
ORIGINAL RESEARCH ARTICLE
published: 30 December 2013
doi: 10.3389/fninf.2013.00044

An automated and reproducible workflow for running and
analyzing neural simulations using Lancet and IPython
Notebook
Jean-Luc R. Stevens1*, Marco Elver2 and James A. Bednar1

1 School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
2 School of Informatics, Institute for Computing Systems Architecture, University of Edinburgh, Edinburgh, UK

Edited by:

Andrew P. Davison, CNRS, France

Reviewed by:

Padraig Gleeson, University College
London, UK
Thomas G. Close, Okinawa Institute
of Science and Technology Graduate
University, Japan

*Correspondence:

Jean-Luc R. Stevens, School of
Informatics, Institute for Adaptive
and Neural Computation, University
of Edinburgh, 10 Crichton Street,
Edinburgh, EH8 9AB, UK
e-mail: jlstevens@inf.ed.ac.uk

Lancet is a new, simulator-independent Python utility for succinctly specifying, launching,
and collating results from large batches of interrelated computationally demanding
program runs. This paper demonstrates how to combine Lancet with IPython Notebook to
provide a flexible, lightweight, and agile workflow for fully reproducible scientific research.
This informal and pragmatic approach uses IPython Notebook to capture the steps in a
scientific computation as it is gradually automated and made ready for publication, without
mandating the use of any separate application that can constrain scientific exploration
and innovation. The resulting notebook concisely records each step involved in even
very complex computational processes that led to a particular figure or numerical result,
allowing the complete chain of events to be replicated automatically. Lancet was originally
designed to help solve problems in computational neuroscience, such as analyzing the
sensitivity of a complex simulation to various parameters, or collecting the results from
multiple runs with different random starting points. However, because it is never possible
to know in advance what tools might be required in future tasks, Lancet has been designed
to be completely general, supporting any type of program as long as it can be launched as a
process and can return output in the form of files. For instance, Lancet is also heavily used
by one of the authors in a separate research group for launching batches of microprocessor
simulations. This general design will allow Lancet to continue supporting a given research
project even as the underlying approaches and tools change.

Keywords: IPython, pandas, reproducibility, workflow, simulation, batch computation, provenance, big data

1. INTRODUCTION
Computational neuroscience is a rapidly developing scientific
field that relies on a large ecosystem of software tools that is
continually evolving as high-performance computing infrastruc-
ture is updated. Every computational neuroscientist must there-
fore keep up with new developments in neuroscience, software
engineering, and computer hardware while advancing novel com-
putational theories of the nervous system. The drive to explore
different scientific hypotheses rapidly has made Python the lan-
guage of choice for many researchers due to its flexibility and
wide range of libraries already provided. Despite this fast pace of
change, it is crucial that results remain reproducible once they are
obtained, if computational neuroscientists are to have long-term
confidence in the integrity of their work.

The formidable challenges associated with developing repli-
cable scientific publications in a rapidly advancing field are well
recognized by the computational neuroscience community. The
difficulties include problems replicating results between simula-
tors (Crook et al., 2013) and insufficiently constrained model
parameters in publications (Nordlie et al., 2009), along with
an important debate about the distinction between replicabil-
ity and reproducibility (Drummond, 2009; Freire et al., 2011).
Fundamentally, neuroscience is concerned with the study of

dynamic, history dependent biological systems of exceedingly
high dimensionality. Although computational models abstract
away most of the complexity of nervous systems by necessity, it is
still a formidable challenge to communicate this type of work to
other scientists while also capturing the key properties of the bio-
logical system under study. These broad issues must be addressed
by the community as a whole, and cannot be solved by any one
piece of software.

The approach we present to improve reproducibility is by
offering a small number of useful utilities that first aim to improve
a researcher’s scientific productivity. If properly designed and use-
ful enough to become a core part of a researcher’s regular work-
flow, it is hoped that such tools will allow reproducible science to
emerge naturally as researchers seek to increase productivity. This
approach is in sharp contrast to more heavyweight automated sci-
entific workflow systems (Curcin and Ghanem, 2008; Freire et al.,
2014) that can be effective for mature research areas but would be
constraining for this young and ever-changing field.

We developed the Lancet package as a small set of flexible,
lightweight components that allow a researcher to generate and
analyze large data sets more efficiently. These components are
designed to help improve research efficiency by allowing the
user to capture the essence of a scientific task with very little

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00044/abstract
http://www.frontiersin.org/people/u/121013
http://www.frontiersin.org/people/u/2481
mailto:jlstevens@inf.ed.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

code and by catching errors early on, before expensive compu-
tational processes begin. By distilling a problem into a small
number of short, declarative specifications, the researcher can
focus on important scientific details, spending less time worry-
ing about issues of implementation. Every component in Lancet
is written to satisfy an immediate need; the end goal of gen-
erating automated, reproducible results should then be satisfied
as a natural outcome of a clean and efficient solution to a
problem.

By design, Lancet is a general utility, allowing it to work with
any external tool or simulator. This ensures that as tools change
or as researchers switch between software and platforms, the code
written with Lancet remains unchanged. This generality is strictly
enforced by the requirements of one of the authors, who is suc-
cessfully applying Lancet outside the domain of computational
neuroscience, i.e., to run simulations of varying microproces-
sor architectures. Lancet is pure, platform-independent Python
with minimal dependencies, and supports both Python 2 and
Python 3. Together, these properties should help ensure that code
written using this utility will remain viable for the foreseeable
future.

