation of communication between computational nodes.
Both point to point strategies (Goddard and Hood, 1998), and the use
of MPI_Allgather for collective communication (Migliore et al., 2006)
may overwhelm the network as simulation sizes grow in a logical
spike passing scheme. While MPI (Message Passing Interface) collec-
tives have been optimized for the Blue Gene architecture (Almasi et
al., 2005), certain collectives require greater network bandwidth than
others, especially in the context of the complex but sparse communi-
cation patterns present in neural tissue simulations scaled beyond the
volumes of local microcircuits [e.g., a “column” (Markram, 2006)].
Because all to all connectivity between neurons is a reasonable expec-
tation for simulations of smaller tissue volumes, MPI_Allgather is a
reasonable choice for these simulations, since it gathers data from
all processors then distributes it to all processors. Certain rare spikes
not required by a given processor because no postsynaptic neuron is
simulated on it are still communicated to that processor. As simu-
lated neural tissue volumes increase in size and the required node
to node communication matrix grows sparser, however, the number
of unnecessarily communicated spikes will be expected to grow dra-
matically, ultimately saturating the communication network.

A more reasonable choice when this inevitability arises is the
MPI collective MPI_Alltoall, by which each node sends distinct data
to each receiving processor1. To address this problem, a novel spike
exchange solution on Blue Gene/P using a non-blocking multisend
collective (by which spikes are sent only to the processors requiring
them) has recently been implemented for parallel NEURON (Kumar
et al., 2010). Here, hardware communication overlaps with compu-
tation, promising to allow scalability to continue beyond the previ-
ously published 8,192 nodes of Blue Gene/L (Hines et al., 2008b).

1Note that Alltoall refers to the required full specification of a processor to processor
communication matrix in the arguments to the MPI collective. Somewhat confu-
singly, this allows specification of a sparse processor to processor communication
matrix. In contrast Allgather assumes a full processor to processor communication
matrix, and therefore does not require its specification.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

(3) Fast sodium and delayed rectifier potassium channel models,
based on the original Hodgkin–Huxley model. These channel
models were coupled to all axon and soma compartments and
solved in a single phase prior to all branches and junctions.

(4) Conductance-based AMPA and GABA
A
 synapse models

(Destexhe et al., 1998) solved together with channels.
(5) A gap junction model comprising two connexons, for elec-

trically coupling compartments from different neurons
through a fixed resistance and solved together with chemical
synapses and channels.

A “functor” in our simulation infrastructure is defined in MDL
and expresses how the simulator instantiates, parameterizes, and
connects specific models based on arguments passed to it in GSL.
All functors are therefore executed during simulation initiali-
zation and iterate over specified sets of models. We designed a
Neural Tissue Functor as a key component of the Neural Tissue
Simulator (MDL definition available as Supplementary Material).
Its arguments include a file containing a neural tissue structural
specification and parameter files targeting channels and syn-
apses to specific components of the tissue (examples available as
Supplementary Material). The structural specification comprises

connection is made from the model proxy to the model. Models
sharing a computational phase have no data dependencies and
reference other models or model proxies through MDL-declared
model interfaces. Interprocess communication occurs only on
declared phase boundaries, when data changed by models within
that phase is marshaled, communicated to other processes, and
demarshaled into model proxies (Figure 1).

To create the extensible Neural Tissue Simulator, we defined a
core set of models in MDL (available as Supplementary Material).
This list can be extended using MDL and the existing application
to include any number of additional tissue components from neu-
roscience. The core models included:

(1) A model of a neuron branch, parameterized with the number
of branch compartments, and solved implicitly at different
Gaussian forward elimination and back-substitution com-
putational phases.

(2) Two models of a junction between neuron branches (inclu-
ding somata), one solved explicitly at different predictor and
corrector computational phases preceding and following
Gaussian elimination in branches, and the other solved
implicitly as part of its proximal branch.

Figure 1 | Architectural overview of the Model graph Simulator. Two
languages (left) define model state and interfaces (“model definition language,”
MDL), and specify graph composition and connections (“graph specification
language,” GSL). The specified graph is initialized and partitioned (left center). In
the case of the Neural Tissue Simulator, partitioning is according to a tissue
volume decomposition. Relationships between models through interfaces

define connections (expanded view) and are parameterized separately from the
models themselves. Models are initialized together in memory and computed
by phase and by model type (right center). Communication between models
(right) occurs at phase boundaries and is achieved when state from models is
marshaled, communicated, then demarshaled into model proxies. Model
proxies connect locally to downstream nodes to complete the connection.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 5

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

in a three-dimensional grid. This mapping provides a means to
automatically decompose the tissue into network partitions that are
easily mapped onto the computational nodes and communication
network topology of a supercomputer such as Blue Gene (e.g., one
volume per grid coordinate per Blue Gene node). In addition, these
volumes allow access to tissue components by grid coordinates.
For example, recording and stimulation electrode models declared
directly in GSL (i.e., not initialized by the Neural Tissue Functor)
are connected to tissue components by targeting volumes according
to their grid coordinates, much as real electrodes are targeted to
coordinates in a real neural tissue using a stereotax.

Touch detection
The model initialization methods we employ build on existing
computational techniques. First, we utilize a touch detection tech-
nique developed in our lab in collaboration with the Blue Brain
Project (Kozloski et al., 2008) to generate chemical and electri-
cal synapses during the initialization of tissue simulations. Touch
detection in the Neural Tissue Simulator is performed by the Neural
Tissue Functor, and involves the calculation of geometric distances
between branch segments of morphologically accurate neurons in
the tissue specification, where each segment in a branch is logically
related to a compartment in the physiological model. By finding
segments that touch, compartment pairs available for synapse crea-
tion are identified. We designed an algorithm to accomplish this
task for large tissues using a parallel code that runs on the Blue
Gene supercomputer. The algorithm and software architecture have
been reported previously (Kozloski et al., 2008), but are reviewed
here in the context of those problems and solutions they share with
neural tissue simulation.

Touch detection requires performing a costly calculation of
distance between two line segments up to n2 times, where n is the
number of branch segments in the tissue. At this upper limit, the
calculation cannot possibly scale to large tissues. Fortunately, in
practice, it operates on data that can be partitioned logically into
local volumes within the coordinate system of the neural tissue, and
then distributed to the nodes of a parallel machine. Relevant to the
methods reported here, this coordinate system is identical to the
coordinate system in which neural tissue simulation is performed.

Tissue volumes are right rectangular prisms created by slic-
ing a neural tissue multiple times in each of its three-dimensions.
The number of volumes created in this way equals the number of
computational nodes of the machine. Slicing planes are chosen
to accomplish histogram equalization of branch segments across
slices in each of the three-dimensions of slicing (Kozloski et al.,
2008). In this way, we approximate an optimally balanced distri-
bution of touch detection work among the computational nodes
of Blue Gene.

During work partitioning, each node of Blue Gene loads some
number of unique neuron reconstructions from the structural
specification, then all nodes in parallel calculate which volumes in
the tissue are intersected by each of the neurons’ branch segments.
Because each machine node is assigned a single tissue volume to
aggregate segments for touch detection, partitioning determines
which nodes receive each branch segment during redistribution of
the tissue data. Whenever a segment traverses a slice plane, all nodes
assigned the volumes it intersects aggregate it for touch detection.

neuron identifiers (structural layer, structural type, and physi-
ological type) and coordinates that embed the neuron in the three-
dimensional coordinate system of the tissue.

We derived the current tissue specification from cortical tis-
sue. Unlike cortex, which scales in two-dimensions, our tissue
specification scaled in three, with the sole purpose of studying the
performance of the simulator and evaluating the novel numerical
methods reported here for accuracy and stability. The specification
included the following structural patterns:

(1) Minicolumns, comprising 20 reconstructed neurons from
http://NeuroMorpho.org (Table 1; Ascoli et al., 2007) uplo-
aded by the Markram lab (Wang et al., 2002). Each neuron
was spaced at 25 μm intervals along the radial cortical axis
in an order that reflects its relative laminar position in cor-
tex, rotated randomly about the radial axis in order to ensure
each minicolumn in the simulation was unique.

(2) Columns, comprising 20 × 20 minicolumns, spaced at 25 μm
intervals within the two-dimensions of the cortical sheet,
whose component neurons’ axons and dendrites extended
hundreds of micrometers beyond the boundaries of the
minicolumn or column.

(3) Tissue blocks, comprising m × n × p columns. The number of
columns simulated was varied in all three-dimensions to test
scaling properties of the simulator.

Finally, the simulation graphs we declared using GSL (example
available as Supplementary Material) express the tissue as a set of
contiguous, regularly shaped volumes, each mapped to a coordinate

Table 1 | Tissue simulation neurons.

Neuron Segments Branches Compart- Per Branch Length

 ments (×d)

C050896A-P3 1794 187 833 4.5 20

C261296A-P1 3308 437 1400 3.2 20

C261296A-P3 2955 376 1154 3.1 20

C261296A-P2 3652 302 1171 3.9 30

C040896A-P3 2910 241 1074 4.5 30

C120398A-P3 2140 135 644 4.8 40

C010600A2 3120 303 1473 4.9 30

C050800E2 2965 178 861 4.8 40

C200897C-I1 3863 399 1495 3.7 30

C120398A-P2 1490 80 437 5.5 40

C010600B1 9436 720 2868 4.0 40

C120398A-P1 1400 61 273 4.5 40

C190898A-P2 1873 122 540 4.4 30

C190898A-P3 2268 146 699 4.8 20

C250500A-I4 3097 191 1375 7.2 20

C180298A-P2 2863 186 1326 7.1 20

C040600A2 3871 301 1401 4.7 40

C240797B-P3 1407 110 468 4.3 30

C050600B1 4626 539 1987 3.7 30

C280199C-P1 2390 149 592 4.0 40

Mean 3071.4 258.2 1103.6 4.6 30.5

SD 1744.0 167.9 611.9 1.1 8.3

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 6

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

be studied. Our parallel, multithreaded algorithm has successfully
simulated the growth of axons for a single column (8,000 neurons)
on 4,096 nodes of Blue Gene/P in 24 h (Kozloski, 2011).

