
NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 02 November 2012
doi: 10.3389/fninf.2012.00026

Supercomputers ready for use as discovery machines for
neuroscience
Moritz Helias1,2*, Susanne Kunkel 1,3,4, Gen Masumoto5, Jun Igarashi 6, Jochen Martin Eppler 1, Shin Ishii 7,
Tomoki Fukai 6, Abigail Morrison1,3,4,8 and Markus Diesmann1,2,4,9

1 Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Jülich Research Centre, Jülich, Germany
2 RIKEN Brain Science Institute, Wako, Japan
3 Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research

Alliance, Jülich Research Centre, Jülich, Germany
4 Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg, Germany
5 High-Performance Computing Team, RIKEN Computational Science Research Program, Kobe, Japan
6 Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Japan
7 Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
8 Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
9 Medical Faculty, RWTH Aachen University, Aachen, Germany

Edited by:
Andrew P. Davison, Centre National
de la Recherche Scientifique, France

Reviewed by:
Anders Lansner, Kungliga Tekniska
Högskolan, Sweden
Michael Hines, Yale University, USA
James A. Bednar, University of
Edinburgh, UK

*Correspondence:
Moritz Helias, Institute of
Neuroscience and Medicine (INM-6),
Computational and Systems
Neuroscience, Jülich Research
Centre, 52425 Jülich, Germany.
e-mail: m.helias@fz-juelich.de

NEST is a widely used tool to simulate biological spiking neural networks. Here we explain
the improvements, guided by a mathematical model of memory consumption, that enable
us to exploit for the first time the computational power of the K supercomputer for neuro-
science. Multi-threaded components for wiring and simulation combine 8 cores per MPI
process to achieve excellent scaling. K is capable of simulating networks corresponding
to a brain area with 108 neurons and 1012 synapses in the worst case scenario of random
connectivity; for larger networks of the brain its hierarchical organization can be exploited
to constrain the number of communicating computer nodes. We discuss the limits of the
software technology, comparing maximum filling scaling plots for K and the JUGENE BG/P
system. The usability of these machines for network simulations has become comparable
to running simulations on a single PC. Turn-around times in the range of minutes even for
the largest systems enable a quasi interactive working style and render simulations on this
scale a practical tool for computational neuroscience.

Keywords: supercomputer, large-scale simulation, spiking neural networks, parallel computing, computational
neuroscience

1. INTRODUCTION
Supercomputers are employed for different applications arising
in the field of neuroscience, such as visualization of neuronal
data and simulations of neuronal dynamics (recently reviewed
in Lansner and Diesmann, 2012). The human brain exhibits a
sparse, recurrently, and specifically connected network of about
1011 neurons, each having of the order of 104 synapses to other
neurons; its simulation is challenging due to the required mem-
ory to represent the structure and the simulation time to solve the
dynamics. Such simulations naturally call for the use of supercom-
puters; machines at the current frontier of processing capability.
The neuroinformatics tools employed in this endeavor must be
adapted to the computer platforms, even though these systems
have typically not been designed with the specific requirements
of neuroinformatics applications in mind. The primary objec-
tive driving the development of the majority of supercomputer
architectures is maximizing floating point performance, rather
than providing the large amounts of working memory and high
memory bandwidth required by neuronal network simulations.
Moreover, the data transfer to and from these machines is often
problematic, although specialized parallel I/O solutions do exist
(Frings et al., 2009). However, tools cannot be developed solely

to capitalize on the properties of supercomputer architectures –
first and foremost they must serve the demands generated by the
neuroscientific domain.

The choice of the level of abstraction on which neuronal
dynamics is represented depends on the scientific question to be
investigated. If sub-cellular processes, such as molecular diffusion
or the membrane potential propagation along the neurites of a
cell are in the focus of the investigation, or suspected to be decisive
for the function of the particular system at hand, neurons need
to be represented by detailed many-compartment models (Hines,
1984). The simulator NEURON (Hines and Carnevale, 1997) is
tailored for this domain of detailed compartmental models, imple-
ments efficient solvers for the cable equations (Hines et al., 2008b)
and exploits the power of modern supercomputing architectures
(Miyamoto et al., 2012) by scalable communication methods
(Hines et al., 2008a, 2011; Kumar et al., 2010). In simulators which
focus on the investigation of the dynamics of large scale networks
(Lansner and Diesmann, 2012), neurons are typically abstracted to
single-compartment or few-compartment models that interact by
discrete electrical pulses (spikes). The level of description in terms
of neurons and synapses, rather than biochemical or biophysical
processes within single neurons, is a simplifying assumption that

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 1

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00026/abstract
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00026/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MoritzHelias&UID=2031
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=SusanneKunkel&UID=8419
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GenMasumoto&UID=60300
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JunIgarashi&UID=61259
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JochenEppler&UID=2466
http://www.frontiersin.org/people/ShinIshii/70366
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TomokiFukai&UID=22174
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AbigailMorrison_1&UID=13504
http://www.frontiersin.org/people/MarkusDiesmann/630
mailto:m.helias@fz-juelich.de
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

constrains the parameter space of such neuronal network models
and entails technical advantages such as low per-object memory
usage and relatively simple parallelization of algorithms.

The distributed simulation of spiking networks on parallel
computers was exploited early on by the SPLIT simulator (Ham-
marlund and Ekeberg, 1998; Djurfeldt et al., 2005). This technol-
ogy enabled pioneering simulations of up to 22 million neurons
(Djurfeldt et al., 2008) and is still in use for the production of
neuroscientific results (Lundqvist et al., 2010). Available simula-
tion technologies differ in terms of the user interface. While SPLIT
(Djurfeldt et al., 2008) provides a C++ library to be linked into
the user’s application, the simulators PCSIM (Pecevski et al., 2009)
and NEST (Gewaltig and Diesmann, 2007) are controlled by the
scripting language Python (Eppler et al., 2009), which has achieved
wide acceptance in recent years in the neuroscience community.

In the last decade brain researchers have constructed and sim-
ulated models of about one cubic millimeter of brain tissue at
the resolution of neurons and their connecting synapses (Amit
and Brunel, 1997; Brunel, 2000; Morrison et al., 2007a; Potjans
and Diesmann, 2011). This local network model comprises 105

neurons and a total of 1 billion connecting synapses. The pre-
dictive power of the model is, however, severely limited as 50%
of the inputs to each neuron originate in brain areas outside
the local circuit (Stepanyants et al., 2009). Brain functions such
as vision involve circuits spanning multiple interconnected areas
each comprising on the order of 108 neurons. The visual system
of the macaque monkey, for example, has about 5× 108 neurons,
the by far largest area of which (V1) has 2× 108 neurons (van
Essen, 2005; Collinsa et al., 2010). Being able to simulate brain-
size networks, the C2 simulator (Ananthanarayanan and Modha,
2007; Ananthanarayanan et al., 2009) implements a similar hybrid
scheme of time-driven update of the neuronal dynamics and
event-driven update of synapses as the NEST simulator (Morrison
et al., 2005). The scalable two step communication scheme used in
C2, combining one synchronization point per time step imposed
by MPI reduce-scatter with pairs of non-blocking MPI send and
receive calls has been well documented (Ananthanarayanan and
Modha, 2007). However, other processes and data structures are
not described in sufficient detail to be reproducible, for example
the extraction of the location of postsynaptic targets at connection
time and the structure that stores this information of each unit.
The reproducibility of these important technical advances and the
usability of the C2 simulator by the neuroscientific community in
general are hindered by the unavailability of the simulator and its
source code. To partially address this issue, here we investigate in
detail the data structures required for brain-scale simulations and
their performance. The resulting freely available implementation
is a general purpose simulator for arbitrary plastic spiking net-
works of heterogeneous single or few-compartment neuron and
synapse types.