The goal of this new package is to allow reproducible, agile
workflows to develop organically when used together with other
tools, namely a suitable version control system and IPython
Notebook. Since version 0.12 of IPython (Pérez and Granger,
2007), a notebook feature has been provided which allows code,
data, and figures to be interactively explored while maintaining a
complete record of the source code. Lancet is designed to integrate
well with IPython and the pandas library (pandas.pydata.org),
without having either of these two projects as a core dependency.

The next section introduces the components of Lancet,
starting with a very small toy example of a workflow that begins
with an initial specification and ends in a simple analysis. Section
3 provides an overview of the three main types of components

offered in Lancet. At every stage, we show how these components
make research tasks easier to complete by making the intentions
of exploratory and publication-specific code clearer and more
succinct. With the basic design established, Section 4 presents the
full reproducible workflow, showing how Lancet can help turn
reproducible science into practical reality when used together
with IPython Notebook and other popular tools such as Git
and the pandas data analysis library. To demonstrate that this
workflow is both practical and relevant to a real research project,
we then briefly describe how it was used to generate all the results
in Stevens et al. (2013), recently published in the Journal of
Neuroscience.

2. BASIC LANCET EXAMPLE
Python is a flexible, interpreted language that comes with many
modules that extend the functionality of the base language.
Closely related modules are collected into packages, some
of which are included together with Python in the standard
library and others that are available as third party libraries.
The new Lancet package is designed to work together with the
many excellent Python packages already available for scientific
computing, to help capture and simplify a researcher’s workflow.
Lancet integrates particularly well with the interactive IPython
notebook environment, which improves on Python’s facilities
for exploratory research and works across multiple platforms
(Linux, MacOS, Windows). More information about Lancet,
including installation instructions, may be found on Lancet’s
website (http://ioam.github.io/lancet).

To introduce Lancet, we will first look at a minimal, toy exam-
ple of a Python-based workflow with Lancet, listed in Figure 1.
This example uses the simple factor command (included in GNU
coreutils) to find the prime numbers that lie within a specific
range of integers. Although brief, this example demonstrates how
to use an initial specification of a parameter space to obtain results

1 >>> import lancet
2
3 >>> example_name = ’prime_quintuplet’
4 >>> integers = lancet.Range(’integer’, 100, 115, steps=16, fp_precision=0)
5 >>> factor_cmd = lancet.ShellCommand(executable=’factor’, posargs=[’integer’])
6 # Runs locally. A QLauncher could be used to launch jobs with Grid Engine.
7 >>> lancet.Launcher(example_name, integers, factor_cmd, output_directory=’output’)()
8
9 # Collate and print the the primes in the input range of integers
10 >>> def load_factors(filename):
11 ... "Return output of ’factor’ command as dictionary of factors."
12 ... with open(filename, ’r’) as f:
13 ... factor_list = f.read().replace(’:’, ’’).split()
14 ... return dict(enumerate(int(el) for el in factor_list))
15
16 >>> output_files = lancet.FilePattern(’filename’, ’./output/*-prime*/streams/*.o*’)
17 >>> output_factors = lancet.FileInfo(output_files, ’filename’,
18 ... lancet.CustomFile(metadata_fn=load_factors))
19 >>> primes = sorted(factors[0] for factors in output_factors.specs
20 if factors[0]==factors[1]) # i.e., if the input integer equals the first factor
21 >>> primes
22 [101, 103, 107, 109, 113]

FIGURE 1 | A simple, end-to-end workflow using Lancet to factorize a

range of integers, highlighted using the three colors used in the bullet

points at the start of Section 2. This simple example factorizes a list of

integers with the factor command, with no other dependencies. The five
prime numbers found are an example of a prime quintuplet, the closest
admissible constellation of five consecutive prime numbers.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 2

http://ioam.github.io/lancet
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

collated across 16 independent jobs. Section 4 will show how
this approach fits into an agile, exploratory workflow. Meanwhile,
even this simple example illustrates some of the key component
types that are commonly applicable to many research tasks:

• What you aim to achieve. It is common to define a parame-
ter space to be explored by some simulator or analysis tool. In
Figure 1 this is the list of integers to factorize, highlighted in
red. This level of specification expresses the scientific goal and
is normally both tool-independent and platform-independent.
Given a parameter space, it is conceivable that the desired
results may be achieved using alternative software tools exe-
cuted on different platforms. When exploring a parameter
space, the key information is specified by the set of parameters
explored and not by the details of the software used.

• How you intend to achieve your goal. This refers to the tar-
get software that runs a model or performs an analysis. In
Figure 1 this is the factor command which factorizes inte-
gers, as highlighted in green. This type of specification is often
platform-independent but tool-dependent, encapsulating how a
specific piece of software is to be invoked with tool-dependent
arguments, independent of the computational platform on
which the software is run.

• Where you want to execute the task. If the software can run on
multiple different platforms, there may be alternative ways to
execute the tool. Executing a task in a particular environment is
normally platform-dependent but tool-independent. In Figure 1
the factor command is executed locally using the Launcher
class supplied by Lancet, highlighted in blue. By switching to
the QLauncher class, the exact same task could be executed in
parallel on a Grid Engine cluster without changing the rest of
the code.

Of course, it is difficult to appreciate the advantages of using
Lancet, if one simply wants to factor 16 small integers in Python.
These advantages would be much more apparent if a multidimen-
sional parameter space were to be explored with a complex neural
simulator, as described below. Even so, non-Lancet Python code
for launching these simple factor runs is likely to be longer, more
error-prone and harder to read. Iteration over the input param-
eter space and output files (highlighted in red) would probably
be expressed as multiple for loops, losing the flat structure of the
example. Specification of the simulator (highlighted in green) and
the code needed to execute it (highlighted in blue) would be inter-
leaved and complex calls to the subprocess module would be
required to execute jobs. Switching from local execution to Grid
Engine would no longer be trivial.