Volumetric data decomposition, local synapses, and exploiting link
bandwidth
The neurons in the neural tissue simulations we used to test the
Neural Tissue Simulator (Table 1) are reconstructions of real neu-
rons, rotated and positioned within simulated tissue blocks and
connected via synapses and gap junctions to neighboring neurons.
Neurons consisted of a soma, an axon, and one or more dendrites,
with O(100) branches and O(10,000) chemical synapses per neu-
ron, as well as a very small number of gap junctions per neuron
(<10), which couple dendrites of inhibitory interneurons, and
axons of excitatory pyramidal and spiny stellate neurons. Axons
and dendrites are composed using the same branch models, and
are indistinguishable in their numerical solutions, despite differ-
ent couplings to channel models (i.e., different channel types and
densities)2. Neurons are decomposed into branches, branch points,
and somata, which in turn are decomposed into compartments.
Branches comprise one or more compartments, while branch
points and somata correspond to a single compartment each. All
of a neuron’s coordinates are relative to the (x, y, z) center of the
soma, and undergo rotation and translation about this point before
insertion into the tissue coordinate system. Coordinates and radii
are then resampled to create a neuron comprising a contiguous
set of tangent spheres, each bounded by the hull of the original
reconstruction. In this procedure, branch points may be displaced
slightly when the last tangent sphere in a branch is created. Spheres
are downsampled by reserving the first sphere of some regular
sphere interval (for example, “1 every 10”) and the last sphere of
a branch. The reserved spheres then demarcate the endpoints of
compartments. The result of this process is the creation of O(1,000)
branch compartments per neuron, each of which is described by
two endpoints (i.e., sphere centers) and a radius. The somata and
branch point compartments are then described by single spheres
within this scheme.

Unlike previous approaches, neurons are divided at points within
branches where a single branch intersects a slicing plane and is
divided into two branches (i.e., at “cut points”). A single neuron is
therefore most often mapped to multiple machine nodes in our data
decomposition. The neural tissue is first divided into volumes by the
Neural Tissue Functor and each volume assigned to a machine node.
Slicing planes are chosen to accomplish a weighted histogram equali-
zation of compartments across slices in each of the three-dimensions
of slicing. Weights for each compartment are calculated based on a
sum of weights of its associated channel and branch models. These
weights were determined experimentally and reflect the expected
computational load of each model. In this way, we approximate an
optimally balanced distribution of work for solving branches on

This ensures that every touch will be detected at least once. We call
this method of distributing data according to neural tissue volumes
a “tissue volume decomposition.”

The touch detection algorithm proceeds within each volume and
on each node in parallel, creating a unique set of touches across
the distributed memory of the machine, then writes touch data
to disk or redistributes it for use by the Neural Tissue Functor to
initialize synapses. The parallel algorithm can detect billions of
touches per hour (for our largest calculation, 25.5 billion touches
in 2.5 h on 4,096 nodes of Blue Gene/P (Sosa, 2008), using a new
algorithm optimized to run multithreaded on Blue Gene/P’s multi-
core compute nodes), emphasizing the efficiency of the tissue vol-
ume decomposition for large parallel calculations of neural tissue
simulations.

Geometric constraints on touch detection may be relaxed
by increasing the minimum distance between branch segments
required for a touch to occur. Typically this criterion distance is
defined as the sum of the two segments’ radii, but our application
allows it to be increased arbitrarily. Increasing the touch criterion
distance allows for the identification of more compartment pairs for
possible selection and synapse creation, and thus the possibility of
constructing a greater diversity of neural circuits from a single tissue
by sampling a larger distribution of touches. For certain distances
and certain branch types, the approach is also a reasonable model
of the constraints on neural circuit development within a tissue,
since dendritic spines have been identified as a critical mechanism
for neurons to increase the distance over which synapses may form
(Chklovskii, 2004).

An additional approach to modifying touch distributions and
thus synapse creation and potential circuit configuration involves
the simulation of neural tissue development. In real neural tis-
sue, concentration and electrical gradients, and fields generated by
surrounding neurons are capable of deforming the trajectory of a
growing branch in predictable and stereotyped ways. They accom-
plish this by their interaction with sensing and motility components
packed into the specialized tip of a growing branch, known as the
growth cone (Hong and Nishiyama, 2010).

We created a modeling abstraction of these mechanisms and
implemented a neural tissue growth simulator (Kozloski, 2011),
which like our touch detection algorithm, is implemented by
the Neural Tissue Functor. Here, branch segments are added to
a structural model sequentially, and each is subjected to “forces”
that act upon segment tips. These forces model the interactions
between growing fibers and neurons, first preventing fibers from
penetrating each other, and second modeling the concentration
gradients of signaling molecules and local field potentials within a
tissue that influence growing fibers. The simulator employs a tissue
volume decomposition to distribute the work of calculating and
aggregating all forces acting on a particular branch segment from
other segments. In this way, neuron morphologies may be modified
to achieve touch distributions different from what is possible by
incorporating rigid neuron morphologies into a simulated tissue
and increasing the touch distance criteria. Finally, because each
branch segment type can be parameterized to generate and sense
a unique and arbitrary set of forces within the tissue, the dynamics
of neuronal growth, and the mapping from a set of developmental
parameters to stereotyped microcircuit structure and function may

2Note that the Model Graph Simulator allows easy replacement of any model with
another. For example, the axon branch model could easily be replaced by a simpler
model of logical spike propagation, should this be desirable to a user. Note that
such an approach would propagate a spike to each branch point in the axonal ar-
bor (rather than to each synapse), at which point it would continue as two spikes,
thereby potentially reducing communication required by the standard logical spike
passing approach.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 7

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

dimensional torus, which attempts to maximize the bisection
bandwidth of the machine, while ensuring that a large number
of adjacent nodes (nearest neighbors) exist for any node on the
network. Bisection bandwidth is the bandwidth across the mini-
mum number of links that divide the machine into two partitions
with equal numbers of nodes (Al-Fares et al., 2008) and determines
the amount of time required for all nodes to communicate to all
nodes, (typically referred to as “all to all” communication). For
Blue Gene/P, link bandwidth is maximum between nearest neigh-
bors and measures 6.8 GB/s, while bisection bandwidth varies
between 1.7 and 3.8 TB/s, depending on the machine size (Sosa,
2008).

The Neural Tissue Simulator exploits nearest neighbor com-
munication in the massively parallel architecture of Blue Gene to
create fixed communication costs that are wholly dependent on
the local structure of neural tissue (Figure 3). Because synapses,
like neuron compartments, are simulated as structural elements
embedded within the tissue’s three-dimensional coordinate sys-
tem, the communication cost for most synapses is zero, since
nearly all components of each synapse are wholly contained
within a single tissue volume (Figure 2). State necessary for mod-
eling synaptic transmission as a coupling between presynaptic
voltages and postsynaptic conductance changes (Destexhe et al.,

the computational nodes of Blue Gene. Each compartment is then
assigned to the volume containing the compartment’s proximal end-
point (except for branch points, which are assigned to the same vol-
ume as their proximal compartment) and initialized on the machine
node assigned their volume (Figure 2). Initialization of branches
proceeds as compositions of consecutive branch compartments and
junctions are assigned to the same volume. As a result, branches
whose compartments were assigned to more than one volume are
effectively cut into multiple branches (Figure 2). The Neural Tissue
Functor is responsible for initializing branches and junctions, and
their proxies, in order to ensure that the Model Graph Simulator’s
collective communication is consistent and matched across all vol-
ume boundaries (node–node pairs; Figure 2).

For a parallel architecture, link bandwidth typically measures the
number of bytes per second that can be communicated from one
machine node to another through any number of wires that con-
nect the pair directly. Despite some overhead involved in sending
data in packets, link bandwidth is a good estimate of the effective
bandwidth between adjacent nodes on the machine’s communica-
tion network (Al-Fares et al., 2008).

Because not all nodes are adjacent on today’s large parallel
machines, a network topology determines the number of links
that separate nodes. For Blue Gene/P, this topology is a three-

Figure 2 | Tissue volume decomposition and creation of models and
model proxies depicted as two neurons embedded in a tissue, and sliced
along two orthogonal planes. The Neural Tissue Simulator slices along three
planes. Computation of the neuron is decomposed into models (branches and
junctions) which are initialized in different volumes (represented by their
different colors). Synapses are also initialized within the volumes containing
their presynaptic and postsynaptic compartments (magenta). A portion of

these volumes is expanded (cube; upper right) to depict models that span the
slicing plane. To support communication between these models (lower right)
model proxies are initialized (striped colors) such that models that connect to
models in other volumes do so via a model proxy on that volume.
Communication occurs once between computational nodes on each phase
boundary, requiring state from models to be marshaled and demarshaled into
proxies.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 8

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

from network congestion due to irregular communication patterns
that require longer communication paths and/or greater message
lengths as the simulation and machine size grow, though at the

1994) is therefore referenced within local memory of a single
machine node rather than requiring a costly communication over
the machine’s network.

Because communication across synapses by simulation elements
imparts almost no additional machine network communication
cost, the marginal cost of adding a synapse to a simulation is there-
fore the constant cost of computing the synapse’s state and cur-
rent (Figure 4). In our study of simulations comprising 256,000
neurons on 1,024 nodes of Blue Gene/P, while varying synapse
counts from 0 to 11,265 per neuron, the measured cost was approxi-
mately 50 μs per synapse per simulated second3. This negligible
linear relationship between number of synapses and compute time
has profoundly favorable implications for simulations that aim
to replicate the physiological and anatomical constraints imposed
by real neural tissue (Markram, 2006), where synapse densities may
approach one per cubic micron (Braitenberg and Schuz, 1998), and
synaptic counts per postsynaptic neuron easily achieve 105–106 (for
example in neocortex and cerebellum).

Thus, in our tissue volume decomposition, nearly all commu-
nication in a simulation occurs between adjacent nodes of Blue
Gene/P and traverses only one link. Communication efficiency
in our simulation is therefore determined by link bandwidth not
bisection bandwidth. For this reason, the amount of data com-
municated over links remains constant as the size of the simula-
tion grows proportionally with the size of the machine (i.e., its
number of nodes). In contrast, poor scaling almost always results

3All simulations used to test the Neural Tissue Simulator simulated 100 ms of neu-
ron physiology.

Figure 3 | The Neural Tissue Simulator exploits a tissue volume
decomposition, and therefore communication in a simulation of arbitrary
scale can be estimated. This is due to all communication occurring at interfaces
between neural tissue blocks, where a micrograph (courtesy of the Department of

Histology, Jagiellonian University Medical College and Wikipedia.org) can provide
sufficient information to perform the estimate. Here we estimate based on our
models from the Neural Tissue Simulator a communication requirement which can
be accommodated easily by the link bandwidth between Blue Gene/P’s node cards.