When scaling up a network to 108 neurons on supercomput-
ers with up to 105 compute nodes, success depends critically on
how well the data structures are distributed. Obviously, the 104

synapses per neuron dominate the memory consumption. Though
connectivity between brain areas is sparse, there are fewer con-
straints within areas. A general simulation tool needs to be able
to simulate networks with arbitrary connectivity. For the memory

consumption, random networks present the worst case scenario
for two reasons: firstly, there is no redundancy that allows the rep-
resentation of synaptic connectivity to be compressed. Secondly,
communication between the compute nodes is potentially all-to-
all. Note that random connectivity is not the worst case for all
aspects of simulator performance; it is typically advantageous for
load-balancing, as has recently been pointed out (Hines et al.,
2011), which also means that it is beneficial for making accurate
measurements of the memory consumption. In the case of random
connectivity, the distribution of 104 synaptic targets of a neuron
over 105 processors results in a highly sparse filling of the data
structures representing this connectivity on the target neuron’s
machine, and any overhead proportional to the total number of
neurons N must be kept small.

In previous work we systematically investigated this issue by
developing a mathematical model for the memory consumption of
the most important data structures. Guided by this model, we pre-
sented a design that yielded substantial improvements in memory
consumption on massive supercomputers (Kunkel et al., 2012b).
In a subsequent work we investigated theoretically (Kunkel et al.,
2012a) the effect of the so called“columnar structure”within areas;
the probability that two neurons are connected decreases on a typ-
ical length scale of a few 100µm, defining the “cortical column”
(Mountcastle, 1997; Sporns et al., 2005). Instantiated for a par-
ticular software and computer architecture, the memory model
predicts the memory requirement of a planned simulation and
hence the size of the required machine. In the present work, we
assess the performance of the software and the accuracy of the
memory model described in Kunkel et al. (2012b) by simulations
carried out on two currently available supercomputer architec-
tures. In Sec. 1, we describe the critical data structures for the
distributed representation of synaptic connectivity and extend the
model of memory consumption to account for thread-specific data
structures in the NEST simulator. In Sec. 2 we employ the model
to specify benchmark simulations, investigating whether by the
trade-off between memory and computation time, we have now
arrived at a practically usable tool for neuroscience. We employ a
BlueGene/P architecture by IBM (JUGENE at the Research Cen-
tre Jülich, Germany) and the K computer by Fujitsu (RIKEN
Advanced Institute for Computational Science in Kobe, Japan).
The conceptual and algorithmic work described here is a module
in our long-term collaborative project to provide the technology
for neural systems simulations (Gewaltig and Diesmann, 2007).

2. MATERIALS AND METHODS
2.1. SPECIFICATION OF EMPLOYED COMPUTER ARCHITECTURES
The K computer, located at the Advanced Institute for Compu-
tational Science in Kobe, Japan, is a distributed-memory super-
computer system that includes 88,128 CPUs (705,024 cores) and
1.4 PB RAM (Yonezawa et al., 2011). The theoretical performance
of the system is 11.28 PFlops. A compute node in the K system is
mainly composed of a CPU, memory modules of 16 GB, and a chip
for the interconnect of nodes. The CPU architecture is a SPARC64
VIIIfx developed by Fujitsu, Ltd., which has 8 cores with 32 kB data
cache each and 6 MB shared L2 cache, operating at a clock fre-
quency of 2 GHz. Theoretical performance per chip is 128 GFlops.
Each core has two SIMD units that concurrently execute four

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

double precision floating point multiply and add operations.
The compute nodes are connected with the “Tofu” (torus con-
nected full connection) interconnect network, a six-dimensional
mesh/torus network (Ajima et al., 2009). The bandwidth per link
is 5 GB/s. A three-level parallel programming model is available
on the K computer: (1) SIMD processing in the core, (2) thread
programming in a compute node using OpenMP directives, (3)
distributed-memory parallel programming with MPI.

The JUGENE computer was in operation at the Jülich
Research Centre, Germany from 2008 to 2012. It is a BlueGene/P
distributed-memory supercomputer system developed by IBM
that included 73,728 compute nodes (294,912 cores) and 144 TB
RAM. Its theoretical performance was 1 PFlops. In the BlueGene/P
architecture, each compute node has a 32 bit Power PC 450 CPU,
which has 4 cores running at 850 MHz, a shared 4-way SMP L3
cache of 8 MB, and 2 GB of RAM. Each core has a dual floating
point unit. The theoretical performance per chip is 13.6 GFlops.
The compute nodes are connected with a three-dimensional torus
network with a bandwidth per link of 425 MB/s.

2.2. SIMULATION TECHNOLOGY
The NEST simulator (Gewaltig and Diesmann, 2007) represents
individual single- or few-compartment neuron models as small
systems of differential equations which interact by δ-impulses.
The technology to simulate networks of these model neurons has
been documented in an ongoing series of publications (Rotter and
Diesmann, 1999; Morrison et al., 2005, 2007a,b; Plesser et al., 2007;
Morrison and Diesmann, 2008; Hanuschkin et al., 2010; Kunkel
et al., 2012a,b) and the code is freely available. For a large class of
frequently used neuron models, the time evolution of the dynamic
equations is essentially linear and can often be integrated exactly
(Rotter and Diesmann, 1999). This also holds for many abstracted
forms of spike-timing dependent plasticity, including models in
which neuromodulators influence synaptic plasticity as a third
factor (Morrison et al., 2008; Potjans et al., 2010). Non-linearities
are typically concentrated in a single thresholding operation. The
NEST simulator implements a hybrid update scheme: time-driven
updates in regular intervals propagate the neuronal dynamics and
event-driven update of synapses is performed only when the pre-
synaptic neuron fires an action potential (Morrison et al., 2005,
2007a,b). Efficient time-driven update schemes have also been
developed that enable the exact evolution of the neuronal dynam-
ics, representing the firing times in double precision (Morrison
et al., 2007b; Hanuschkin et al., 2010).

In time discrete simulations, for each time step (by default
0.1 ms) the update of a single neuron comprises a propagation
step, a modification of initial conditions due to incoming spikes,
and the control flow that includes transitions between different
internal states a neuron can assume, such as to handle a refractory
period after the emission of a spike. For neurons with linear sub-
threshold dynamics, the propagation step can be represented as an
implicit matrix vector multiplication of low dimension (typically
<6); for non-linear neuron models a numeric solver is used. For
the common case that the immediate effect of incoming spikes
on the neuron dynamics is linear (e.g., linear currents or conduc-
tances), incoming spikes can be lumped together within a time step
in a ring buffer. This enables an efficient representation of short

conduction delays on the order of milliseconds, quantized in units
of the simulation time step (Morrison et al., 2005). For the sim-
plest models of this class, the number of floating point operations
required per neuron and time step can be as low as 2, in addition to
the on average 1–10 floating point additions required to accumu-
late the synaptic input in the ring buffer. Although spike-timing
dependent plasticity (STDP) requires only a few extra floating
point operations at irregularly spaced time points determined by
the spikes of the pre-synaptic neurons (Morrison et al., 2007a,
2008), the synaptic dynamics accounts for a comparable amount of
additional floating point operations, because synapses outnumber
neurons by a factor of 104. The neurons of the network are evenly
distributed over the compute nodes in a round-robin fashion and
communication between machines is performed by collective MPI
functions (Eppler et al., 2007).

The compute nodes in contemporary supercomputers, like
JUGENE and K, contain multi-core processors (see Sec. 1); the
trend toward ever greater numbers of cores is further manifested
in the new BlueGene/Q architecture with 16 cores per node, each
capable of running 4 hardware threads. These architectures feature
a multi-level parallel programming model, each level potentially
operating at different granularity. The coarsest level is provided by
the process based distribution, using MPI for inter-process com-
munication (Message Passing Interface; Pacheco, 1997). Within
each process, the next finer level is covered by threads, which can
be forked and joined in a flexible manner with OpenMP enabled
compilers (Board, 2008). The finest level is provided by stream-
ing instructions that make use of concurrently operating floating
point units within each core. The code used in this work com-
bines distribution by MPI, starting one process per compute node
and utilizes multi-threaded OpenMP-based software components
within each process during the setup and simulation phase. The
use of threads instead of one MPI process per core is essential,
because each MPI process entails an additional memory overhead
due to replicated data structures and the process management.
Moreover, the communication load and memory consumption
caused by the currently employed collective data exchange scheme
(Morrison et al., 2005; Plesser et al., 2007) increases with the
number of MPI processes.