This example demonstrates how Lancet can help free the
researcher from such implementation details. Substantial code
would also be needed to reproduce the way Lancet keeps your
output files consistently organized (within timestamped folders
by default) with a common directory structure, whether work-
ing locally or on a cluster. After executing the listing in Figure 1,
a .info file will be generated together with the output, recording
which Python version was used, the operating system on which
the jobs were run, and the version of Lancet, alongside other use-
ful metadata. Other information supplied by the user, such as the

task description, versions of libraries and executables used, and
other comments may be easily passed down to the metadata
field of the .info file for storage. Lancet also offers a simple func-
tion that helps record version control information and improves
reproducibility by maintaining an explicit log of all the parame-
ters used. As shown later in Figure 5, all of this can be expressed
clearly, succinctly, and declaratively, even for realistically complex
sets of simulations.

3. USING LANCET TO RAPIDLY SPECIFY A TASK
The example in Figure 1 briefly introduced the three core class
hierarchies in Lancet. In this section, each of the three types is
examined in greater detail, before in the next section we con-
sider how Lancet can assist the natural development of an agile,
reproducible workflow with IPython Notebook. A list of all the
components available to the user, split into the three class families,
is shown in Table 1.

First, Arguments declaratively specify the parameter space to
be covered by a set of runs (see e.g., the Range object at the top
of Figure 1, highlighted in red), or specify filenames and data of
interest on the filesystem. The latter object type allows data on
disk to be collated for analysis in Python, or for launching the
next stage of a pipeline workflow.

Next, a Command class handles the interface to an external
tool, allowing the rest of Lancet to remain simulator-independent.
The example shown in Figure 1 uses a ShellCommand,
which is supplied with Lancet for basic support of command-
line programs. For supporting complex tools and simulators,
Command can be subclassed while reimplementing only a con-
structor and a call method. As a workflow develops over time, it
is likely that a user will want to make a custom Command to
allow full control over important tools being used, but the other
components of Lancet will not normally need to be extended for
most users.

Finally, a Launcher pulls together the Arguments and
Command objects to launch the specified jobs on a particu-
lar platform. Currently, jobs can be run either locally with the
Launcher, or with Grid Engine using the QLauncher. As the
Launcher object accepts the other two core component types
as arguments and is a fully declarative object (as are all Lancet
components), a Launcher object fully specifies the intended

Table 1 | Lancet components available for specifying jobs.

Arguments Command Launcher

Args, List, Log, Range, ShellCommand, Launcher

FilePattern, FileInfo, TopoCommand*, QLauncher

SimpleGradientDescent RunBatchCommand*

All Arguments are subclasses of Args and specify static sets of parameters,

except for SimpleGradientDescent which is an example of dynamic parameter

optimization. ShellCommand is generic and included with Lancet whereas the

Command classes marked by an asterisk are included with the Topographica

simulator; other tools may offer their own custom Command classes. The

Launcher class runs jobs locally, but other options are easy to implement, such

as the QLauncher class for use on clusters.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

parameter space, the command to execute, and the platform to
execute it on.

3.1. SUCCINCTLY SPECIFYING A PARAMETER SPACE WITH LANCET
Figure 2 demonstrates some of the fundamental properties of
all Arguments objects. These objects express parameter spaces
that will result in many sets of parameter values to be passed
to an external analysis tool or simulator, e.g., as command-line
arguments. These are simple, compositional objects designed to
express declarations of intent, independently of the other two
types of Lancet component.

Part A of Figure 2 shows the most basic and explicit example
of an Arguments definition, using an Args object to specify a
static set of arguments. The list of dictionaries format is a ver-
bose and completely flexible specification. However, this style of
definition is neither succinct nor declarative, and therefore is not
recommended unless absolutely necessary. Nonetheless, this con-
structor illustrates two key points: argument values are always
paired with the corresponding argument name, and Lancet Args
objects have a similar structure to the DataFrame objects used
by the pandas data analysis library. As DataFrames accept an
identical data format in the constructor, Lancet Args objects
allow easy conversion to DataFrames via the dframe prop-
erty (if the pandas library is available). This easy transition to the
highly flexible pandas DataFrames data structure is a key part of
enabling the agile workflow described in the next section. These

objects are easy to create and automatically display themselves as
HTML tables in the IPython Notebook environment.

Part B of Figure 2 expresses an identical parameter space using
a more readable, less error-prone approach that clearly conveys
the intended structure of the parameter space. In the explicit for-
mat shown in part A, the first argument ’arg1’ remains constant
with a value of 1.0 whereas the argument ’arg2’ ranges over
the numbers 1.0, 2.0 and 3.0. As a result, this parameter space
is conveniently described as the Cartesian product of a constant
argument for ’arg1’ and a Range object that defining a range of
values for ’arg2’.

The Cartesian product (also called the “cross product”) of dif-
ferent arguments is a natural way to specify parameter spaces,
supported by Lancet Arguments via the multiplication opera-
tor. In imperative code, these appear as nested for loops where
each parameter is iterated by one of the loops. The Cartesian
product of Args(arg1=1) and the Range object is therefore a
succinct way of declaring a parameter space with one argument
kept constant as the second argument spans a range of values.
Note that the Args object accepts arbitrary keyword arguments,
allowing any constant values for named parameters to be easily
declared.