00001

000001

000,21000,01000,8000,6000,4000,20

Synapses / Neuron
C

om
pu

te
 T

im
e

(s
)

noitalumiS
noitazilaitinI

P/GB ,sedoN 420,1

snorueN 000,652

sehcnarB 174,367,48

snoitcnuJ 178,188,05

stnemtrapmoC 004,228,072

01> 4 × esaercni espanys

<1
0

×
sl

ow
 d

ow
n

01 4

01 5

Figure 4 | Synapse scaling. Plot of both initialization times and simulation
times (100 ms of physiology) vs. synapses/neuron for a constant number of
neurons on a fixed machine size (inset table). Increasing synapse density by
four orders of magnitude causes compute time to approximately double.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 9

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Physiological initialization requires iterating through branch
segments and touches, and identifying which segments require
connections to local instantiations of the neural tissue models,
and which must connect to model proxies (Figures 1,2). Making
this distinction involves multiple searches of multiple maps that
relate the various models to each other, and to the tissue volume
decomposition. These searches, using Standard Template Library
map containers, proceed with O(logN) complexity, such that if
the amount of tissue (N) that must be searched within a volume
grows, initialization may be slowed. We note the importance then
of limiting the size of tissue volumes in order to ensure timely
initialization, which is readily achieved using massively parallel
machines such as Blue Gene. During the study reported here, we
continued to optimize physiological initialization, for example by
improving our disk access times for reading the tissue structural
specification. Our results indicate that both strong and weak scal-
ing are properties of all three stages of initialization performed
by the Neural Tissue Functor, with expected total initialization
times of 1–2 min per neuron per processor across all simulation
and machine sizes reported here with on average 10,000 synapses
per neuron. Furthermore, the relationship between synapses per
neuron and initialization time is linear over the physiological ranges
we studied (Figure 4).

NumericS
Our model simulation methods build on existing numerical
approaches for solving Hodgkin–Huxley type mathematical models
of branched neurons, as described in Supplementary Information.
Here we report our numerical approach to solving these equations,
which can be considered a tunable hybrid of Hines’ method (Hines,
1984), and that of (Rempe and Chopp, 2006). We first review the
two methods, emphasizing aspects relevant to our hybrid. We
then discuss how our approach allows for novel adjustments to
the decomposition of a neuron into implicitly solved tree partitions
separated by explicit junctions, and how using our tuning param-
eter (“maximum compute order”), a trade off occurs between the
numerical stability and accuracy of the combined method, and the
efficient parallel execution of the computational algorithm that
implements it.

The Hines algorithm
The “Gold Standard” for numerically solving Hodgkin–Huxley neu-
ron models is the Hines algorithm (Hines, 1984), which improved
and extended to branched neurons the numerical scheme originally
proposed by Cooley and Dodge (1966) for computing action poten-
tials in a cable. Cooley and Dodge showed that a backward implicit
scheme for computing the membrane potential, combined with
an iterative scheme for solving the non-linear channel equations,
could be used to efficiently implement the second-order accurate
Crank–Nicholson method for Hodgkin–Huxley type models. Hines
provided two critical insights. First, he showed it is possible to main-
tain second-order accuracy while eliminating the need to iterate
when solving the channel state equations by staggering the time
points at which the membrane potential equations and channel
state equations are satisfied. He then derived a branch and com-
partment numbering scheme that made it possible to construct a
single linear system for a branched neuron that can be diagonalized

scale of present neural tissue simulations, this does not appear to
be the case for other approaches (Hines et al., 2008b; Kumar et
al., 2010).

Our tissue volume decomposition is able to exploit Blue Gene’s
innovative toroidal network topology because it provides a natural
mapping from nearest neighbor volume to volume communication
in a neural tissue to nearest neighbor node to node communication
on the machine’s network (Figure 3). Thus, while other applications
employ a neuron decomposition, equating communication between
nodes with the communication between neurons in a network, our
volume decomposition employs node to node communication that
models the fixed planar interfaces between neural tissue volumes.
We exploit the fact that these fixed planar interfaces have a fixed
cross-sectional composition determined by the ultrastructure of
neural tissue, resulting in a fixed communication cost per unit area.

Despite the constraints and advantages of nearest neighbor com-
munication, the communication engine we devised for the Neural
Tissue Simulator supports communication across all possible paths
in the network and uses only the MPI_Alltoallv communication
collective. We chose this collective for communication at iteration
phase boundaries (Figure 1) for two reasons. First, under certain rare
circumstances, compartments, or synapses may span non-adjacent
nodes (for example if a compartment is very long), and therefore
the calculation of a branch or synapse’s state within a time step
will require communication through multiple links on the network.
More significantly, we aimed to support models that require global
communication (for example, models of EEG, deep brain stimula-
tion, etc.). We do not report results for simulations using these glob-
ally communicating models since we aimed here to study only the
scalability of fundamental simulation functions of the Neural Tissue
Simulator. We anticipate that the scaling properties reported here
will be minimally impacted when such models are added however,
due to the high bisection bandwidth of the Blue Gene architecture,
and its optimized collective communication (Almasi et al., 2005).

Scalability
Initialization of the simulation has three stages: tissue development,
touch detection, and physiological initialization (each performed by
the Neural Tissue Functor). We showed previously that both tissue
development and touch detection scale with the number of branch
segment interactions (i.e., touches, forces, etc.) calculated within a
volume (Kozloski et al., 2008; Kozloski, 2011). Our tissue volume
decomposition therefore allows for both strong scaling, where the
total number of interactions is held constant and the number of
volumes increases (resulting in a constant decrease in compute
time) and weak scaling, where the number of interactions and the
number of volumes grows proportionally (resulting in a constant
compute time). For larger touch criterion distances or longer range
forces, however, these scaling properties break down as interactions
must be computed in more than one volume, and the algorithms
lose the benefits of parallelism. Fortunately, the need for either long
distance touch criteria or long range force calculations is typically
small in neural tissue simulations, and their number much less
than the total number of branch segments [for example, typically
only axons are subjected to long range forces, while all branches
experience short range forces due to direct physical interactions
(Kozloski, 2011)].

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 10

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

posed the neuron into implicitly solved branches, and introduced
an explicit predictor–corrector scheme for the membrane poten-
tial at branch points (Figure 5C). In this approach, an explicit
step is used to predict the value of the membrane potential at the
branch point at the forward time. This predicted value is then
used in place of the junction’s unknown membrane potential in
solving for the membrane potential at the forward time in the
branches to which the junction is attached. Once the membrane
potential at the forward time in the branches is determined, the
value is used to correct the membrane potential at the branch
point at the forward time. This approach effectively decouples the
solution of the membrane potential between branches, permit-
ting an implicit scheme within each branch. Hines’ large linear
system is thus replaced with a set of much smaller linear systems
that are truly tridiagonal and decoupled from each other, and
can therefore be solved efficiently and simultaneously in paral-
lel within a single neuron. Their approach also lends itself to
computational gains derived from spatially adapting solutions
depending on gradients in the membrane potential within each
branch, a technique that is greatly aided by the decomposition
and the simple computation of individual branches (Rempe and
Chopp, 2006; Rempe et al., 2008).

It is important to note that Rempe and Chopp (2006) formu-
lated the problem in the same fully implicit manner as Hines, but
utilized an explicit, predictor–corrector approach to estimate the
solution at all junctions. As Hines noted, “Very strong coupling
between adjacent compartment voltages demands implicit methods
for numerical stability with reasonable time steps” (Hines, 2008a),
and so Rempe and Chopp’s (2006) approach limits the stability and
accuracy of their numerical method at junctions, and therefore of
the method overall. Surprisingly however, they were able to show
empirically that their method was sufficiently stable and accurate

efficiently. This numbering scheme corresponds to a depth-first
visit of branches and compartments, where the soma is considered
the root of multiple trees corresponding to axons and dendrites.

These observations, combined with a fully implicit, nearest
neighbor numerical method (Figure 5A), produced a linear sys-
tem that is tridiagonal except for rows and columns correspond-
ing to branch points, yet can still be diagonalized efficiently using
a slight modification to the Thomas algorithm (Thomas, 1949;
Bruce et al., 1953). Such a scheme makes it impossible to solve arbi-
trary branches of a single neuron simultaneously using a parallel
machine, though subtrees that originate at the same neuron root
have been successfully solved in parallel (Figure 5B; Hines et al.,
2008a), and neuron splitting techniques have now been extended
to take many forms (Hines et al., 2008b). Furthermore, this fully
implicit approach yields a stable and accurate solution at the level
of the neuron, even when neurons are coupled via chemical syn-
apses, but can not be extended to include electrical synapses (Hines,
1984). As a result, when applied to a tissue containing electrical
synapses, Hines’ approach must be modified to include explicit
terms everywhere electrical synapses occur. This has the effect of
decoupling the neurons, which can then be solved implicitly. The
introduction of explicit terms and fixed-point iteration to solve for
electrical synapses limits the stability and accuracy of the overall
numerical method, however. Moreover, these explicit terms occur
wherever electrical synapses occur, rather than at specific, well-
defined locations like junctions, such that their numerical effects
may be difficult to control.

The Rempe–Chopp algorithm
In contrast to Hines’ approach to solving the neuron’s membrane
potential with an implicit numerical scheme and a single linear
system for the entire neuron, Rempe and Chopp (2006) decom-

Figure 5 | Components of our numerical approach. (A) The Hines
algorithm (left) solves the entire neuron implicitly (indicated by blue),
represented here as a neuronal arbor comprising branches, compartments,
and implicit junctions. Inset image depicts how a parallel solver can calculate
this solution, with the matrix A representing the portion of the neuronal arbor
that must be solved in a single phase (i.e., the whole tree). (B) Hines’
neuronal splitting algorithm allows different trees originating from the soma to
be solved separately and implicitly, here depicted by different colors. The

soma is then solved in a manner Hines describe as implicit equivalent
(purple). Inset depicts each tree solved in parallel, assigning a different
subscript to matrices An to represent this parallelism (dotted lines demarcate
different trees). (C) Rempe–Chopp’s explicit algorithm transforms each branch
point into an explicit junction (orange) and all branches can be solved implicitly
and in parallel (inset; wherein the matrix An indicates parallelism, its
subscripts labeled on each branch, and the dotted line demarcates all
instances of An).