3. RESULTS
3.1. ADAPTATIONS OF THE MEMORY USAGE MODEL TO THREADING
In Kunkel et al. (2012b), we presented a model that enables the
analysis of the memory usage of a neuronal network simulator. The
model expresses the memory consumption of each MPI process as
a function of the total number of neurons N, the number of incom-
ing connections per neuron K, and the number of MPI processes
M. Here, we instantiate the model terms and parameters for the
simulation software NEST (revision 9630) in order to obtain reli-
able predictions of the maximum size of a randomly connected
neuronal network that fits on a specific supercomputing architec-
ture without saturating the available memory resources. We extend
the original formulation of the memory usage model to account
for threading, which results in

M (M , T , N , K) =M0 (M)+Mn (M , N)

+Mc (M , T , N , K) (1)

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

where T is the number of threads per MPI process. The three
components M0 (M), Mn (M, N), and Mc (M, T, N, K) denote
the base memory consumption of the simulator including the
contributions of MPI, the memory usage of neurons and neu-
ronal infrastructure, and the memory usage of connections and
connection infrastructure, respectively. The first term M0 (M)
is the memory consumption after startup due to code and data
structures prior to the creation of any neurons or synapses. We
obtain this value by measurement, as it depends on the computer
platform, the compiler, the employed libraries and the linking
procedure (static/dynamic). The second term is the memory con-
sumption of neurons. It is dominated by the storage of the state
variables, which is typically around 1000B per neuron. In addition
it contains the contribution from a sparse table (Silverstein, 2005)
needed to check for local existence of a neuron on a given compute
node and the overhead caused by the vector storing the local neu-
rons. These contributions to the memory consumption are rather
minor in the regime of up to 32,768 compute nodes considered
here. In order to account for threads as they are implemented in
NEST, only the third model term needs adaptation while the first
and the second model term remain unaltered.

Figure 1 illustrates the connection infrastructure of NEST that
is required on each compute node for the case that a simulation
is run with T threads. On the highest level a vector of dimension
T holds a sparse table (Silverstein, 2005) for each thread. Connec-
tions are represented on the same MPI process, and further, on
the same local thread t ∈ [1, . . ., T] as their postsynaptic targets.
For each neuron j ∈ [1, . . ., N] in the network, the sparse table for
a specific local thread t ∈ [1, . . ., T] stores the information about
whether neuron j has any targets on thread t. To this end, the index

FIGURE 1 | Connection infrastructure in NEST optimized for
supercomputers for the case that a simulation is run withT threads.
The ngr ×T matrix of dark orange squares illustrates the vector of length T
which provides thread-specific access to sparse tables (Silverstein, 2005),
where each sparse table maintains ngr sparse groups. Vertical dark orange
rectangles and tiny squares indicate the per-group overhead of the sparse
table. For simplicity, the figure shows only once the additional infrastructure
which is required for each neuron with local connections (light orange). The
filled pink square illustrates a locally stored connection object. Figure
adapted from Kunkel et al. (2012b).

space 1, . . ., N of all neurons is equally partitioned into ngr sub-
groups (here 48 entries). For each entry in a group, 1 bit is stored
in the bit-field (tiny squares in Figure 1) indicating the existence
of a target neuron for the specific presynaptic neuron j. If neuron j
has at least one target, the sparse table stores a pointer to a vector,
which enables different synapse types (e.g., representing plasticity
rules) to be distinguished, such that connections of the same type
can be stored in a homogeneous vector. For a detailed description
of the fundamental data structures in NEST and how these can be
mapped to the model terms please see Kunkel et al. (2012b).

On each thread, this infrastructure causes an overhead of m0
c

per neuron. We denote such a linear dependence on the total num-
ber N of neurons serial overhead, indicating that this contribution
does not benefit from distributing the N neurons over M paral-
lel machines. Additionally each neuron in the network causes an
overhead of m+c if it has locally stored target synapses and m∅c
without, such that

Mc (M , T , N , K) = TNm0
c + TN ∅c m∅c

+ T
(

N − N ∅c

)
m+c

+ KM mc

(2)

gives the memory usage of connection infrastructure and connec-
tion objects per MPI process, where mc is the memory consumed
by one connection object. Assuming neurons and their incoming
connections are distributed evenly across processes, NM=N /M
neurons and KM=NMK synapses are represented on each MPI
process, and NT=NM/T neurons and KT=NTK synapses are
represented on each thread. Due to random connectivity the prob-
ability that a neuron has no local targets on a specific thread
is p∅= (1− 1/N)KT which results in an expected number of
N ∅c = p∅N neurons without local targets on each thread. Please
see Kunkel et al. (2012b) for a detailed description of the mem-
ory usage model and a comprehensive demonstration of how the
model can be applied to predict the memory consumption of
a simulation software. The parameters used for the predictions
in Figure 4 are displayed in Table 1. The value for the memory
consumed by a single connection object mc is based on a represen-
tation of the synaptic parameters and weight indoubleprecision,
as this allows for most generality and represents the underlying
mathematical model most accurately. However, it should be noted
that if a lesser precision (for example using the float data type)
is adequate for the scientific question at hand, a lighter weight
synapse can of course be implemented without any change to the
framework.

Table 1 | Parameters used to instantiate the memory model (2) on K

and JUGENE.

Parameter mc (Byte) m+
c (Byte) m0

c (Bit) m∅
c (Byte) K

Value 48 136 2.67 0 11,250

Consumptions per element (my
x)were obtained by fitting the memory consump-

tion in simulations on JUGENE varying network parameters independently, as

described in Kunkel et al. (2012b).

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

3.2. PERFORMANCE OF NEST ON K AND JUGENE
We use a recurrent random network of current-based integrate-
and-fire model neurons with spike-timing dependent plasticity in
the connections from excitatory to excitatory neurons as a bench-
mark simulation. All parameter values for the neuronal dynamics
and the details of the employed models are taken from Morri-
son et al. (2007a). The parameters of the spike-timing dependent
plasticity rule are τ+= 15 ms, τ−= 30 ms, λ= 0.1, µ= 0.4, and
α= 0.0513. In order to perform scaling experiments, we varied the
number of neurons in the network, keeping the number of incom-
ing synapses per neuron constant (each neuron receives KE= 9000
excitatory and KI= 2250 inhibitory incoming connections that
are drawn randomly from the respective pools of source neurons).
Constant numbers of inputs ensure that networks of different sizes
are in comparable dynamical states. In particular, the firing rate
averaged over neurons in the network is unaffected by network
size (ν ' 6.9 1

s).
Our benchmark model contains a Poisson source to model

external input to the network (Morrison et al., 2007a). These
sources are stochastic by definition. Moreover, the connectivity of
the network is generated randomly. However, the random num-
bers required to realize the connectivity and the Poisson spike
trains are drawn such that identical sequences are produced when
rerunning the same simulation. This is crucial not only to be able
to reproduce scientific results, but also to have a means of test-
ing different implementations against each other during software
development, in particular to benchmark performance improve-
ments. The mechanisms to achieve this reproducibility even across
different numbers of MPI processes are described in Morrison
et al. (2005), Plesser et al. (2007). The key ingredients of the
implementation are the use of thread-local random number gen-
erators, initialized with the same seed at the beginning of each run

and the parallelization of connection setup routines that ensure
that the same numbers of random variates are drawn from each
thread-local generator irrespective of the number of processes.

We use identical versions of the NEST software (revision 9630)
on both supercomputing architectures. The code incorporates the
optimizations for large supercomputers as described in Kunkel
et al. (2012b) and will be available in the next release of NEST
and accessible via the K software site. The code was compiled
with the respective proprietary C++ compilers [XL C/C++V9.0
for BlueGene/P on JUGENE and on K the Fujitsu C/C++ com-
piler, version 1.2.0 (build February 27 2012) of the K development
phase 1.2.0-04]. No code changes were introduced to exploit par-
ticular features of the proprietary compilers; the same code can be
compiled with the standard compiler g++ (version 4.4).