Part C of Figure 2 shows a generic example of what a parame-
ter space might look like in a simple, hypothetical neural simula-
tion. A range of excitatory and inhibitory strengths is covered and
a homeostatic mechanism is toggled on and off using the List

1 >>> from lancet import Args, List, Range
2
3 # A. An explicit yet error-prone way of specifying three sets of arguments
4 >>> args1 = Args([{’arg1’:1.0,’arg2’:1.0}, {’arg1’:1.0,’arg2’:2.0}, {’arg1’:1.0,’arg2’:3.0}])
5 >>> args1.dframe # Pandas DataFrame. Displays an HTML table in Notebook.
6 arg1 arg2
7 0 1 1
8 1 1 2
9 2 1 3
10
11 # B. Equivalent to the above but less error-prone with the intent expressed more clearly
12 >>> args = Args(arg1=1) * Range(’arg2’, 1,3, steps=3)
13 >>> args.show() # List arguments from slowly to fast varying.
14 0: arg1=1, arg2=1
15 1: arg1=1, arg2=2
16 2: arg1=1, arg2=3
17
18 # C. Generic example of a parameter space for some neuroscience simulation
19 >>> parameters = (Range(’exc’, 1, 3, steps=10)
20 ... * Range(’inh’, 1, 3, steps=10)
21 ... * List(’homeostasis’, [True,False]))
22
23 >>> parameters.summary()
24 Items: 200
25 Varying Keys: ’exc’, ’inh’, ’homeostasis’
26
27 # D. Concatenation allows parameter spaces to be extended. For instance, a special case can be appended.
28 >>> all_parameters = parameters + Args(exc=1.0, inh=0.0, homeostasis=True)

FIGURE 2 | Arguments express parameter spaces succinctly and

declaratively. (A) Example illustrating the most basic, most explicit use of
the Args class to specify three sets of sequential arguments. (B) A more
succinct and less error-prone way of specifying the same arguments. (C)

An example expressing a parameter space for use with a hypothetical

neural simulator. This parameter space covers a range of excitation and
inhibition strengths, while toggling a homeostatic mechanism. (D) The
concatenation operator allows arguments specified by Arguments objects
to be sequenced, allowing special cases to be incrementally appended to
a parameter space.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

declaration. Although simple, this object expresses 200 different
argument sets (each leading to an independent simulation), as
shown by the summary method.

Finally, in part D of Figure 2, the second compositional oper-
ator for Arguments objects is shown. The addition operator
can concatenate (or sequence) Arguments objects together. The
result is an object that first covers the parameter space of the first
Arguments object before spanning the parameter space of the
second Arguments object. This is a useful way to segment a
parameter space in a piece-wise manner, allowing special cases to
be easily added or the behavior at singularities to be investigated.

Using the Cartesian product and concatenation operations on
the three basic Arguments objects, Args, List, and Range,
many common parameter spaces can be expressed in a read-
ily understood, compositional format. Arguments composed
out of these basic objects have the property that the parameter
space explored is known ahead of time, before jobs are executed.
Although this is typical for many research tasks, Lancet also allows
parameter spaces to be explored in an online fashion, where
results returned by the jobs determine what portion of the param-
eter space is to be explored at the next step. Online parameter
space exploration algorithms can be implemented in Lancet by
subclassing DynamicArguments.

Figure 3 illustrates how Lancet can be used to dynam-
ically explore a simple parameter space using the
SimpleGradientDescent component. This instance of
DynamicArguments is designed to demonstrate how
a simple gradient descent algorithm operating on a sin-
gle, scalar argument can operate in Lancet. In Figure 3,
ShellCommand is used to run a short script that evaluates

the function f (x) = (x − 3)2 on the input argument ×
when executed. SimpleGradientDescent then explores
the local parameter space from the starting point x = 0 in
steps of magnitude stepsize. Driven by the output of the
script, SimpleGradientDescent descends the local gra-
dient in × until it terminates at the local minimum, x = 3.
In practice, well-established optimization procedures are
likely to be more useful than this example class, such as
those available in scipy.optimize, when trying to opti-
mize parameter spaces that are not solvable analytically. Thus
SimpleGradientDescent should be considered as one example
of the types of DynamicArguments that can be implemented
for advanced parameter space exploration procedures such as hill
climbing or genetic algorithms.

In summary, the Arguments objects are declarative, compos-
able objects that can vary from simple declarations of constant
argument values to complex optimization procedures. In addi-
tion to the Arguments objects presented so far, Lancet offers
FilePattern Arguments for matching filenames. The filenames
found may then be used as arguments for a simulator, or used
to specify a list of files for loading into the Python environment.
There are also other more specialized Arguments objects such
as Log, which allows previously explored parameter spaces to be
loaded from the .log files saved by Lancet when running external
tools.

3.2. SPECIFYING HOW LANCET SUPPORTS YOUR EXTERNAL TOOLS
There are many different simulators and analysis tools used in
computational neuroscience, each constantly being developed
and updated. Some popular neural simulators include Brian

1 >>> import os, stat, json, lancet
2
3 # Minimum of f(x) = (x-3)ˆ2 is zero at x = 3
4 >>> code= """#!/usr/bin/env python
5 ... import json, sys
6 ... x = float(sys.argv[1])
7 ... print json.dumps((x-3)**2)
8 ... """
9
10 >>> script = os.path.join(os.getcwd(), ’simple_function.py’)
11 >>> with open(script, ’w’) as f: f.write(code)
12 >>> os.chmod(script, os.stat(script).st_mode | stat.S_IXUSR)
13
14 >>> minimizer = lancet.SimpleGradientDescent(’x’, stepsize=1.0, output_extractor=json.loads)
15 >>> command = lancet.ShellCommand(script, posargs=[’x’])
16 >>> lancet.Launcher(’Minimize’, minimizer, command, output_directory=’output’)()
17
18 >>> minimizer.summary()
19 Varying Keys: ’x’
20 Maximum steps allowed: 100
21 Step 0: Initially exploring arguments [{x=1.0},{x=-1.0}].
22 Step 1: Exploring arguments [{x=2.0},{x=0.0}] after receiving input(s) [4.0, 16.0].
23 Step 2: Exploring arguments [{x=3.0},{x=1.0}] after receiving input(s) [1.0, 9.0].
24 Step 3: Exploring arguments [{x=4.0},{x=2.0}] after receiving input(s) [0.0, 4.0].
25 Step 4: Terminated after receiving input(s) [1.0, 1.0].
26 Successfully converged. Minimum value of 0.0 at x=3.0.