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 11

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

order (defined neuroanatomically as the number of junctions
between the branch and the soma) are computed within a single
phase, and branches of different branch orders are assigned to
different phases. Specifically, branch order phases are structured
such that the maximum branch order’s Gaussian forward elimi-
nation phase occurs first, followed by the next highest branch
order, and so on until finally zeroth order branches undergo both
a forward elimination and a back-substitution phase. Each sub-
sequent branch order then undergoes back-substitution until all
branches are solved. At each implicit junction (solved with the
proximal branch to which it is connected), the numerics of Hines’
approach are applied to solve the off diagonal elements of the
branched cable’s matrix.

The advantage of this approach is that all branches of the same
branch order can be solved fully implicitly and in parallel, allowing
a tissue volume decomposition to assign branches to machine nodes
based on volume, where volume boundaries introduce additional
implicit or explicit junctions at cut points. The disadvantage is
that the proliferation of computational phases as neurons grow in
complexity (approaching the physiological range of 10–102 branch
orders) requires a synchronization point in the parallel algorithm
wherever communication between contiguous branches of differ-
ent orders occurs, each of which imposes a cost on performance
of the parallel simulation.

An alternative approach incorporates Rempe and Chopp’s
explicit junctions at select points in the neuron’s branched
arbor (Figure 6B). We define a compute order as the branch
order modulo one plus a specified maximum compute order.
By replacing branch order computational phases with a smaller
number of compute order phases we address the problem of
excessive synchronization points associated with a fully implicit
branch order approach. Therefore, with a maximum compute
order of 0, Rempe and Chopp’s approach is replicated with all

to permit use of a reasonable time step. They found time steps
up to O(100) μs produced stable and accurate solutions for the
classic Hodgkin–Huxley model on branched structures compris-
ing branches 80 μm long with radii of 0.2 μm and compartment
spacings of 8 μm. Moreover, on complex, branched structures, their
method matched that of Hines at a time step of 15 μs.

The sizable approximations made in constructing these mod-
els, combined with the stability properties of Rempe and Chopp’s
method, permit a reasonable choice between the accuracy found
in Hines’ method and the speed increase that Rempe and Chopp’s
method allows via parallelization and spatial adaptation. Our
method implements this choice in a manner tunable by a single
parameter.

A hybrid branched cable equation solver
We developed a hybrid method that trades off the accuracy and
stability afforded by Hines’ fully implicit numerical method (Hines,
1984) and the parallelism made possible by Rempe and Chopp’s
(2006) implicit/explicit numerical method for solving a neuron’s
branched cable equations. We describe the mathematics of our
hybrid method in Supplementary Information. Here we describe
the computational approach and illustrate the trade off graphi-
cally. The computational method of the Model Graph Simulator
requires identification and ordering of specific phases of a model’s
computation so as to eliminate data dependencies between models.
For Rempe and Chopp’s method, these phases are the predictor
and corrector steps of the explicit junctions’ calculations, sepa-
rated by a fully implicit solution phase for branches between them
(Figure 5C).

Now consider a fully implicit parallel solver that replaces
all explicit junctions between branches with implicit junctions
(Figure 6A). In this approach, which we also implemented using
the Model Graph Simulator, all branches of a particular branch

Figure 6 | Creation of our numerical approach. (A) Different branch orders
may be computed in parallel across the entire neuronal arbor (represented by
different colors). All junction are computed implicitly. Inset shows various
matrices An–Dn representing the portion of the neuronal arbor that must be
solved in a single phase (i.e., whole branch orders). Subscripts label branches
indicating all branches of an order may be solved in parallel, and dotted lines also
demarcate branches of an order. (B) By introducing the concept of compute

orders, we introduce explicit junctions at a fixed branch order interval (in this
case, determined by a maximum compute order of 2). This allows different
branch orders to be computed in parallel (e.g., 0 and 3). Colors, matrices,
subscripts, and dotted lines as in (A,C) By slicing the neuron tissue, additional
explicit and implicit junctions are introduced at cut points, and all distal compute
orders are incremented. The numerics of distal junction may also change.
Colors, matrices, subscripts, and dotted lines as in (A).

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 12

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

300 electrical compartments in 300 branches per neuron, and did
not explicitly model the axon (King et al., 2009). Our model neu-
rons comprised 1,104 ± 612(SD) compartments in 258 ± 168(SD)
branches (Table I), or 4.6 ± 1.1(SD) compartments per branch.
This resulted in compartment lengths ranging from 20 to 40 times
the fiber diameter. Given that for parabolic equations, ∆t ∼ ∆s2, it
is reasonable to employ a smaller time step for the smaller com-
partments, since even for the unconditionally stable, fully implicit
Crank–Nicolson method, accuracy is controlled by the local trun-
cation error, which is O(∆t2) + O(∆s2). Explicitly modeling the
propagating action potential in the axon also imposes additional
constraints on the time step.

SimulaTioN WorkfloW
Here we provide a step by step sequence for the workflow of simu-
lation initialization and execution, complete with required data
inputs, calculations, and outputs. Note that all steps following
model code generation are executed by a single executable run on
Blue Gene/P.

(1) The MDL parser compiles MDL (see Supplementary
Material) into C++ for models and functors, generating a
single code to run on multiple platforms. The MDL parser
generates code stubs for implementing model and functor
behavior. The simulation designer then implements model
functionality in C++.

(2) A configure script initiates C++ code compilation, targeting
the executable for a specific platform (Blue Gene/P for this
study).

(3) The mpirun command is issued on Blue Gene/P. Because
all simulation compute threads are bound to cores on Blue
Gene/P, an additional set of non-bound threads for ini-
tialization and communication are created using an envi-
ronmental variable. Other environmental variables specify
the maximum message size and the machine mode on Blue
Gene/P. Arguments passed to the GSLparser executable
(which parses GSL and creates and runs the simulation)
configure the number of threads and the GSL file name. For
example:

mpirun -env "BG_APPTHREADDEPTH=2 DCMF_RECFIFO=48000000"

-partition r0 -c4096 -np 4096 -mode SMP -cwd /NTS

-exe /NTS/bin/GSLparser -args "-t 4 Tissue0.gsl"

(4) The GSL parser reads GSL (see Supplementary Material) and
initializes the tissue volume grid based on GSL specified grid
dimensions. The grid specifies a set of grid layers, each of
which comprises a single model type that the Tissue Functor
will generate. Note that “layer” does not refer to a structural
layer, but to a set of functional model “overlays” within each
grid coordinate (volume) in the tissue. In this way, different
types of channels, synapses, and compartments can be gene-
rated and accessed within the grid.

(5) A volume mapper assigns each volume to a node of Blue
Gene/P, ensuring that tissue volume and node coordinates
preserve nearest neighbor communication patterns on the
hardware.

junctions being explicit. With the maximum compute order
equal to the highest branch order of the neuron, Hines’ approach
is replicated with all junctions being implicit. We designed the
Neural Tissue Simulator to allow specification of an arbitrary
maximum compute order between these two values. With inter-
mediate values, a trade off is achieved between solving a larger
portion of the neuronal arbor implicitly, while maintaining a
reasonable number of computational phases and synchroniza-
tion points in the parallel algorithm (Figure 6B). To achieve a
volume decomposition, additional junctions (either implicit or
explicit) may be added at cut points between volumes, thereby
altering all distal compute orders, and changing the numerical
approach (explicit/implicit) for solving certain distal junctions
(Figure 6C).

For a test simulation of 128,000 neurons, 42 million branches,
and 135 million compartments on 512 nodes of Blue Gene/P,
we varied the maximum compute order from 0 to 7 (Figure 7)
and observed a reduction in the number of explicit junctions
of ∼25% per additional compute order. Fewer explicit junctions
increased the size of implicitly solved neuron branch partitions
and so presumably improved the stability and accuracy of our
simulation (instability was never observed). Surprisingly, we
also observed that simulation performance decreased very little
as 2–12 additional synchronization points for communication
between implicit branches were added (one forward elimination
and one back-substitution communication per compute order;
0.4–4% slow down per additional compute order). Furthermore,
initialization compute time was impacted even less by additional
compute orders.

Our test simulations used a time step of 10 μs, which compares
favorably to that used in previous work when compartment size is
taken into account. The largest published simulation to date, for
example, utilized a time step of 25 μs in simulating approximately

00001

0000001

876543210
Maximum Compute Order

C
om

pu
te

 T
im

e
(s

)

Simulation (t)

Initialization (t)
P/GB ,sedoN 215

snorueN 000,821

sehcnarB 578,200,24

stnemtrapmoC 002,114,531

norueN/sespanyS 330,9

01 4

01 5

01 6

01 6

01 7

01 8

N
um

ber

Explicit
Junctions (N)

Figure 7 | Compute order scaling. Plot of both initialization times and
simulation times (100 ms of physiology) vs. maximum compute orders from 0
to 7 for a constant number of neurons on a fixed machine size (inset table). On
the right y-axis, number of explicit junctions over the same maximum
compute orders is plotted.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 13

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

branch junction states, evaluate all triggers, and collect data if
necessary. Between each phase, model state modified during a
phase and required by other models is marshaled, communi-
cated by MPI_Alltoallv, and demarshaled into model proxies.

(18) The simulation terminates when the end criterion is satisfied.
All models and simulation data are destructed on all nodes of
Blue Gene/P.

Public availabiliTy of DaTa, SimulaTioN SPecificaTioNS, aND
SimulaTor
All neuromorphological data presented derive from the publicly
accessible database found at www.neuromorpho.org. Scripts written
in MDL and GSL, and an example tissue specification and parameter-
ization files for creating and running the largest simulation reported
here, are available as Supplementary Information. The Neural Tissue
Simulator software is experimental. IBM would like to create an active
user community. Readers are therefore encouraged to contact the
authors if interested in using the tool or in the source code.

SimulaTioN ScaliNg reSulTS
Here we report the results of scaling the Neural Tissue Simulator
using several methods in order to evaluate its performance over a
variety of simulation and machine sizes and configurations.

ThreaD ScaliNg
The Blue Gene/P runtime system allows applications to run in
symmetric multiprocessor “(SMP) Mode,” wherein each of its 4
core nodes is equivalent to a SMP machine (Sosa, 2008). In this
mode, computational threads may be created by the program and
run simultaneously on the node’s different cores, each referencing
the same shared node memory. Our Model Graph Simulator fully
exploits SMP machines, parallel distributed memory machines such
as clusters, and hybrid machines such as Blue Gene/P (Kozloski
et al., 2009). In simulations used to test the Neural Tissue Simulator,
the four threads of each node compute models within a phase
simultaneously in SMP mode. Models then reference the state
of other models on the same node (even if computed by other
threads) directly at their location in memory, rather than through
MPI communication and model proxies, which are reserved strictly
for node to node communication. Such a capability can be valu-
able, especially since subsequent generations of Blue Gene will have
significantly more cores each supporting an additional thread.