In order to assess whether the simulation code makes good
use of the parallel architecture of the supercomputers, we show a
strong scaling of the simulation time in Figure 2A using K and
in Figure 2B using JUGENE, keeping the problem size (number
of neurons) constant while increasing the number of used proces-
sor cores. In particular the communication at regular intervals
between different machines required to deliver the spikes (point
events in time) to the target neurons imposes synchronization
points for the threads and the MPI processes, possibly limiting
the scalability of the application. For a fixed size of the network
of about 3.5× 106 neurons, the strong scaling experiment on the
K machine reveals the high degree of parallelism of the hybrid
code, resulting in the excellent scaling shown in Figure 2A. A high
slope of 0.865 can be observed for the simulation time near the
point of maximum filling (here at 2048 cores), where the load per
processor is highest. Changing the seeds of the random number
generators results in different realizations of the random networks.
This has a negligible effect on the firing rates in the network and

A B

FIGURE 2 | Strong scaling of the NEST simulator. (A) A network of
N =3,502,080 neurons is simulated on K for 1 s of the biological system.
Optimal linear scaling is shown by the dashed line. At 2048 cores the network
consumes all available memory, causing the highest possible workload per
core for the given network size. The scaling of the simulation time (solid
curve) between 2048 and 4096 cores has a slope slightly below linear scaling

(0.865). The error bars denote the standard error of the mean from 5
repetitions of identical simulations (same random numbers). The setup time
(allocation and creation of neuron objects and synapses) is shown by the
dotted curve. (B) Strong scaling for a network of N =1,126,400 neurons on
JUGENE. At 2048 cores the network consumes all available memory. Same
symbol code used as in (A).

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

therefore on the simulation time. The largest source of fluctu-
ations in the runtime of these simulations are load differences
on the compute nodes caused by other users. To quantify these
fluctuations we performed for each number of nodes 5 identical
simulations for the strong scaling on K. The standard error of
the mean over the 5 runs is shown as error bars in Figure 2A.
Note that this error increases for larger sizes of the machine, as the
communication time becomes dominant. Figure 2B shows the
corresponding strong scaling on JUGENE. The size of the maxi-
mum filling network at 2048 cores is about 1× 106 here, due to
the smaller amount of working memory per CPU compared to
K. At this point of highest load per processor, the slope reaches
0.90.

For such large networks, not only the simulation time needs
to be taken into account, but also the setup of the network may
consume a considerable amount of time. In the current implemen-
tation, the wiring process is therefore also performed in parallel
on two levels, firstly on the coarse grained level of MPI processes
and secondly employing finer grained parallelism implemented
with OpenMP directives. As the synaptic information is exclu-
sively stored on the machine that harbors the target neuron in a
thread-specific structure, as shown in Figure 1, both levels of par-
allelization are implemented in a natural way: each MPI process
and thread establishes and stores the incoming connections for
the neurons that are local to that process and thread. The second
level of parallelization using one OpenMP thread per available
core (4 on JUGENE and 8 on K) is possible because the threads
work independently on disjoint parts of the connection infra-
structure (see Figure 1). Figures 2A,B show the scaling of the
time required for network setup. The absolute value is below
10 min at the highest load per processor. As a production run
for the network considered here is typically longer than 1 s of
biological time (Morrison et al., 2007a; Kunkel et al., 2011), the
efficiency achieved by the network setup is sufficient for practical
applications. In contrast to the simulation time, the speedup for
the setup time increases with decreasing load per processor and
almost reaches optimal linear scaling at the point at which the
machine is 4 times larger (8192 cores) than the minimal required
size (2048), as seen in Figures 2A,B. Near the point of maximum
filling, connection setup is less effective. This hints that the mem-
ory allocation for the synaptic infrastructure may be dominating
the setup time.

Strong scaling for simulation and network setup are important
measures to assess the percentage of parallelism achieved by the
application, but this measure is less informative for the typical
use of the simulation tool by a neuroscientist. Given a neurosci-
entific question to be investigated, the number of neurons N is
determined by the chosen model of the biological system. The
researcher needs to determine the size of the machine required to
address this question by simulation. It is desirable to determine the
minimum size of the machine in terms of number of CPUs and
working memory that is sufficient in order to keep the energy con-
sumption small and because the effort spent on computation time
grant applications typically increases with the size of the machine
asked for. Moreover, the shared use of high performance comput-
ing resources by a large community of users requires thoughtful
behavior of the individual. Using the smallest possible portion of

the machine for a given task causes faster scheduling and thus
often leads to shortest return times, as the startup plus the queu-
ing time contribute considerably to the turn-around times. In the
case of spiking network simulations, the feasibility of a particu-
lar simulation is determined by memory constraints rather than
by the required performance of the machine. In the following we
therefore study a “maximum filling scaling”: for a given problem
size (number N of neurons) we use the smallest portion of the
computer that has sufficient memory to fit the requirements of
the simulation.

Figures 3 and 4 show such a maximum filling scaling of
NEST on K and JUGENE. The memory consumption of neurons
increases with the number of cores, because of memory overhead
that is serial in N. Each instance of NEST has a sparse table for the
total number of neurons, which is needed to determine whether
a neuron is locally represented (Kunkel et al., 2012b). Similarly,
the sparse table in the connection infrastructure (see Figure 1),
needs to store for each neuron 1, . . ., N in the network whether
it has a target on the local machine. As both structures grow pro-
portional to N, they constitute a serial memory overhead. As a
result, in Figures 3A,B the number of neurons per core needs to
decrease with increasing network size in order to remain within
the memory constraints on each compute node. In the log-linear
plot the number of neurons per core decreases in a linear fashion,
demonstrating an approximately logarithmic dependence on the
number of cores. The linear extrapolation has an intercept with
the x-axis at a certain number of cores exposing the limits of the
current implementation. Correspondingly, the total number of
neurons as a function of the machine size, shown in Figures 3A,B,
increases slightly sub-linearly.

The memory model developed in Kunkel et al. (2012b) and
adapted to the hybrid simulation scheme in Sec. 1 is shown by the
cross symbols in Figure 4. The agreement for the JUGENE com-
puter is good and approximately reproduces the sub-linear slope.
At small numbers of cores the memory consumption is slightly
overestimated, at larger machine size the theory is below the mea-
sured value. A possible source of error is the memory management
system of the operating system. The memory overhead involved
in managing dynamic memory allocation within the kernel is not
part of our model. These structures, however, are expected to reach
considerable sizes, as during network setup a large number of small
allocations is performed for small synapse objects of ∼100 bytes
each, filling the complete memory available. Future implementa-
tions will need to face this issue, for example by employing more
effective pool allocation strategies (Stroustrup, 1997). The devia-
tions of the model from the measured memory consumption for
the K computer is larger than for JUGENE (see Figure 4), but the
slopes of theoretical and estimated curves approximately agree.
A possible reason for the deviations is the method of the mem-
ory consumption measurement: while we used a dedicated library
function of the IBM C++ compiler (Kernel_GetMemorySize) on
JUGENE, on the K computer we read out the entry for virtual
memory in the /proc file system. For the latter, we observed a non-
monotonic dependence on, e.g., the number of allocated synapse
objects not expected theoretically. As we rely on these measure-
ments in order to determine the parameters of the memory model
(see Sec. 1), deviations can be expected.

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

A B

FIGURE 3 | Maximum filling scaling. The network size (number of neurons)
is chosen so that the simulation consumes all available memory. The
affordable number of neurons per core (black round symbols) decreases with
increasing number of cores to keep the total memory consumption close to
the usable maximum. The dotted lines give linear fits to the data. The memory
consumption at different stages of the simulation (colored round symbols:
after allocating the neurons, colored crosses: after establishing the synapses,
colored triangles: after running the simulation) show the memory

consumption at different stages of the simulation. The largest contribution is
due to the synapses. All data are represented using log-linear axes. (A) K
computer with 13.85 GB (nominal 16 GB) memory per compute node. (B)
JUGENE computer with 1.84 GB (nominal 2 GB) memory per compute node.
Note that the last point at 131,072 cores is slightly below the maximum
memory usage, as the bisectioning method we used to empirically determine
the largest possible number of neurons per core did not converge before the
end of our access period to K.