FIGURE 3 | Lancet allows dynamic exploration of parameter spaces using components of type DynamicArguments. In this example, the minimum of
f (x) = (x − 3)2 is found using SimpleGradientDescent, starting from x = 0 and terminating at the minimum where x = 3.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

(Goodman and Brette, 2008), Neuron (Hines and Carnevale,
1997), and NEST (Gewaltig and Diesmann, 2007), each of which
uses different custom command-line interfaces. The most general
approach to support such a wide range of tools is to treat them as
external executables run on the command line. If a command-line
specification is impractical or not supported by a particular tool,
it is straightforward to write a Command that instead writes
the specification for a run to a file to be read by the external
program.

Even if you have the option of working exclusively with
Python, such as for the Brian simulator, there can be clear advan-
tages to writing your Python scripts as independent tools that
can be invoked on the command line. Firstly, doing so ensures
that independent runs are genuinely separate, sandboxing execu-
tion into separate processes to guarantee that independent jobs
will not interact in unexpected ways. This requirement for pro-
cess independence is explicit when running jobs on a cluster (for
instance, when using Grid Engine). It is therefore useful to define
a command-line interface to your Python scripts (perhaps using
the argparse module) if you want code that can be executed
both locally and in parallel on a cluster. Finally, defining a clear
command-line interface can help document your code and allows
useful standalone utilities to be pulled out of your code base.

When invoking tools with a standard command-line interface,
Lancet supplies ShellCommand which can help avoid writ-
ing explicit interfacing code in many situations. For instance,
ShellCommand is used to invoke the factor command in
Figure 1. The ShellCommand is an instance of a Command
that defines how Lancet can invoke an external tool via the com-
mand line. ShellCommand only supports communication via
command-line arguments, but other Command classes may
e.g., generate specification files appropriate to the chosen tool.

For interfacing with complex external software, users will often
need to write a new Command subclass to extend Lancet’s
functionality for the new tool. Writing such a class is straightfor-
ward, as the subclass only needs to implement a constructor and
a __call__ method. The __call__ method is supplied with argu-
ments generated by an Arguments object in dictionary format
(along with optional runtime information) and the Command
must then return a list of strings suitable for Python’s subpro-
cess.Popen class. If the tool needs to load arguments from file,
the Command may also save part of the parameter list speci-
fication to disk in an appropriate format before the command
is executed. As described in the Discussion section, a special
Command type could also be used to group small, lightweight
jobs to avoid startup overhead.

Such interfacing code is designed to be simple, allowing
the user to easily support new tools as required. These new
components can then be supplied in a “Lancet extension”
which may be bundled with the external software. For instance,
the Topographica project (Bednar, 2009) offers a sophisticated
Command subclass in a file named lancext.py. This compo-
nent can invoke the simulator with a particular model file and
defines Python analysis and measurement code for execution
across a specified list of simulation times. Note that in this par-
ticular use case, although the Command passes the model file
path to the command line, all parameters are specified on the
command line rather than in the model file.

The lancext.py code is sufficiently flexible to support day-to-
day exploratory work using the simulator, and was used through-
out the development of the results in Stevens et al. (2013). The
Command used is called RunBatchCommand, and is high-
lighted in green in Figure 5. The overall approach is general
enough to be applicable to any simulator or tool, ranging from
simple programs like factor, to complex neural simulators like
Topographica, or even for running complex software outside the
scope of computational neuroscience, such as time-consuming
microprocessor simulations.

3.3. SPECIFYING YOUR CHOSEN COMPUTATIONAL PLATFORM
The parameter space and the chosen tool are defined inde-
pendently and do not interact until a platform is chosen by
selecting a Launcher object. The purpose of a Launcher is
to take an Arguments object declaring a parameter space
and feed the instantiated arguments to the Command, which
then passes the appropriate command specification back to the
Launcher, which executes the tool on the appropriate plat-
form. As all the components needed to launch jobs and gen-
erate data form the arguments of the Launcher, the printed
representation (also known as the repr) of the Launcher
captures a complete specification of how the output files are
created.

As Lancet itself only uses cross-platform portions of the
Python library, code that uses Lancet can work across operating
systems (Linux, MacOS, Windows). One reason to subclass
Command to support a given tool is to ensure appropri-
ate command-line invocations are generated across different
operating systems. Simple tools with a consistent format of
command-line invocation can instead be safely launched with
ShellCommand, on any operating system.

Lancet currently provides a basic Launcher class for running
jobs locally, and a subclass QLauncher that launches jobs with
Grid Engine. Although the jobs are launched in very different
ways, both classes ensure that the output is organized consistently.
This approach ensures that the rest of the researcher’s code can be
used as-is across all the available platforms. For instance, code that
needs to locate output files can use the same approach regardless
of whether the files were generated locally or on a cluster. This is
an essential feature for an agile workflow: as your requirements
grow, it is important to have the option to painlessly transition
from readily accessible local computational resources to a high-
throughput cluster that can run your jobs in parallel, and then
back again for debugging.