We observed thread scaling in our test simulations of 128,000
neurons, 40 million branches, and 135 million compartments on
512 nodes of Blue Gene/P (Figure 8). Different simulation runs
specified different numbers of threads (and thus utilized different
numbers of machine node cores). The speed up observed from
1 thread to 2 was 1.8×, from 2 threads to 3 was 1.4×, and from
3 threads to 4 was 1.3×. Overall, we observed a 3.1× speed up
from 1 thread to 4. We anticipate therefore that the Neural Tissue
Simulator will effectively exploit additional threads on architectures
with more cores per node, as this scaling appeared sufficiently near
optimal to continue beyond Blue Gene/P’s core constraints.

STroNg ScaliNg
Strong scaling refers to the ability of an application to perform the
same sized calculation faster on machines of larger sizes. We observed
strong scaling of the Neural Tissue Simulator when we performed a

(6) The Tissue Functor reads the tissue specification file and
computes a globally consistent scheme for dividing neuron-
related initialization work. The functor loads different neu-
rons from .swc files into memory according to this scheme
onto each node of the machine.

(7) The Tissue Functor performs a resampling algorithm, tran-
sforming neurons in memory by creating points spaced at
regular multiples of their containing fibers’ diameters.

(8) Communication between all nodes of the machine enumera-
tes all points in the tissue, constructing a global point histo-
gram, which is then equalized in three-dimensions to create
a volume slicing.

(9) Neuron segments are communicated to all volumes they tra-
verse, according to the volume slicing scheme.

(10) The Tissue Functor executes a neuron growth algorithm
(optional), sequentially adding each segment of each neuron
while subjecting each segment to specified forces from seg-
ments already in the tissue.

(11) The Tissue Functor executes a touch detection algorithm,
and computes touches between all neuron segments in each
volume. Touches are detected using a parameterized proba-
bility, which may save memory in extremely dense tissues.
Globally consistent random number generation allows touch
detection to remain consistent across all nodes of Blue Gene/P.

(12) The Tissue Functor aggregates computational costs associated
with each neuron segment based on cost estimates for com-
partments, channels, and synapses, provided by a simulation
designer in a .par file (see Supplementary Material). A global
histogram of costs is then equalized in three-dimensions to
create a second volume slicing scheme for work distribution,
which ensures the computational load is balanced.

(13) With this scheme, the Tissue Functor communicates touches
and neuron segments to nodes of Blue Gene/P responsible for
implementing models or model proxies that depend on these
data (for example synapses, each of which depends on one touch
and two segments, and compartments, each of which depends
on a segment). A simulation designer provides parameterized
mappings in .par files (see Supplementary Material) that con-
strain which models are created based on a specified association
between GSL model indices and branch identifiers associated
with each neuron segment and touch in the tissue specification.

(14) The GSL parser creates all tissue models, including branches,
channels, and synapses. A simulation designer parameterizes in a
.par file (see Supplementary Material) the probability of creating
synapse models of a specific type from a set of valid touches.

(15) The GSL parser initializes other models such as stimula-
tion and recording electrodes, connecting each to specified
models within the tissue. In addition, specified simulation
triggers (for example, to control data collection and simula-
tion termination) are initialized.

(16) The GSL parser interprets the specified phase structure of
the simulation and maps different models’ phases to declared
simulation phases.

(17) The GSL parser initiates the simulation, in which each itera-
tion comprises a sequence of phases that: solve ion channel
and synapse states, predict branch junction states, forward
eliminate branches of appropriate compute orders, back-
substitute branches of appropriate compute orders, correct

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 14

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

To express performance results in units more relevant to neural
tissue simulation, we normalized the simulation times and expressed
them in terms of the amount of time each processor of any machine
must compute in order for the entire machine to compute a given
amount of physiological time for a single neuron. We measured this
time at 1.0 processor seconds per neuron millisecond when there
is an average of 250 neurons per node, and 1.8 for an average of 4
neurons per node. Thus, while strong scaling could likely continue
to produce shorter overall simulation times on machines larger than
those we used, the normalized measurements indicate that the ben-
efit of larger machines for problems of this size will likely diminish.

Weak ScaliNg
Weak scaling refers to the ability of an application to perform calcu-
lations of varying sizes in the same amount of time, provided that
as the calculation size grows, the machine size grows proportionally.
We observed excellent weak scaling of the Neural Tissue Simulator
when we performed simulations of different sizes while holding
the average number of neurons per node constant at 250 on Blue
Gene/P machine sizes ranging from 64 to 4,096 nodes (Figure 10).
Simulation times decreased by 15% from 64 nodes to 4,096 as the
simulation size increased from 16,000 to 1,024,000 neurons. The
normalized simulation times decreased from 1.0 processor seconds
per neuron millisecond to 0.88. Thus the largest simulation we
performed during this weak scaling study calculated 100 ms of
neurophysiology for over 1 million neurons, 1 billion compart-
ments, and 10 billion synapses (Table 2) in 6.1 h.

DiScuSSioN
imPlicaTioNS of reSulTS
The simulations we performed, while intended to test the per-
formance and scaling of a parallel application for calculating
the Hodgkin–Huxley equations for branched neurons using a

simulation of 16,000 neurons on Blue Gene/P machine sizes ranging
from 64 to 4,096 nodes (Figure 9). Simulations continued to speed up
even as more branches were divided into separate models by our tis-
sue volume decomposition, potentially impacting scaling negatively.

1 2 3 4

C
om

pu
te

 T
im

e
(s

)

01 4

01 5

Number of Threads/Node

noitalumiS
lamitpO

P/GB ,sedoN 215

snorueN 000,821

sehcnarB 578,200,24

snoitcnuJ 570,260,52

stnemtrapmoC 002,114,531

norueN/sespanyS 330,9

Figure 8 | Thread scaling. Plot of simulation times (100 ms of physiology)
vs. number of threads used in SMP mode on Blue Gene/P per node for a
constant number of neurons on a fixed machine size (inset table). Optimal
thread scaling (dotted line) is shown for comparison.

001

0001

00001

000001

01 001 0001 00001

Number of Nodes

C
om

pu
te

 T
im

e

)s(noitalumiS

)]sm noruen[/]sm rossecorp[(noitalumiS

snorueN 000,61

sehcnarB ± 338,521,6 490,269

snoitcnuJ ± 998,798,7 110,322,6

stnemtrapmoC 004,629,61

norueN/sespanyS ± 579,9 05

01 2

01 3

01 4

01 5

Figure 9 | Strong scaling. Plot of simulation times (100 ms of physiology)
vs. number of computational nodes (4 cores/node) on Blue Gene/P for a
constant number of neurons (inset table). Optimal strong scaling (dotted line)
is shown for comparison. Scaling numbers are normalized and plotted a
second time, and both plots show strong scaling to 4,096 nodes (16,384
cores) of Blue Gene/P.

00001

000001

01 001 000,1 000,01
Number of Nodes

Si
m

ul
at

io
n

C
om

pu
te

 T
im

e
(s

)

edoN/snorueN ± 052 0

edoN/sehcnarB ± 710,28 222,2

edoN/stnemtrapmoC ± 574,462 0

edoN/sespanyS ± 741,925,2 280,541

01 4

01 5

Figure 10 | Weak scaling. Plot of simulation times (100 ms of physiology) vs.
number of computational nodes (4 cores/node) on Blue Gene/P for a constant
average number of neurons/node (inset table). This plot shows weak scaling to
4,096 nodes (16,384 cores) of Blue Gene/P.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 15

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

novel tissue volume decomposition, has provided additional
physiological results worth noting. Specifically, we observed by
recording simultaneously from many basket cell interneurons in
the upper layers of our tissue simulations, action potentials that
originated in the axons then back propagated into somata, where
they failed to regenerate full scale action potentials (Figure 11).
This observation emphasizes the importance of simulating the
compartments of axons, in part because sodium channel densi-
ties were constant throughout the axonal arbor. Furthermore,
complex synaptic integration of the massive AMPA and GABA

A

input to each neuron is evident in the dendritic voltage traces.
These observations provide confirmation that our simulations
and their novel numerical methods are capable of replicating
normal physiology similar to that observed from the same neu-
rons in vivo (Wang et al., 2002). They further demonstrate the
value of the approach of specifying neural tissue simulations
from structural files comprising real neuron reconstructions and
synapses placed by touch detection (Markram, 2006; Kozloski
et al., 2008).

Furthermore, while previous neural tissue simulations employ
fewer synaptic inputs than we show here, the Neural Tissue Simulator
clearly achieved physiological scales of synaptic inputs (∼10,000
synapses/neuron), in part due to our tissue volume decomposi-
tion’s local calculation of synapses. Furthermore, we note that an
average additional 510 synapses/neuron had a significant effect on
recordings from the same neurons’ somata (Figure 12), even when
all other simulation parameters were held constant.

Finally, these recordings represent the first from a tissue simu-
lated at this scale (>1 million neurons, comprising on average
1,104 compartments/neuron; Table 2). We anticipate that because
of the excellent weak scaling demonstrated here (Figure 10) as
machine sizes grow in the future, the simulation sizes achievable
by the Neural Tissue Simulator and its tissue volume decomposi-
tion will continue to grow proportionally, while simulation times
will remain constant. This ultrascalable solution therefore has
profound implications for the future of neural tissue simulations,
and suggests that human brain scale neural tissue simulations
are not only feasible but likely within the next decade. We will
now discuss in greater depth the feasibility of human brain scale
simulations based on our scaling results from the Neural Tissue
Simulation.

Table 2 | Scale of largest simulation: neural tissue simulator.

 Total Per node (±SD)

Nodes 4,096 N/A

Threads 16,384 4

Neurons 1,024,000 ∼250

Branches 344,474,059 84,100 ± 7,406

Junctions 208,947,659 51,012 ± 4,026

Compartments 1,083,289,600 264,475 ± 7,582

Na channels 330,613,914 80,716 ± 7,440

KDR channels 330,613,914 80,716 ± 7,440

AMPA synapses 8,186,972,360 1,998,772 ± 720,155

GABAA synapses 2,255,068,948 550,553 ± 169,064

Connexons 7,626,124 1,861 ± 820

Figure 11 | Physiology of basket cells. (A) Recordings were made from
nine instances of a single basket cell morphology in a simulated tissue (scale
bar is 100 μm; inset table). (B) Recordings were made from a point in the
dendrites, somata, and axons of each neuron. Here we plot the first only at
the correct scale of the recorded voltage. Each subsequent trace is offset by
10 mV to allow inspection and comparison. A current of 500 pA was injected
into the first somata at time 30 ms, and remained on for the duration of the
simulation.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 16

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

in a whole-brain simulation very difficult. Because fiber density,
length, and diameter is a well known parameter of neuroanatomy,
however, we can use it here to reasonably estimate all connections
between all compartmental models (within branches, or across
synapses), and thus all communication in the brain.