A B

FIGURE 4 | Maximum filling scaling. Simulation time required for 1 s
of biological time is shown as black round symbols for a firing rate per
neuron of 6.9 1

s
and as black square symbols for 1 1

s
. Total size of the

network (i.e., number of neurons) is shown as a function of the
number of cores (colored round symbols). The theoretical prediction

(1) of the maximum possible network size is shown as colored
crosses. Optimal linear scaling shown as dashed lines; the dotted
lines give linear fits to the data. (A) K computer; the estimated slope
of the maximum network size is 0.780. (B) JUGENE computer; the
estimated slope is 0.708.

With increasing machine size the simulation time shown for
JUGENE in Figure 4B first decreases and then increases. The
decrease is due to the reduced workload (neurons per core, see
Figures 3A,B). As we are using collective MPI communication,
the communication time increases with the machine size. This
explains the subsequent increase of the simulation time at higher
numbers of cores. On K the simulation time and the slope of
the simulation time predominantly increase with machine size

(Figure 4A). The fluctuating behavior of the runtime on the K
computer is mostly due to fluctuations of the communication
time, presumably caused by other users who are running commu-
nication or I/O-intense applications at the same time. Different
configurations of the Tofu communication topology (see Sec. 1)
also have an effect on the simulation time: an allocated number of
M compute nodes can be logically arranged as a topological torus
with dimensions k× l ×m=M. In this work we did not explicitly

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

specify the topology k× l ×m, but simply specified the total num-
ber of nodes M. Rerunning the same simulation in Figure 4 with
different topologies showed a notable effect on the runtime. For
an application like NEST that relies on collective all-to-all com-
munication, the naive expectation is that a cube like configuration

(k ' l ' m ' M
1
3) should result in shortest communication

latencies. However, this turned out to be false. As the K soft-
ware environment matures, further investigations into the optimal
configuration can be carried out.

The simulation time on JUGENE for 1 s of biological time is
below 240 s even for a network of 2.0× 107 neurons with an aver-
age rate per neuron of 6.9 1

s . On K the largest network of 6.4× 107

neurons executes in less than 600 s for the same biological time and
rate. Decreasing the firing rate in the network to 1.08 1

s by reduc-
ing the external Poisson drive to each cell reduces the runtime
to below 120 s. The memory consumption was only marginally
affected (data not shown). The short return times allow for a quasi
interactive working style with the model for short simulations of
a few seconds of biological time.

Figure 5 shows the comparison of the two supercomputers.
The maximum size of the network for a given machine size is
shown in Figure 5A. Due to the larger memory per core of K com-
pared to JUGENE (2 vs. 0.5 GB), the maximum possible network
size on K exceeds that on JUGENE; at 16,384 cores the factor is
about 3.24. The slightly higher slope on K compared to JUGENE
indicates that this ratio increases toward larger machine sizes. In
the optimal case without any serial overhead in the representation
of the network, one would expect a factor of 4 corresponding to
the relative size of the total available working memory. A similar
observation can be made from the total memory consumption as
a function of the network size, shown in Figure 5B. The slope

of the linear fit is above the optimal linear scaling (slope 1) and
the memory increase on the K computer is slightly less than on
JUGENE. With the current technology, the absolute size of 108

neurons can be reached on the K computer, but not on JUGENE.
Normalizing the simulation time by the workload per core

exhibits an increase with the number of cores in Figure 5B,
caused by the collective communication scheme. As each spike
produced within the network needs to be communicated to all
other processors irrespective of targets existing on that machine,
the communication load increases with the number of cores. Addi-
tionally, the number of spikes arriving at a given machine grows
almost in proportion to the number of cores. So as the network
size increases, so does the number of arriving spikes, each of which
needing to be checked for whether it has local targets, and so too
increases the proportion of spikes which have no such local targets
and must be discarded. The resulting increase in run time on the
K computer is less steep than on JUGENE, because K has double
the number of cores per CPU than JUGENE and thus requires half
the number of MPI processes for a given number of cores.

The comparison of the execution time per workload, shown
in Figure 5B, obviously reflects the different clock speeds of K
(2 GHz) and JUGENE (850 MHz). Note that the peak performance
of a single CPU in K measured in FLOPS is almost a factor 10
larger than that of JUGENE (see Sec. 1, K: 128 GFlops, JUGENE:
13.6 GFlops). The peak performance of K can be achieved by
streaming instructions (single instruction multiple data, SIMD)
utilizing both concurrently working floating point units in each
core. Here, however, we used the same C++ code on both
machines that does not employ this technique, so not making
use of the full floating point performance of K. Moreover, the
benchmark considered in this contribution uses rather lightweight

A B

FIGURE 5 | Comparison of K (red) and JUGENE (blue). (A)
Maximum possible network size as a function of the number of cores
(same data as in Figures 4A,B). The dashed lines are determined by a
linear fit to the data points. The lines end at the full size of the
respective machine (294,912 cores for JUGENE, 705,024 cores for K).
The dashed horizontal lines at 107 and 108 neurons are given for visual

guidance. (B) Memory consumption and runtime. Simulation time
normalized by the workload N /core (number of neurons simulated per
core) of the processor as a function of the simulated network size
(round symbols). Total memory consumption memtot as a function of
the network size N (triangles). The dashed lines are linear fits to the
data with slopes indicated by the symbols 1.

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

computations per neuron, where each simulation time step com-
prises only a few floating point multiplications and additions per
neuron. However, the delivery of spikes to randomly drawn target
neurons causes frequent and random memory access. Therefore,
for our application the floating point performance of the CPU
is less relevant than clock speed, cache efficiency, and memory
bandwidth.

In order to measure the performance of NEST on K, we
employed the profiling tools fpcoll and fprofx that are part of the
Fujitsu development kit. We simulated 18,420,000 neurons on a
subset of 98,240 cores (12,280 nodes). We obtained the number of
floating point operations per second (MFLOPS) and instructions
per second (MIPS) as shown in Table 2. Note that the total num-
ber of floating point instructions in the simulation code is very
low in our benchmark, as we are using a leaky integrate-and-fire
neuron with only three state variables and the exact integration
method (Rotter and Diesmann, 1999). The floating point perfor-
mance is thus expected to be low. For a program without floating
point operations the measure is zero. The MIPS performance is
good, especially considering that the application heavily relies on
random memory access.

4. DISCUSSION
NEST is an openly available tool to routinely simulate networks
of spiking neurons of functionally relevant sizes on HPC facilities;
its use is also taught in the major advanced computational neu-
roscience summer schools. The simulation framework as used in
this contribution does not sacrifice any generality for efficiency. In
particular, the description of the network model is entirely for-
mulated in NEST’s proprietary interpreter language (SLI), not
requiring any custom changes on the level of the C++ source
code of the simulator. The improved connection infrastructure as
presented in Kunkel et al. (2012b) and its adaptation to multiple
threads introduced in Sec. 1 allows different synapse models to be
represented in the same simulation. This is a crucial prerequisite
to investigate synaptic plasticity in recurrent networks, the bio-
logical substrate hypothesized to underlie system level learning.
Moreover, the same code that we used on supercomputers here
also runs on small machines, like laptops, without any penalty in
performance.

The improvements to NEST (documented in Kunkel et al.,
2012b) put networks of 108 neurons within reach, utilizing just
above 12,288 compute nodes of the K supercomputer (<14% of
the total machine). This number of neurons is a critical point at
which the largest areas of the visual system in the primate brain

Table 2 | Performance measures of the NEST simulator for 98,240

cores simulating 18,420,000 neurons on the K computer obtained

with the fpcoll/fpcollx profiling tool.

Per core 98,240 Cores

MFLOPS 13.9547 151775.3847

MFLOPS/PEAK (%) 0.0872 0.0772

MIPS 670.4384 8987312.8521

MIPS/PEAK (%) 8.3805 9.1483

can be represented at full cellular resolution. Integrating the simu-
lation of microscopic dynamics into the bigger picture of behavior
and learning on the systems level ultimately requires simulations
at this scale and beyond.