Lancet’s QLauncher component wraps the Grid Engine
qsub command and has been extensively tested on an open-
source variant of the original Grid Engine system (Son of Grid
Engine, version 8.0.0e). QLauncher assumes only the basic
options applicable across the various versions of Grid Engine
(Sun/Oracle/Univa Grid Engine) and should be usable on any
machine where a Grid Engine qsub command is available. More
information about Grid Engine and the Son of Grid Engine
project may be found at http://arc.liv.ac.uk/SGE/.

In addition to making the process of switching between plat-
forms easy, Launchers help save important information along-
side the output data that help ensure reproducibility and assist
in later analysis. The .info file contains metadata which records

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 6

http://arc.liv.ac.uk/SGE/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

important details requested from the version control system, the
active Python and Lancet versions, operating system informa-
tion and the complete representation of the source Launcher.
The .log file contains an explicit list of all parameters used, allow-
ing output to be quickly associated with the parameters used to
generate it. This feature provides scientific provenance informa-
tion for data analysis, which is crucial because the files output
by a tool do not necessarily include the scientifically relevant
parameters that were used to generate that data.

4. A REALISTIC, AGILE, AND EVOLVABLE WORKFLOW
Having introduced the general facilities offered by Lancet, we now
examine how it can enable an agile and reproducible workflow
using IPython Notebook. The use of external Python packages as
appropriate is encouraged, and in particular the pandas library
has proven very useful for analyzing data. To keep track of the
code in the various Python scripts and IPython notebooks that
appear as the workflow develops, it is also encouraged to keep a
log of development by means of frequent code commits. Lancet
works well together with distributed version control systems
like Git and Mercurial, or with management and tracking tools
tailored towards scientific use, such as Sumatra (Davison, 2012).

Note that our proposed workflow using Lancet does not aim
to be prescriptive or impose requirements on the user. It is
our view that the researcher must primarily choose the tools
that allows the most productive research possible. Our goal
is therefore to make Lancet general and useful, allowing each
researcher to organically develop their own workflow accord-
ing to their own particular needs. By incorporating more Lancet
components into your workflow over time, the code can become
more succinct while increasing the overall level of automation
and reproducibility. A schematic of how the workflow evolves
over time is shown in Figure 4 and the stages of a typical
research project using Lancet and IPython Notebook are now
described:

1. An excellent way to start exploratory research is by creating a
new IPython notebook. This offers an unconstrained environ-
ment where new ideas can be rapidly coded, tested and dis-
carded as necessary. Using text and Markdown cells, notes can
be interleaved with code to keep track of new ideas that relate
either to scientific material or to coding. In this exploratory
phase, the notebook is likely to be fairly disorganized and

FIGURE 4 | Lancet captures a full declarative specification of the

parameters, tools and platform employed, each time data is

generated at every stage of the workflow. Early in the project, the
output files may be rapidly explored in an ad hoc way that does not
need to be automated or reproducible, as illustrated in the first column.

As the research project matures, more of the analysis and plotting
procedure may be pulled back into IPython Notebook where it can be
automated (middle column). Finally, as the research nears publication,
SVG templates may be used to ease the automatic generation of
publication figures, as shown in the last column.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

rapidly changing with many unrelated code snippets, outdated
textual notes, HTML links, and other content (such as images)
referencing external resources and documentation. Even so,
even this early stage can be captured by committing the note-
book to version control, preserving any progress made even
though the user has not yet used any specific tool for repro-
ducibility beyond the standard notebook.

2. Once a simulator or analysis tool has been chosen, small
parameter spaces can be defined using the Arguments
objects to be executed locally. If there is no Command avail-
able for the chosen tool, it is likely that ShellCommand will
be sufficient to begin with. Otherwise, only a few lines of code
are needed to subclass Command and satisfy the immediate
requirements. At this stage, the output can be explored in an
ad hoc manner, e.g., by inspecting files with a file manager or
image viewer, as illustrated by the first column of Figure 4.

3. Lancet will store the repr (Python’s term for an object’s repre-
sentation string) of the Launchers used along with the data in
the .info files, maintaining a declarative record of how all the
data was generated over time. As the project grows, it becomes
crucial that version control is used to track notebook and code
contents. A helper utility vcs_metadata is offered by Lancet
that allows Git, Mercurial, or SVN version control information
to be automatically stored in the .info files.

4. As the IPython Notebook is a very flexible environment for
plotting and exploration, it quickly becomes worth writing
small sections of Python code to automate away any ad hoc
data inspection steps. It is also easy to load your data into the
IPython notebook and rapidly generate plots with matplotlib.
In particular, parameters associated with the loaded data can
be brought into the notebook session by specifying a .log file
to a Log Arguments object. This Log object may be used
to re-run previously explored parameters, but also offers a
convenient way to inspect and browse parameters previously
logged by Lancet. By calling the dframe method of a Log
object, a pandas DataFrame is generated that will present the
logged parameters as an HTML table, offering a simple alter-
native to the web interface functionality offered by tools such
as Sumatra. This stage is illustrated by the middle column of
Figure 4.

5. Although small parameter spaces and local runs are often suit-
able initially when rapidly testing and debugging code, it is
rare that this will prove sufficient for the whole project. As
the code gets longer and more stable, it should be split out
into Python modules to keep the notebook short and read-
able. As the code matures, parameter spaces tend to grow
and simulation runs get longer and slower to obtain higher
quality data sets. As the computational requirements increase,
running simulations locally may become prohibitively slow,
making it worth switching to a cluster if available. Lancet is
designed to make such a transition painless: after switching
Launcher for QLauncher and supplying a few basic settings
appropriate to the cluster environment, the same code will
immediately run in parallel on the cluster.