Finally, our maximum target simulated time duration is 1 day,
since a diurnal cycle captures almost all brain dynamics. Our mini-
mum target simulated time duration is 200–500 ms, which con-
stitutes an appropriate timescale for modeling a single brain state
transition (such as one involved in solving a simple perceptual-
behavioral task).

Computational requirements
We derive the computational requirements for neural tissue simula-
tion targeting a whole human brain, whose volume equals ∼1 liter,
by first decomposing it into 107 tissue volumes, yielding:

•	 108 μm3/volume.
•	 106 compartments/volume, assuming 100 μm3/compartment.
•	 1010 flop/50 μs simulated time step/volume, assuming 104

flop/timestep/compartment (includes Hodgkin–Huxley
branched cable solutions, plus 10 ion channels or synapses/
compartment).

•	 64	kB	communicated/volume	face/timestep,	assuming	32	bytes	
communicated/spanning compartment in each direction, and
10 μm2/compartment cross section.

•	 2.25	 GB	 of	 memory/volume,	 including	 250	 MB	 of	 simulation	
overhead, plus 1.60 kB/compartment and 64 bytes/channel or synapse.

These tissue volume requirements for 107 volumes are then
directly mapped to a massively parallel machine architecture such
as a hypothetical Blue Gene possessing 107 computational nodes
(∼10× larger than Blue Gene/P’s scaling limit), yielding the follow-
ing machine requirements:

feaSibiliTy of humaN braiN SimulaTioN
Estimating the computational requirements for simulating an entire
human brain is difficult for a number of reasons. First, though neural
tissue simulation is technically most suited to making this estimate
(for reasons we list below), neuroscience still has no predictive mod-
els for global brain function. Without consensus on which modeling
approach is most functionally appropriate for whole-brain simula-
tions, any estimate will require an assumption-based approach to
whole-brain simulation. Second, connectivity in the brain is not fully
known even among animal models, where the quest for a complete
connectome has just begun (Eisenstein, 2009). Finally, the appro-
priateness of a simulation’s duration for studying brain function
depends on the goals of the study: even with a consensus approach
and known connectivity, a brain simulation needs to proceed for
some simulated duration that will yield a valuable scientific result.

Assumptions and arguments
The assumptions and arguments we make for the following analysis
address each of these difficulties. First, we base our analysis on the
assumption that neural tissue simulation is an appropriate approach
to whole-brain simulation. This approach has several benefits,
including its biophysical grounding, its predictive nature, and its
implementation in connected compartments with known physical
extent. The difficulties of this approach, however, derive from insuf-
ficient simulation constraints (and therefore a large number of free
parameters) in existing data sets. Each constraint and parameter,
however, is at least in principle measurable in real tissue.

Second, we exploit the volume-filling nature of neural tissue to
make the assumption that all connectivity in the brain is regular
and local (Figure 3). This assumption is quite different from that of
other efforts, which model communication in the brain as neuron
to neuron, and therefore irregular and distant. Because neurons
have diffuse, long range, and largely unknown connection patterns,
the latter approach makes estimating communication requirements

Figure 12 | Physiology of a very large tissue at different synapse densities.
Recordings from 10 instances of the same basket cell morphology as in
Figure 11 in a very large simulated tissue (inset table). Recordings were made
from the somata. Again, we plot the first only at the correct scale of the recorded

voltage, and each subsequent trace offset by 10 mV to allow inspection and
comparison. A current of 500 pA was injected into the first somata at time
30 ms, and remained on for the duration of the simulation. Synapse densities
were increased by 510 average synapses/neuron from the left to right panels.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 17

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

refereNceS
Achard, P., and Schutter, E. D. (2006).

Complex parameter landscape for a
complex neuron model. PLoS Comput.
Biol. 2, e94. doi: 10.1371/journal.
pcbi.0020094

Al-Fares, M., Loukissas, A., and Vahdat,
A. (2008). “A scalable, commodity
data center network architecture,”
in SIGCOMM ’08: Proceedings of the
ACM SIGCOMM 2008 Conference on
Data Communication (New York, NY:
MIT Press), 62–74.

Almasi, G., Archer, C. J., Erway, C.
C., Heidelberger, P., Martorell, X.,
Moreira, J. E., Steinmacher-Burow, B.,
and Zheng, Y. (2005). “Optimization
of mpi collective communication on
Blue Gene/L systems,” in Proceedings
of the 19th Annual International
Conference on Supercomputing,
Boston, MA, 253–262.

Anastassiou, C. A., Perin, R., Markram,
H., and Koch, C. (2011). Ephaptic
coupling of cortical neurons. Nat.
Neurosci. 14, 217–223.

Ascoli, G. A., and Atkeson, J. C. (2005).
Incorporating anatomically realistic
cellular-level connectivity in neural
network models of the rat hippocam-
pus. Biosystems 79, 173–181.

Ascoli, G. A., Donohue, D. E., and Halavi,
M. (2007). Neuromorpho.org: a cen-
tral resource for neuronal morpholo-
gies. J. Neurosci. 27, 9247–9251.

Bower, J. M., and Beeman, D. (1998).
“Neural modeling with genesis,” in
The Book of GENESIS, 2nd Edn, eds J.
M. Bower and D. Beeman (New York,
NY: Springer), 17–28.

Braitenberg, V., and Schuz, A. (1998).
Cortex: Statistics and Geometry of
Neuronal Connectivity, 2nd Edn.
Berlin: Springer-Verlag.

Brette, R., Rudolph, M., Carnevale, T., Hines,
M., Beeman, D., Bower, J. M., Diesmann,
M., Morrison, A., Goodman, P. H.,
Harris, F. C., Zirpe, M., Natschläger, T.,
Pecevski, D., Ermentrout, B., Djurfeldt,
M., Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A. P., Boustani, S. E.,
and Destexhe, A. (2007). Simulation of
networks of spiking neurons: a review of
tools and strategies. J. Comput. Neurosci.
23, 349–398.

Bruce, G. H., Peaceman, D. W., Rachford,
H. H., and Rice, J. D. (1953).
Calculations of unsteady-state gas flow
through porous media. Trans. Am.
Inst. Mining Metallurgical Petroleum
Eng. 198, 52–79.

Chklovskii, D. B. (2004). Synaptic con-
nectivity and neuronal morphology:
two sides of the same coin. Neuron
43, 609–617.

Church, A. J., and Andrew, R. D. (2005).
Spreading depression expands trau-
matic injury in neocortical brain slices.
J. Neurotrauma 22, 277–290.

Cooley, J. W., and Dodge, F. A. (1966).
Digital computer solutions for exci-
tation and propagation of the nerve
impulse. Biophys. J. 6, 583–599.

Destexhe, A., Mainen, Z., and Sejnowski,
T. J. (1994). An efficient method for
computing synaptic conductances
based on a kinetic model of receptor
binding. Neural Comput. 6, 14–18.

Destexhe, A., Mainen, Z. F., and Sejnowski,
T. J. (1998). “Kinetic models of syn-

aptic transmission,” in Methods in
Neuronal Modeling, 2nd Edn, eds C.
Koch and I. Segev (Cambridge, MA:
MIT Press), 1–25.

Druckmann, S., Banitt, Y., Gidon, A.,
Schürmann, F., Markram, H., and
Segev, I. (2007). A novel multiple
objective optimization framework
for constraining conductance-based
neuron models by experimental data.
Front. Neurosci. 1:1. doi: 10.3389/
neuro.01/1.1.001.2007

Druckmann, S., Berger, T. K., Hill, S.,
Schürmann, F., Markram, H., and Segev,
I. (2008). Evaluating automated param-
eter constraining procedures of neuron
models by experimental and surrogate
data. Biol. Cybern. 99, 371–379.

Eisenstein, M. (2009). Neural circuits: put-
ting neurons on the map. Nature 461,
1149–1152.

Evers, J. F., Schmitt, S., Sibila, M., and
Duch, C. (2005). Progress in functional
neuroanatomy: precise automatic
geometric reconstruction of neuronal
morphology from confocal image
stacks. J. Neurophysiol. 93, 2331–2342.

Goddard, N. H., and Hood, G. (1998).
“Large-scale simulation using parallel
genesis,” in The Book of GENESIS, 2nd
Edn, eds J. M. Bower and D. Beeman
(New York, NY: Springer), 349–380.

Hines, M. (1984). Efficient computation
of branched nerve equations. Int. J.
Biomed. Comput. 15, 69–76.

Hines, M. (1993). “Neuron – a program
for simulation of nerve equations,” in
Neural Systems: Analysis and Modeling,
ed. F. Eeckman (Norwell, MA: Kluwer
Academic Publisher), 127–136.

Hines, M. L., and Carnevale, N. T. (1997).
The neuron simulation environment.
Neural Comput. 9, 1179–1209.

Hines, M. L., Eichner, H., and Schürmann,
F. (2008a). Neuron splitting in com-
pute-bound parallel network simu-
lations enables runtime scaling with
twice as many processors. J. Comput.
Neurosci. 25, 203–210.

Hines, M. L., Markram, H., and
Schürmann, F. (2008b). Fully implicit
parallel simulation of single neurons. J.
Comput. Neurosci. 25, 439–448.

Hodgkin, A. L., and Huxley, A. F. (1952). A
quantitative description of membrane
current and its application to conduc-
tion and excitation in nerve. J. Physiol.
117, 500–544.

Hong, K., and Nishiyama, M. (2010).
From guidance signals to move-
ment: signaling molecules governing
growth cone turning. Neuroscientist
16, 65–78.

King, J. G., Hines, M., Hill, S., Goodman,
P. H., Markram, H., and Schürmann,
F. (2009). A component-based exten-
sion framework for large-scale par-
allel simulations in neuron. Front.
Neuroinformatics 3:10. doi: 10.3389/
neuro.11.010.2009

Kozloski, J. (2011). Automated recon-
struction of neural tissue and the
role of large-scale simulation.
Neuroinformatics 9, 133–142.