The simulator NEURON implements advanced schemes of
communication that allow a partial overlap of the computation
and the communication phase (Hines et al., 2011). The network
sizes considered in that work at a comparable number of 10,000
synapses per neuron on 131,072 cores reach up to 4× 106 simple
artificial neurons on a BlueGene/P architecture. The largest net-
work in our simulations at this machine size is 19.6× 106 neurons,
around 5 times larger (see Figure 4B). Note, however, that the net-
work sizes in Hines et al. (2011) were not explicitly stated to be
the maximum possible number of neurons and in our benchmark
the connections implement general STDP dynamics (see Kunkel
et al., 2012b, Sec. 2.3).

Using detailed compartmental models instead of point neu-
rons, a simulation of 10,000 neurons of the Blue Brain project’s
cortical column model was performed on 1024 CPUs (512 MB
per CPU) on a BlueGene/L (cf. Figure 7 in Hines et al., 2008b).
The neuroscientist may ask the question: what size of network
can be simulated with these computational resources, if all the
10,000 synapses of a neuron are represented and the detailed neu-
ron model is reduced to a point neuron, trading accuracy on
the description of the single neuron dynamics for accuracy in
the description of network structure? In our Figure 2B we simu-
late around 1.1 million point neurons on 2048 cores (512 MB per
cores) on a BlueGene/P, thus we estimate that slightly over 550,000
neurons would fit on 1024 cores.

Comparing the simulation time for the networks, both fir-
ing at roughly 7 1

s for 1 biological second, yields around 1300 s
for the Blue Brain columnar model of 10,000 cells on 2048
cores of BG/L and 133 s for 1,126,400 cells in the NEST sim-
ulation on 2048 cores of BG/P. Normalized by the number
of neurons, this is 1.3× 10−1 s/neuron for the detailed neuron
model and 1.2× 10−4 s/neuron for the point neuron simula-
tion at the same number of cores. These numbers are only very
rough estimates, not taking into account the different archi-
tectures, cache sizes, and clock speeds (BG/L 700 MHz, BG/P
850 MHz).

The C2 simulator (Ananthanarayanan and Modha, 2007; Anan-
thanarayanan et al., 2009) is another simulation code dedicated to
simple point neuron models. The largest network so far simulated
with the specifically written code of C2 was 1.6× 109 neurons
with 5485 synapses each on 147,456 cores of BlueGene/P (144 TB
total memory). NEST reaches a maximal network size of 2.0× 107

neurons with 11,250 synapses on 131,072 cores of BlueGene/P
(70 TB total memory). These are around 57.3 synapses per KB in
C2 compared to 3.3 synapses per KB in NEST. The larger mem-
ory consumption of NEST is due to its generality. In particular,
NEST enables the user to combine different synaptic dynamics
in the same simulation. This entails that the connection frame-
work consists of flexible data structures capable of storing and
distinguishing between heterogeneous synapses types (shown in
Figure 1). Moreover, we represented all quantities in double preci-
sion, whereas the 16 bytes per synapse of C2 (Ananthanarayanan
and Modha, 2007) is presumably achieved using single precision

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

floating point numbers. Comparing the simulation times for the
same cases mentioned above, C2 is 643 times slower than real time
per Hertz firing rate. Since the synapses cause most of the com-
putation, we normalize the runtime by the workload, the synapses
per core, which yields a simulation time per firing rate and work-
load of 643 s/(1 1

s 1.6 × 109 5485/147, 456) = 1.1 × 10−5 s/ 1
s for

C2. For NEST this calculation yields an only slightly larger num-
ber of 225 s/(7.6 1

s 2× 107 11, 250/131, 072) = 1.7× 10−5 s/ 1
s , so

generality does not compromise performance here.
The two key parameters defining the required computational

resources for a given scientific question from the point of view of
the neuroscientist are the size of the network and the length of
the simulation time. However, in order to investigate this model
on a supercomputer, these parameters must be transformed into
estimates for the necessary number of cores and the wall clock
time. These estimates are not only important for the efficient,
sensible, and democratic use of high performance utilities, but
are also valuable for potential users planning a computation time
grant application, especially for the upcoming open calls for K.
The availability of such a model is beneficial over determining
computation resources by trial and error, wasting precious com-
putation resources and time. Often such a theoretical prediction
is the sole option, in the case that the desired computer resource
is accessible only after a successful grant application procedure,
which typically asks for accurate estimates of resources in the first
place.

By applying our model of memory consumption to a real world
simulation scenario, we have shown that this mathematical tool
provides reliable estimates for the required number of compute
nodes. The necessary machine size is predominantly determined
by the number of neurons and their connectivity. This fact is
evident from Figure 4, showing that the memory model only
considering the contribution of the data structures representing
neurons and synapses accounts well for the memory consump-
tion. The firing rate in the network has only a small impact on
the required memory. The dominant contribution to the mem-
ory load due to spiking arises from the buffers required to store
the spike events. These events are communicated in regular inter-
vals determined by the global minimal synaptic conduction delay
min(d) used in the simulation (Morrison et al., 2005). In our
benchmarks this delay is on the order of min(d)= 1.5 ms. Given
the neurons in the network fire on average with rate ν = 6.9 1

s and
there are at most NT= 2000 neurons per core (cf. Figure 3), each
core produces on average NT min(d)= 20.7 events per communi-
cation step. With collective MPI communication these events are
sent to all participating nodes. For the largest employed machine
size of 98,394 cores on K in Figure 4 this leads to around 2 mil-
lion events per communication step. These events need to be
stored in a buffer on each node, taking up 4 bytes per global
id of the sending neuron plus a small amount of overhead (see
Morrison et al., 2005 for the details of the implementation), in
total leading to 8.1 MB buffer size on each node. This amounts
to only about 0.05% of the working memory available on the
node.

The impact of the firing rate on the run time is more pro-
nounced. The profiling analysis of the simulations on the K
computer have shown that for machine sizes up 12,288 compute

nodes, most of the simulation time is spent in the update
function to calculate the synaptic weight changes due to STDP.
This function is called at each occurrence of a spike of the
presynaptic neuron, so it clearly depends linearly on the firing
rate. Therefore, in order to generate similarly reliable estimates
for the wall clock time required, it would be advantageous to
develop a model of runtime to supplement our model of memory
consumption.

Rather than being a purely technical capability demonstra-
tion with a code specifically tuned for one particular machine,
we show that the usability of supercomputers for the simulation
of networks of simple model neurons has now increased to a level
comparable to the use of single PCs; the same freely available
software that runs on a laptop can be compiled and run on K
and JUGENE, executing the same simulation scripts. This enables
an unprecedented advantage in computational neuroscience: a
researcher can perform much of the work to develop even a very
large scale computational model on easily accessed hardware of
modest dimensions. When this preliminary work is complete, the
model can be scaled up to supercomputers without conversion
issues.

Note that this paper focuses on the technical aspects of running
such simulations on a supercomputer, rather than the demand-
ing task of defining network models on the brain-scale, which is
hindered both by the limited availability of suitable experimental
data to constrain the simulation and by the difficulty of extract-
ing the required measures from such data. Addressing these issues
remains an important challenge for neuroscience; here we are sim-
ply showing that simulator and supercomputer technology have
now developed to the point that the actual process of setting up
and simulating the network is practical. Within the realm of neu-
roinformatics there are additional important problems. Finding
the right level of abstraction and defining ontologies to describe
neuronal network simulations in a reproducible manner is not at
all trivial, although promising steps in this direction have been
made. On the technical side, common interfaces like PyNN have
been defined and implemented that enable the researcher to define
neuronal network simulations independent of the employed sim-
ulator (Davison et al., 2009). NeuroML is a model definition
languages that is suitable to describe neuronal network models,
providing a description of the underlying physiology (Gleeson
et al., 2010). NineML is targeted at the simulator independent
description of neuron and synapse models as well as connection
routines that may then provide the primitives to define network
models in NeuroML (Raikov et al., 2011). These efforts are cru-
cial to facilitate collaborations and sharing of models within the
community.