6. If a new Command class was implemented to support the
external tool, this class may have matured to the stage where
it is sufficiently general and flexible to become a reusable

component, in which case it should also migrate to a separate
file. By sharing this code with other Lancet users, the need to
implement Commands will be alleviated in future as more
and more tools are supported.

7. This particular stage of a research project may be quite pro-
longed, ending only when a particularly worthwhile avenue of
research has been found. As the emphasis moves from explo-
ration to publication, a particular subset of the code written
is likely to become relevant. This code can be cleaned up
and factored out into a Python module to keep the notebook
manageable and to express the intentions of the developing
paper clearly. Key plot types that are likely to become part of
published figures may also be moved into a separate module.

8. In the final stages of developing a paper for submission, it
can become cumbersome to generate complex, publication-
quality figures using matplotlib alone. For this reason, to
generate the final Figures in Stevens et al. (2013), a different
approach was used—a small utility was written that allows
SVG templates to be quickly authored in the Inkscape graphics
editor. This utility then can then embed vector assets dynam-
ically generated by Matplotlib to create the final, publication
quality figure. At this stage, the notebook should embody a
completely automated and reproducible workflow for pub-
lished work, as illustrated by the final column of Figure 4 and
demonstrated for Stevens et al. (2013).

The key characteristic of this proposed workflow is that although
the final outcome is an IPython notebook that captures and auto-
mates all the steps needed to generate a published result, there is
no stage where the researcher needs any motive other than a desire
to increase productivity. Writing a new Command to interface
with a new external tool (if such a class is not already available)
may at first appear more trouble than writing a simple, ad hoc
script such as a shell script, a Python script using subprocess,
or a script in some other language such as Perl. But the key differ-
ence is that the initial Command is normally trivial, using a few
lines of code to return a fixed list of strings to the command line.

Unlike ad hoc scripts that can rapidly become unmanageable, a
new Command class remains maintainable as it becomes more
general and useful, remaining viable across multiple research
projects. Implementing such an object allows the same, clean
declarative representation to be seamlessly used with either local
simulations or when working on a cluster. A workflow that relies
on scripting solutions to individual problems as they appear is
likely to become unreadable over time, and is unlikely to be reused
between projects. To illustrate, the RunBatchCommand and
associated classes implemented for the Topographica simulator
now offer significantly more functionality for batch simulations
than was initially available with the simulator. Although the latest
Topographica Lancet extension is still under 500 lines of code and
documentation, it has helped make regular research work with
this simulator much easier than before.

So far, the declarative, reproducible nature of Lancet objects
has only been demonstrated with very simple examples. Figure 5
shows the full specification for a batch of Topographica simula-
tions used in Stevens et al. (2013) in the form of a launcher repr.
This newly created object can be run to regenerate the same data,

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

1 >>> info = json.load(open(info_path, ’r’))
2 >>> eval(info[’launcher’])
3 QLauncher(
4 batch_name=’Fig05_06_seed102’,
5 args=Range(key=’contrast’, start_value=0, end_value=100, steps=21, fp_precision=2)
6 * Args(cortex_density=98.0, lgn_density=24.0, retina_density=24.0, area=1.5)
7 * Args(num_phase=8, num_orientation=20)
8 * Args(times=[0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000,
9 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000])
10 * Args(retinal_waves=0, figure=’Fig05_06’, input_seed=102,
11 dataset=’Gaussian’, gain_control=False, homeostasis=False),
12 command=RunBatchCommand(
13 executable=’/home/user/topographica/topographica’,
14 tyfile=’./gcal.ty’,
15 analysis=Analysis(
16 paths=[’/home/user/topographica/models/stevens.jn13’],
17 analysis_fns=[
18 AnalysisFn(jn13_figures.lib.measurement.measure_FF),
19 AnalysisFn(jn13_figures.lib.measurement.pinwheel_analysis),
20 AnalysisFn(jn13_figures.lib.measurement.stability_analysis),
21 AnalysisFn(jn13_figures.lib.measurement.afferent_CFs)]
22)
23),
24 output_directory=’output’
25)

FIGURE 5 | A real example of recreating a launcher from the complete,

declarative specification saved to the .info file. The repr (the string
representation) of the launcher is shown above, matching the corresponding
string saved in the .info file. This example fully specifies 21 Topographica

simulations used to generate Figures 5 and 6 from Stevens et al. (2013).
Using a version control system also allows the state of the executed code
(simulator, analysis, measurement code etc) to be restored based on the
information stored in the .info file.

without needing the notebook that originally launched it. The
printed representation of the Launcher object shown in Figure 5
contains a real example of how the RunBatchCommand com-
ponent is used in practice.

In this example, the .info file in one of the output directories
is loaded using the json library and the contents of the launcher
key is evaluated. As the repr of a Launcher is always saved to
the .info file and this repr is a complete, declarative object that is
a valid Python expression, running eval(info[’launcher’]) cre-
ates a new Launcher with identical behavior to the original. This
object is easily inspected and captures the full set of parame-
ters, including the path to the simulator executable, the executed
Topographica model file, and a list of analysis functions to be
executed repeatedly over the course of each simulation run.