Kozloski, J., Eleftheriou, M., Fitch, B.,
and Peck, C. (2009). Interoperable
Model Graph Simulator for High-
Performance Computing. Technical
Report RC24811. Yorktown Heights,
NY: IBM T. J. Watson Research Center.

•	 109 flops/node (Blue Gene/P scale), with a simulation time
to real time factor of 2 × 105 yielding a simulated time dura-
tion of ∼400 ms per day of computation, or ∼3 s per week of
computation.

•	 6.4	kB/s	of	link	bandwidth	(in	each	direction,	to	accommodate	
packet overhead, well within Blue Gene/P scale).

•	 3	 GB	 of	 memory/node	 (Blue	 Gene/P	 scale);	 30	 PB	 of	 total	
machine memory.

•	 6	 GB/s	 memory	 bandwidth,	 assuming	 all	 simulation	 state	
must be traversed ∼3 times in each simulation time step (Blue
Gene/P scale).

coNcluSioN
The estimated computational requirements for simulating a
human brain described here are reasonable, and could be accom-
plished on a machine such as Blue Gene/P using an applica-
tion such as the Neural Tissue Simulator. Today, Blue Gene/P is
designed for a maximum size approximately one order of mag-
nitude smaller than what we estimate is required. Furthermore,
to achieve a full day of simulated time (our upper bound for
scientifically useful simulations) in the same run time (1 day
to 1 week) a machine that can achieve a 104× increase in speed
is required (i.e., exaflop), which is expected within a decade.

We extrapolated these requirements from our measurements of
neural tissue simulations on Blue Gene/P using the Neural Tissue
Simulator. Simulations that explicitly model molecular diffusion
or extracellular field potentials may have a significantly higher
computational cost that is not included in this estimate. We also
recognize the possibility that through other efforts, a less costly
modeling approach to explaining global brain function (i.e., a more
abstracted, less detailed simulation) may provide a theoretical basis
for predictive whole-brain simulations. In that event, computa-
tional requirements would be smaller.

ackNoWleDgmeNTS
We would like to acknowledge Charles Peck, IBM Research, and
our two reviewers, for their critical input on the manuscript and
Kathleen Falcigno for help with its preparation. Michael Pitman,
IBM Research, helped conceive and implement the Neural Tissue
Development algorithm. Blake Fitch, IBM Research, consulted and
provided critical input on the tissue volume decomposition design.

SuPPlemeNTary maTerial
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/neuroinformatics/10.3389/
fninf.2011.00015/abstract

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 18

http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00015/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2011.00015/abstract
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Kozloski, J., Sfyrakis, K., Hill, S., Schürmann,
F., Peck, C., and Markram, H. (2008).
Identifying, tabulating, and analyzing
contacts between branched neuron
morphologies. IBM J. Res. Dev. 52, 43–55.

Krichmar, J. L., Nasuto, S. J., Scorcioni, R.,
Washington, S. D., and Ascoli, G. A.
(2002). Effects of dendritic morphol-
ogy on CA3 pyramidal cell electro-
physiology: a simulation study. Brain
Res. 941, 11–28.

Kumar, S., Heidelberger, P., Chen, D., and
Hines, M. (2010). “Optimization of
applications with non-blocking neigh-
borhood collectives via multisends on
the blue gene/p supercomputer,” in
Proceedings IEEE International Parallel
& Distributed Processing (IPDPS)
Symposium, Atlanta, GA, 1–11.

Markram, H. (2006). The blue brain pro-
ject. Nat. Rev. Neurosci. 7, 153–160.

Mathy, A., Ho, S. S. N., Davie, J. T., Duguid,
I. C., Clark, B. A., and Häusser, M.
(2009). Encoding of oscillations by
axonal bursts in inferior olive neurons.
Neuron 62, 388–399.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., and Hines, M. L. (2006).
Parallel network simulations with neu-
ron. J. Comput. Neurosci. 21, 119–129.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A. D., and Diesmann, M.
(2005). Advancing the boundaries of
high-connectivity network simulation

with distributed computing. Neural
Comput. 17, 1776–1801.

Parnas, I., and Segev, I. (1979). A math-
ematical model for conduction of
action potentials along bifurcating
axons. J. Physiol. 295, 323–343.

Rempe, M. J., and Chopp, D. L. (2006).
A predictor-corrector algorithm for
reaction-diffusion equations associ-
ated with neural activity on branched
structures. SIAM J. Sci. Comput. 28,
2139–2161.

Rempe, M. J., Spruston, N., Kath,
W. L., and Chopp, D. L. (2008).
Compartmental neural simulations
with spatial adaptivity. J. Comput.
Neurosci. 25, 465–480.

Schmitz, D., Schuchmann, S., Fisahn,
A., Draguhn, A., Buhl, E. H.,
Petrasch-Parwez, E., Dermietzel, R.,
Heinemann, U., and Traub, R. D.
(2001). Axo-axonal coupling. A novel
mechanism for ultrafast neuronal
communication. Neuron 31, 831–840.

Schutter, E. D., and Bower, J. M. (1994a).
An active membrane model of the
cerebellar purkinje cell ii. simulation
of synaptic responses. J. Neurophysiol.
71, 401–419.

Schutter, E. D., and Bower, J. M. (1994b).
An active membrane model of the cer-
ebellar purkinje cell. i. simulation of
current clamps in slice. J. Neurophysiol.
71, 375–400.

Schutter, E. D., and Bower, J. M. (1994c).
Simulated responses of cerebellar
purkinje cells are independent of
the dendritic location of granule cell
synaptic inputs. Proc. Natl. Acad. Sci.
U.S.A. 91, 4736–4740.

Segev, I., and Burke, R. E. (1998).
“Compartmental models of complex
neurons,” in Methods in Neuronal
Modeling, 2nd Edn, eds C. Koch and
I. Segev (Cambridge, MA: MIT Press),
183–188.

Segev, I., and London, M. (2000).
Untangling dendrites with quantita-
tive models. Science 290, 744–750.

Sosa, C. (2008). IBM System Blue Gene
Solution: Blue Gene/P Application
Development, 3rd Edn. New York,
NY: International Technical Support
Organization.

Thomas, L. H. (1949). Elliptic Problems
in Linear Difference Equations
Over a Network. Watson Scientific
Computing Laboratory Report. New
York: Columbia University.

Traub, R. D., Contreras, D., Cunningham,
M. O., Murray, H., LeBeau, F. E. N.,
Roopun, A., Bibbig, A., Wilent, W. B.,
Higley, M. J., and Whittington, M. A.
(2005). Single-column thalamocorti-
cal network model exhibiting gamma
oscillations, sleep spindles, and epi-
leptogenic bursts. J. Neurophysiol. 93,
2194–2232.

Traub, R. D., Wong, R. K., Miles, R., and
Michelson, H. (1991). A model of a
CA3 hippocampal pyramidal neu-
ron incorporating voltage-clamp
data on intrinsic conductances. J.
Neurophysiol. 66, 635–650.

Wang, Y., Gupta, A., Toledo-Rodriguez, M.,
Wu, C. Z., and Markram, H. (2002).
Anatomical, physiological, molecular
and circuit properties of nest basket
cells in the developing somatosensory
cortex. Cereb. Cortex 12, 395–410.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial
or financial relationships that could be
construed as a potential conflict of interest.

Received: 24 June 2011; accepted: 10 August
2011; published online: 19 September 2011.
Citation: Kozloski J and Wagner J
(2011) An ultrascalable solution to
large-scale neural tissue simulation.
Front. Neuroinform. 5:15. doi: 10.3389/
fninf.2011.00015
Copyright © 2011 Kozloski and Wagner.
This is an open-access article subject to a
non-exclusive license between the authors
and Frontiers Media SA, which permits
use, distribution and reproduction in
other forums, provided the original
authors and source are credited and other
Frontiers conditions are complied with.

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 19

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

aPPeNDix

hoDgkiN–huxley moDel
Our model simulation methods build on existing numerical
approaches for solving Hodgkin–Huxley type mathematical mod-
els of branched neurons (Segev and Burke, 1998), which can be
written as

1

2

2

p

p

r s

r

R

V

s
C

V

t
I

∂
∂

∂
∂

∂
∂

= + ,

(1)

where V is the membrane potential, I is the specific current across
the plasma membrane, R is the axial resistivity, C is the membrane
specific capacitance, r is the radius of the neuron, s is the axial
distance along the neuron, and t is time. At branch points, conser-
vation of charge requires

1 2

A

r

R

V

s
C

V

t
I± ∂

∂
= ∂

∂
+∑ p

,

(2)

where A represents the surface area of the branch point, and the
sum is over all branches into the branch point. Throughout our
work, we use the set of units consistent with: mV for membrane
potential, μm for length, ms for time, and pA for current; and we
report all parameter values in units consistent with this choice, for
example, C = 0.01 pF/μm2 and R = 0.0115 GΩ μm.

The current across the membrane at any point along a neuron is
the sum of all channel and synaptic currents, as well as any exter-
nally applied currents: I = I

C
 + I

S
 + I

A
. In testing our simulation

approach, we use a channel current I
C
 comprised of the sodium,

delayed rectifier potassium and leak currents employed by Hodgkin
and Huxley in their model of the squid giant axon (Hodgkin and
Huxley, 1952),

I g m h V E g n V E g V EC Na Na K K L L= −() + −() + −3 4 (),

(3)

where g Na
2nS m= 2 0. /µ and g K

2nS m= 0 36. /µ are the maximum
specific conductances of the sodium and delayed rectifier potas-
sium channels; g

L
 = 0.003 nS/μm2 is the specific conductance of

the leak current; and E
NA

, E
K
, and E

L
 are reversal potentials given

by the Nernst equations,

E
RT

F
E

RT

FNa

+

e
+

i

K

+

e
+

i

= ln
Na

Na
, = ln

K

K

,

and E
L
 = −54.4 mV. In the equations, RT/F = 24.21 mV at T = 281 K,

and the extracellular and intracellular sodium and potassium con-
centrations are assumed to be [Na+]

e
 = 500 mM, [Na+]

i
 = 70 mM,

[K+]
e
 = 17 mM, and [K+]

i
 = 433 mM. The channel states m, h and

n are described by

dm

dt
V m V m= − −a bm m()() () ,1

(4)

dh

dt
V h V h= − −a bh h()() () ,1

(5)

dn

dt
V n V n= − −a bn n()() () ,1

(6)

where the rate functions are taken to be:

a b

a

m m
/18

n

V
V

e
V e

V
V

V

V()= () ()=

()= ()
()

0 1 25

1
4

0 01 10

25 10

.
, ,

.