The current work has identified limits of the present imple-
mentation mainly resulting from the memory overhead of the
connection framework. Synapses are stored on the machine, where
the target neuron resides and the representation of each non-
empty list of these local synapses of a given source neuron comes
with a certain overhead m+c (see Sec. 1). There are as many lists
as neurons in the network. Thus in a weak scaling, the number
of lists increases with network size, while the length of each list
decreases accordingly. Consequently, the effective memory con-
sumption per synapse grows. Moreover, any structure growing in

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

proportion to the total number of neurons, like the mentioned
sparse tables represents a serial memory overhead that ultimately
prevents further scaling. Future work needs to address this issue,
investigate optimized distributed storage strategies for networks
at the 109 neuron scale and also has to assess the feasibility of
collective communication or alternative communication schemes
on the full number of nodes of today’s supercomputers. Preparing
the simulation technology for brain-scale networks is the basis for
further neuroscientific research employing supercomputers and
enables us to better assess the resources required for whole-brain
simulations.

ACKNOWLEDGMENTS
We are grateful to Maximilian Schmidt for preparing and per-
forming parts of the benchmark simulations. Partly supported
by the early access to the K computer at the RIKEN Advanced
Institute for Computational Science, by the VSR computation
time grant JINB33 on the JUGENE supercomputer in Jülich, the
Helmholtz Alliance on Systems Biology, the Initiative and Net-
working Fund of the Helmholtz Association, the Next-Generation
Supercomputer Project of MEXT, EU Grant 269921 (BrainScaleS).
All network simulations carried out with NEST (http://www.nest-
initiative.org).

REFERENCES
Ajima, Y., Sumimoto, S., and Shimizu,

T. (2009). Tofu: a 6d mesh/torus
interconnect for exascale computers.
Computer 42, 36–40.

Amit, D. J., and Brunel, N. (1997).
Model of global spontaneous activ-
ity and local structured activ-
ity during delay periods in the
cerebral cortex. Cereb. Cortex 7,
237–252.

Ananthanarayanan, R., Esser, S. K.,
Simon, H. D., and Modha, D. S.
(2009). “The cat is out of the bag:
cortical simulations with 109 neu-
rons and 1013 synapses,” in Super-
computing 09: Proceedings of the
ACM/IEEE SC2009 Conference on
High Performance Networking and
Computing, Portland, OR.

Ananthanarayanan, R., and Modha, D.
S. (2007). “Anatomy of a corti-
cal simulator,” in Supercomputing
2007: Proceedings of the ACM/IEEE
SC2007 Conference on High Per-
formance Networking and Comput-
ing (New York, NY: Association for
Computing Machinery).

Board, O. A. R. (2008). Openmp Appli-
cation Program Interface. Available
at: http://www.openmp.org/mp-
documents/spec30.pdf

Brunel, N. (2000). Dynamics of sparsely
connected networks of excitatory
and inhibitory spiking neurons. J.
Comput. Neurosci. 8, 183–208.

Collinsa, C. E., Aireyb, D. C., Younga,
N. A., Leitchc, D. B., and Kaasa,
J. H. (2010). Neuron densities vary
across and within cortical areas in
primates. Proc. Natl. Acad. Sci. U.S.A.
107, 15927–15932.

Davison, A., Brüderle, D., Eppler, J. M.,
Kremkow, J., Muller, E., Pecevski,
D., et al. (2009). PyNN: a common
interface for neuronal network sim-
ulators. Front. Neuroinform. 2:11.
doi:10.3389/neuro.11.011.2008

Djurfeldt, M., Johansson, C., Ekeberg,
Ö., Rehn, M., Lundqvist, M., and
Lansner,A. (2005). Massively Parallel
Simulation of Brain-Scale Neuronal
Network Models. Technical Report
Technical Report TRITA-NA-P0513,

KTH. Stockholm: School of Com-
puter Science and Communication
Stockholm.

Djurfeldt, M., Lundqvist, M., Johans-
son, C., Rehn, M., Ekeberg, O., and
Lansner, A. (2008). Brain-scale sim-
ulation of the neocortex on the IBM
Blue Gene/L supercomputer. IBM J.
Res. Dev. 52, 31–41.

Eppler, J., Plesser, H., Morrison, A.,
Diesmann, M., and Gewaltig, M.-
O. (2007). “Multithreaded and dis-
tributed simulation of large bio-
logical neuronal networks,” in Pro-
ceedings of European PVM/MPI,
Vol. 4757 (Paris: Springer LNCS),
391–392.

Eppler, J. M., Helias, M., Muller,
E., Diesmann, M., and Gewaltig,
M. (2009). PyNEST: a conve-
nient interface to the NEST sim-
ulator. Front. Neuroinform. 2:12.
doi:10.3389/neuro.11.012.2008

Frings, W., Wolf, F., and Petkov, V.
(2009). “Scalable massively parallel
i/o to task-local files,” in Proceedings
of the 23th Annual International Con-
ference on Supercomputing, Portland,
OR.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (NEural Simulation
Tool). Scholarpedia 2, 1430.

Gleeson, P., Crook, S., Cannon,
R. C., Hines, M. L., Billings,
G. O., Farinella, M., et al.
(2010). Neuroml: a language
for describing data driven models
of neurons and networks with a
high degree of biological detail.
PLoS Comput. Biol. 6, e1000815.
doi:10.1371/journal.pcbi.1000815

Hammarlund, P., and Ekeberg, O.
(1998). Large neural network sim-
ulations on multiple hardware plat-
forms. J. Comput. Neurosci. 5,
443–459.

Hanuschkin, A., Kunkel, S., Helias,
M., Morrison, A., and Diesmann,
M. (2010). A general and effi-
cient method for incorporating pre-
cise spike times in globally time-
driven simulations. Front. Neuroin-
form. 4:113. doi:10.3389/fninf.2010.
00113

Hines, M. (1984). Efficient computation
of branched nerve equations. Int. J.
Biomed. Comput. 15, 69–76.

Hines, M., and Carnevale, N. T.
(1997). The NEURON simulation
environment. Neural Comput. 9,
1179–1209.

Hines, M., Eichner, H., and Schür-
mann, F. (2008a). Neuron splitting
in compute-bound parallel network
simulations enables runtime scaling
with twice as many processors. J.
Comput. Neurosci. 25, 203.

Hines, M. L., Markram, H., and Schür-
mann, F. (2008b). Fully implicit par-
allel simulation of single neurons. J.
Comput. Neurosci. 25, 439–448.

Hines, M., Kumar, S., and Schür-
mann, F. (2011). Comparison of
neuronal spike exchange meth-
ods on a blue gene/p supercom-
puter. Front. Comput. Neurosci. 5:49.
doi:10.3389/fncom.2011.00049

Kumar, S., Heidelberger, P., Chen,
D., and Hines, M. (2010). Opti-
mization of applications with
non-blocking neighborhood col-
lectives via multisends on the blue
gene/p supercomputer. IPDPS.
doi:10.1109/IPDPS.2010.5470407

Kunkel, S., Diesmann, M., and Morri-
son,A. (2011). Limits to the develop-
ment of feed-forward structures in
large recurrent neuronal networks.
Front. Comput. Neurosci. 4:160.
doi:10.3389/fncom.2010.00160

Kunkel, S., Helias, M., Potjans, T. C.,
Eppler, J. M., Plesser, H. E., Dies-
mann, M., et al. (2012a). “Memory
consumption of neuronal network
simulators at the brain scale,” in NIC
Symposium 2012 Proceedings, Vol-
ume 45, of NIC Series, eds K. Binder,
G. Münster, and M. Kremer (Jülich:
Forschungszentrum Jülich GmbH),
81–88.