/

−
−

−

−
−

ee
V e

V e V

V

V

V

10 10

20

1
0 125

0 07
1

−
−

−

−

−1,

() ()=

()= ()=

/

/

, . ,

.

b

a b

n
/80

h h
ee V30 10 1−() +/

.

We also assume a synaptic current I
S
 consisting of two currents

due to AMPA and GABA
A
 chemical synapses (Destexhe et al., 1998),

along with a third deriving from electrical synapses:

I g q V E g r V E

g V V

S AMPA AMPA GABA GABA

ESYN P

A A
= −() + −()

+ −()
∑∑

∑ .

(7)

In these equations, g AMPA
2nS m= 0 1. /µ and g GABA

2

A
nS m= 0 1. /µ

are the maximum specific conductances of the AMPA and GABA
A

currents, respectively; g
ESYN

 = 1.0 nS/μm2 is the specific conduct-
ance of electrical synapses; E

AMPA
 = 0 mV and E

GABAA
 = −80 mV are

reversal potentials; V
P
 is the presynaptic voltage at electrical syn-

apses; and the sums are over all synapses of each type that impinge
upon the neuron at a particular point. The synapse states q and r
are described by

dq

dt
T V q q= − −a bq q P q()() ,1

(8)

dr

dt
T V r r= − −a br r P r()() ,1

(9)

where V
P
 is the presynaptic voltage, and

T V
e

T V
eV Vq P r P

P P
() =

+
() =

+− −() − −()
180

1

185

12 5 2 5/ /
, ,

are the concentrations of neurotransmitter released as func-
tions of presynaptic voltage. In all calculations, we used the
values a

q
 = 0.0011 ms−1, b

q
 = 0.19 ms−1, a

r
 = 0.005 ms−1, and

b
r
 = 0.18 ms−1.

NumericS
We describe neurons as a collection of points (x

i
, y

i
, z

i
) with

radii r
i
, and let s

i
 denote the distance along the neuron of point i

(from the soma). Discretizing time as t
n
 = n∆t, for some ∆t > 0,

and defining ∆s
i
 = s

i + 1/2
 − s

i − 1/2
 we approximate the depend-

ent variables, for example, as V V s ti
n

i n≈ (,). We also assume all
parameters may vary at each point along the neuron, writing
R

i
 and C

i
 for the axial resistivity and membrane capacitance,

respectively.
Following Hines (1984) and Rempe and Chopp (2006), we apply

the Crank–Nicolson method in computing the membrane poten-
tial, while using the Trapezoidal Rule to solve channel and synapse
states at offset times. We also utilize Cooley and Dodge’s technique
for combining a backward implicit step with channel and synapse
states tracked at offset times and solved using the Trapezoidal Rule.
The backward implicit step is given by

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 20

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

q q

t
T V T V

q qi
n

i
n

j
n

j
n i

n
i
n+ − + −− = () − +

+1 2 1 2 1 2 1/ / / /

()
∆

a a bq q q q q

22

2
,

(19)

which can be solved for qi
n +1 2/ :

q
T V t T V q

t T Vi
n j

n
j
n

i
n

+
−

=
() + − () −

+
1 2

1 22 2

2
/

//

/ (

a a b

a

q q q q q

q q

∆

∆ jj
n)

.
+ bq

(20)

imPliciT braNch PoiNTS
At implicit branch points, we have

1

2

2 1 2 1 2 1 2
1 2

A

r

R

V V

s
C

V V

t
I

i

ij

ij

j
n

i
n

i

i
i
n

i
n

i
n

j

p + + +
+−

= − +∑
/ / /

/

/
,

∆ ∆

(21)

which can be rearranged to yield

2C

t

r

A R s
G V

r

A R s
Vi ij

i ij i

i
n

j
i
n ij

i ij i∆ ∆ ∆
+ +

 ++ +∑

p p2

1 2 1 2

2

/ / − ii
n

j

i
i
n

i
nC

t
V E

+

+

∑

= +

1 2

1 22

/

/ .
∆

(22)

Again, to complete the full Crank–Nicolson step, we then update
as follows:

V V Vi
n

i
n

i
n+ += −1 1 22 / .

(23)

exPliciT braNch PoiNTS
Following Rempe and Chopp (2006), at explicit branch points we
first make a prediction,

1

2

2 1 2
1 2

A

r

R

V V

s
C

V V

t
I

i

ij

ij

j
n

i
n

i

i
i
n

i
n

i
n

j

p −
= − +

+
+∑ ∆ ∆

/
/

/
,

(24)

which can be rearranged to yield

2 2 11 2 1 2

2
C

t
G V

C

t
V

A

r

R

V V

s
i

i
n

i
n i

i
n

i

ij

ij

j
n

i
n

i∆ ∆ ∆
+

= +
−

++ +/ /
p

EEi
n

j

+∑ 1 2/ .

 (25)

Once this predicted value has been used to update all of the
branches associated with the junction, the junction’s membrane
potential is corrected with the new branch values:

2 2
2

1 2

2
C

t

r

A R s
V

C

t
V

r

A R s
i ij

i ij ij
i
n i

i
n ij

i ij∆ ∆ ∆ ∆
+ ±

 = + ±∑ +p p

/

ii

i
n

i
n

j

V E+ ++∑ 1 2 1 2/ / .

 (26)

Finally, to complete the full Crank–Nicolson step, we update
as follows:

V V Vi
n

i
n

i
n+ += −1 1 22 / .

(27)

1

2r s

r

R

V V

s

r

Ri i

i

i

i
n

i
n

i

i

i∆
−

∆
− −

−

+

+

+
+ +

+

1 2
2

1 2

1
1 2 1 2

1 2

1 2
2

1 2

/

/

/ /

/

/

/

VV V

s

C
V V

t
I

i
n

i
n

i

i
i
n

i
n

i
n

+ +

+
+

= +

1 2
1

1 2

1 2

1 2
1 2

2

/ /

/

/
/

/
,

−
∆

−
∆

−

−

(10)

where

I g m h V E g ni
n

i
n

i
n

i
n

i
n+ + + + += −() +

1 2 1 2 3 1 2 1 2 1 2 4/ / / / /
Na Na K

×× −() + −()+ +V E g V Ei
n

L i
n1 2 1 2/ / .K L

(11)

This can be rearranged to yield

− + + + +

−−
−

+ − + + + +
+

+l l l li i
n i

i i i
n

i
n

i i
nV

C

t
G V V1

1 2 1 2 1 2
1

2/ / /

∆
11 2

1 22

/

/ ,= + +C

t
V Ei

i
n

i
n

∆

(12)

where

l li
i

i i i i
i

i

i i i i

r

r R s s

r

r R s s
− −

− −

+ +

+ +

= =1 2
2

1 2 1 2

1 2
2

1 22 2
/

/ /

/

/

,
∆ ∆ ∆ ∆ 11 2/

(13)

and

G g m h g n g

g q

i
n

i
n

i
n

i
n

i
n

+ + + +

+

= + +

+

1 2 1 2 3 1 2 1 2 4/ / / /
Na K L

AMPA
11 2 1 2/ / ,∑ ∑+ +g ri

n

GABAA

(14)

E g m h E g n E g E

g

i
n

i
n

i
n

i
n+ + + += + +

+ ∑

1 2 1 2 3 1 2 1 2 4/ / / /
Na Na K K L L

AAMPA AMPA GABA GABA

ESYN P

A A
q E g r E

g V V

i
n

i
n

i
n

+ ++

+ −()
∑

∑

1 2 1 2/ /

.

(15)

To complete the full Crank–Nicolson step, we then update as
follows:

V V Vi
n

i
n

i
n+ += −1 1 22 / .

(16)

chaNNelS aND SyNaPSeS
Following Hines (1984) and Rempe and Chopp (2006), channel
and synapse states are tracked at offset time steps, and solved using
the Trapezoidal Rule. Taking the channel state m as an example, we
make the approximation

m m

t
V V V

m mi
n

i
n

i
n

i
n

i
n i

n
i
n+ − + −− = () − () + ()

+1 2 1 2 1 2 1/ / /

∆
a a bm m m

//

,
2

2
 (17)

which can be solved for mi
n +1 2/ :

m
V t V V m

t Vi
n i

n
i
n

i
n

i
n

i

+
−

=
() + − −

+
1 2

1 22 2

2
/

// () ()

/ (

a a b

a

m m m

m

∆
∆ nn

i
nV) ()

.
+ bm

(18)

Synapse states are solved similarly. Assuming j denotes the pre-
synaptic compartment,

Kozloski and Wagner The neural tissue simulator

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 15 | 21

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	An ultrascalable solution to large-scale neural tissue simulation
	The Problem of Llarge-Scale Neural Ti ssSSueSimula tTio nN
	Defi nNi tTio nNof Neural Ti ssSSue Simulation
	Structural constraints
	Functional constraints

	Previou sS Solu tTio nsNS, Parallel NEUROeuroN, a ndND The Bblue Bbrai nNProjec tT
	Previous simulation approaches
	Previous scalability

	The Neural Ti ssSSue Simula tTor
	IniNi tTializa tTio nN
	Model graph specification
	Touch detection
	Volumetric data decomposition, local synapses, and exploiting link bandwidth
	Scalability

	Numeric sS
	The Hines algorithm
	The Rempe–Chopp algorithm
	A hybrid branched cable equation solver

	Simula tTio nN Workflo wW
	Public AavailabilitTy of Da tTa, Simula tTio nN S pPecifica nsNS, a ndNDSimula tTor

	Simula tTio nN Scali nNgRre sSul tsTS
	Threa dD Scaling
	S tTro nNgsScaling
	Weak sScali nNg

	Di sScu ssSSio nN
	Iim pPlica tTio nsNS of Rre sSul tsTS
	Ffea sSibili tTy of Hhuma nNBbrai Simula tTion
	Assumptions and arguments
	Computational requirements

	Cco nNclu sSio nN
	Aack nNo wWle dDgme ntsNTS
	Su ppPPleme ntNTary Mma tTerial
	Rrefere nNce sS
	AppaPPe ndNDix
	Hho dDgki nN– Hhuxley Mmo dDel
	Numeric sS
	Ccha nnNNel sSa ndND Sy nNa psPSes
	Iim pPlici tT Bbra nNch Poi ntsNTS
	Eex pPlici tT Bbra nNch Poi ntsNTS