Kunkel, S., Potjans, T. C., Eppler, J. M.,
Plesser, H. E., Morrison, A., and
Diesmann, M. (2012b). Meeting the
memory challenges of brain-scale
simulation. Front. Neuroinform.
5:35. doi:10.3389/fninf.2011.00035

Lansner, A., and Diesmann, M. (2012).
“Virtues, pitfalls, and methodology

of neuronal network modeling and
simulations on supercomputers,” in
Computational Systems Neurobiol-
ogy, Chap. 10, ed. N. L. Novére
(Dordrecht: Springer), 283–315.

Lundqvist, M., Compte,A., and Lansner,
A. (2010). Bistable, irregular fir-
ing and population oscillations in a
modular attractor memory network.
PloS Comput. Biol. 6, e1000803.
doi:10.1371/journal.pcbi.1000803

Miyamoto, D., Kazawa, T., and Kanzaki,
R. (2012). “Neural circuit simula-
tion of hodgkin-huxley type neu-
rons toward peta scale computers,”
in Supercomputing 2012: Proceed-
ings of the ACM/IEEE SC2012 Con-
ference on High Performance Net-
working and Computing (New York,
NY: Association for Computing
Machinery).

Morrison, A., Aertsen, A., and Dies-
mann, M. (2007a). Spike-timing
dependent plasticity in balanced
random networks. Neural Comput.
19, 1437–1467.

Morrison, A., Straube, S., Plesser, H. E.,
and Diesmann, M. (2007b). Exact
subthreshold integration withcon-
tinuous spike times in discrete time
neural network simulations. Neural
Comput. 19, 47–79.

Morrison,A., and Diesmann, M. (2008).
“Maintaining causality in discrete
time neuronal network simula-
tions,” in Lectures in Super Com-
putational Neuroscience: Dynamics
in Complex Brain Networks, Under-
standing Complex Systems, eds P.
beim Graben, C. Zhou, M. Thiel,
and J. Kurths (Potsdam: Springer),
267–278.

Morrison, A., Diesmann, M., and Ger-
stner, W. (2008). Phenomenological
models of synaptic plasticity based
on spike-timing. Biol. Cybern. 98,
459–478.

Morrison, A., Mehring, C., Geisel,
T., Aertsen, A., and Diesmann,
M. (2005). Advancing the bound-
aries of high connectivity net-
work simulation with distributed
computing. Neural Comput. 17,
1776–1801.

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 11

http://www.nest-initiative.org
http://www.nest-initiative.org
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.3389/neuro.11.011.2008
http://dx.doi.org/10.3389/neuro.11.012.2008
http://dx.doi.org/10.1371/journal.pcbi.1000815
http://dx.doi.org/10.3389/fninf.2010.\penalty -\@M 00113
http://dx.doi.org/10.3389/fninf.2010.\penalty -\@M 00113
http://dx.doi.org/10.3389/fncom.2011.00049
http://dx.doi.org/10.3389/fncom.2010.00160
http://dx.doi.org/10.3389/fninf.2011.00035
http://dx.doi.org/10.1371/journal.pcbi.1000803
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Helias et al. Supercomputers ready for use

Mountcastle, V. B. (1997). The colum-
nar organization of the neocortex.
Brain 120, 701–722.

Pacheco, P. S. (1997). Parallel Program-
ming with MPI. San Francisco: Mor-
gan Kaufmann.

Pecevski, D., Natschläger, T., and
Schuch, K. (2009). PCSIM: a par-
allel simulation environment for
neural circuits fully integrated with
python. Front. Neuroinform. 3:11.
doi:10.3389/neuro.11.011.2009

Plesser, H. E., Eppler, J. M., Morrison,
A., Diesmann, M., and Gewaltig, M.-
O. (2007). “Efficient parallel simu-
lation of large-scale neuronal net-
works on clusters of multiprocessor
computers,” in Euro-Par 2007: Paral-
lel Processing, Volume 4641 of Lecture
Notes in Computer Science, eds A.-
M. Kermarrec, L. Bougé, and T. Priol
(Berlin: Springer-Verlag), 672–681.

Potjans, T. C., and Diesmann, M.
(2011). The cell-type specific con-
nectivity of the local cortical
network explains prominent fea-
tures of neuronal activity. arXiv,
1106.5678v1 [q–bio.NC].

Potjans, W., Morrison, A., and Dies-
mann, M. (2010). Enabling
functional neural circuit simu-
lations with distributed computing
of neuromodulated plastic-
ity. Front. Comput. Neurosci.
4:141. doi:10.3389/fncom.2010.
00141

Raikov, I., Cannon, R., Clewley, R., Cor-
nelis, H., Davison, A., Schutter, E.
D., et al. (2011). Nineml: the net-
work interchange for neuroscience
modeling language. BMC Neurosci.
12, 1–2. doi:10.1186/1471-2202-12-
S1-P330

Rotter, S., and Diesmann, M. (1999).
Exact digital simulation of time-
invariant linear systems with appli-
cations to neuronal modeling. Biol.
Cybern. 81, 381–402.

Silverstein, C. (2005). Implementa-
tion of Sparse_Hash_Map, Dense_
Hash_Map, and Sparsetable. Avail-
able at: http://google-sparsehash.
googlecode.com/svn/trunk/doc/
implementation.html

Sporns, O., Tononi, G., and Kötter,
R. (2005). The human connectome:

a structural description of the
human brain. PLoS Comput. Biol.
1, e42. doi:10.1371/journal.pcbi.
0010042

Stepanyants, A., Martinez, L. M., Ferec-
skó,A. S., and Kisvárday, Z. F. (2009).
The fractions of short- and long-
range connections in the visual cor-
tex. Proc. Natl. Acad. Sci. U.S.A. 106,
3555–3560.

Stroustrup, B. (1997). The C++ Pro-
gramming Language, 3rd Edn. New
York: Addison-Wesly.

van Essen, D. C. (2005). Cortic-
ocortical and thalamocortical
information flow in the primate
visual system. Prog. Brain Res. 149,
173–185.

Yonezawa, A., Watanabe, T., Yokokawa,
M., Sato, M., and Hirao, K. (2011).
Advanced Institute for Compu-
tational Science (Aics): Japanese
National High-Performance Com-
puting Research Institute And its
10-Petaflops Supercomputer “K.”
State of the Practice Reports,
SC’11, New York, NY: ACM, 13:
1–13:8.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 12 July 2012; accepted: 08 Octo-
ber 2012; published online: 02 November
2012.
Citation: Helias M, Kunkel S, Masumoto
G, Igarashi J, Eppler JM, Ishii S,
Fukai T, Morrison A and Diesmann
M (2012) Supercomputers ready for
use as discovery machines for neuro-
science. Front. Neuroinform. 6:26. doi:
10.3389/fninf.2012.00026
Copyright © 2012 Helias, Kunkel,
Masumoto, Igarashi, Eppler , Ishii, Fukai,
Morrison and Diesmann. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion License, which permits use, distrib-
ution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Neuroinformatics www.frontiersin.org November 2012 | Volume 6 | Article 26 | 12

http://dx.doi.org/10.3389/neuro.11.011.2009
http://dx.doi.org/10.3389/fncom.2010.\penalty -\@M 00141
http://dx.doi.org/10.3389/fncom.2010.\penalty -\@M 00141
http://dx.doi.org/10.1186/1471-2202-12-{\penalty -\@M }S1-P330
http://dx.doi.org/10.1186/1471-2202-12-{\penalty -\@M }S1-P330
http://google-sparsehash.googlecode.com/svn/trunk/doc/implementation.html
http://google-sparsehash.googlecode.com/svn/trunk/doc/implementation.html
http://google-sparsehash.googlecode.com/svn/trunk/doc/implementation.html
http://dx.doi.org/10.1371/journal.pcbi.\penalty -\@M 0010042
http://dx.doi.org/10.1371/journal.pcbi.\penalty -\@M 0010042
http://dx.doi.org/10.3389/fninf.2012.00026
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Supercomputers ready for use as discovery machines for neuroscience
	Introduction
	Materials and methods
	Specification of employed computer architectures
	Simulation technology

	Results
	Adaptations of the memory usage model to threading
	Performance of NEST on K and JUGENE

	Discussion
	Acknowledgments
	References