Calling this object without supplying any arguments in a clus-
ter environment would relaunch the 21 Topographica simulations
necessary to regenerate Figure 5 from Stevens et al. (2013). This
code will reproduce identical results, as long as the Topographica
simulator is working correctly. If the results change due to dif-
ferences in the simulator code, the recorded version control
information allows all the code to be restored to the same state
as when the data was originally generated. Note that the code list-
ing in Figure 5 is only one of the launchers needed to reproduce
all the Figures in Stevens et al. (2013). In total, 842 simulation jobs
were specified with Lancet to generate all the figures of the paper.
Each job (simulation and analysis) takes over an hour to com-
plete, so the full set of jobs takes several days to complete when
running on a cluster, but the entire specification is still compact
and human-readable.

5. DISCUSSION
This paper has demonstrated a lightweight, flexible, and prag-
matic approach to achieving scientific reproducibility without
constraining innovation. There are many other approaches also
available, ranging from just writing a complete Python script
to automate all your tasks, to using a heavyweight workflow-
automation system. These more ambitious workflow engines are
in regular use by large commercial organizations and research
groups in some fields (Freire et al., 2011), but are not currently
common in computational neuroscience. Such workflow engines
are typically designed to manage complex workflows with long
pipelines, involving many different people. In contrast, the work-
flow presented here is designed to be minimalistic, suitable for
small groups of researchers who wish to keep their research
work flexible and do not want to embrace more complex and
prescriptive workflow tools.

Our aim is to show that for a general class of exploratory
research in Python, using IPython Notebook and Lancet together
allows for an agile workflow that very naturally gradually becomes
more reproducible and automated over time. The final result of
this process is a set of IPython notebooks that fully reproduce
published scientific results, without constraining the user at any
stage of the process. Lancet deliberately does not prescribe any
fixed way of doing research, and every component offered to the
user should be evaluated on the basis of how well it improves
immediate research efficiency.

As a historical note, each of the components of Lancet was
originally developed to satisfy the needs of a real research
project spanning multiple years, not simply to try to achieve

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

reproducibility after the fact. In this project, many hundreds of
simulations were executed locally using Lancet, and tens of thou-
sands of jobs were launched on a cluster. But unlike the custom,
ad hoc scripts that would normally be the result of such a project,
Lancet was designed from the start to work just as well for com-
pletely different scientific domains, to ensure that the concepts
and tools would be general and meaningful long into the future.

As a general tool, Lancet does not become any less relevant
to research in computational neuroscience. To the contrary, hav-
ing a general approach ensures that the essence of a workflow is
valid over time as the underlying simulator tools come and go.
The flexible and compositional nature of Lancet objects is suited
to fast, exploratory research of interest to the computational neu-
roscience community using Python. Even though Lancet is newly
available, it has already formed the basis for a complete scien-
tific publication, made publicly available as an IPython notebook
that automatically reproduces all the scientific results of the paper.
This notebook allows all the code and results to be presented
in a clear, automated way, and may be viewed and downloaded
from the models/stevens.jn13 subdirectory of Topographica’s
GitHub repository.

For a tool that aims to be general, it is unsurprising that some
functionality overlaps with other projects, given the many excel-
lent third party libraries available for Python. For instance, there
are several projects that offer sophisticated interfaces with Grid
Engine, such as pythongrid and drmaa-python. IPython itself
includes the IPython.parallel package which can help acceler-
ate the pace of interactive work on a cluster. Some of the goals
of Lancet’s Arguments objects are shared by the parameters
module of the NeuroTools package, which also allows parameter
spaces to be defined. What distinguishes Lancet from these other
libraries is that it offers all the tools needed to span an entire agile
workflow with a collection of independent, declarative objects
that work together.

Various workflow tools already exist with the computational
neuroscientist in mind. VisTrails (Freire et al., 2014) is a scientific
workflow and provenance system that integrates well with Python
projects, taking a GUI-centric approach. The Mozaik framework
(Antolík and Davison, 2013) is designed to encapsulate the work-
flows relevant to researchers who use spiking neural models. In
contrast to these projects, Lancet is lightweight, with almost no
dependencies, and is not tied to any particular set of simulator
tools or workflows. Researchers exclusively using the appropriate
spiking simulators may find Mozaik to be more specialized for
their needs than Lancet, while Lancet is suitable for those who
desire a more interactive workflow or need to use a broader class
of tools or tools that are expected to change over time.

Projects like Sumatra (Davison, 2012) take a far more general
approach for achieving reproducibility, tailoring functionality
offered by version controls to the needs of the scientist. In this
way, Sumatra offers functionality that is orthogonal to Lancet,
allowing both tools to be used successfully together. Lancet’s
approach aims for the middle of the spectrum between Sumatra
and Mozaik, capturing declarative specifications within Python
code that assists with automation and reproducibility without los-
ing generality. Lancet is BSD-licensed and supports Python 3, and
helps the researcher exploit well-established tools such as IPython

Notebook and pandas in a way that makes day-to-day research
easier and ultimately makes results more reproducible.

Lancet is also extremely extensible. The interface between
Lancet objects has been deliberately kept simple, to allow new
components to be added whenever required. The Command
class allows Lancet to work with new external tools, invoking the
tool appropriately for each set of arguments specified. In some
situations, individual jobs may run quickly relative to the time for
setup and initialization, making it inefficient for Lancet to span
the parameter space directly. In such cases, Lancet can instruct the
tool to cover the parameter range itself, with Lancet only spec-
ifying starting and stopping points (e.g., Args(start = 0, end
= 5)). If necessary, the Command object could then use these
values to build a range specification in a format the tool can use.

The process of executing jobs may also be customized to sat-
isfy specific needs. For instance, there are currently two types of
Launcher, one for running jobs locally and one for running jobs
on Grid Engine. Other types of Launcher may be written to
extend Lancet to new platforms. For instance, it should be very
straightforward to write a Launcher that launches jobs over SSH,
or one that allocates computational resources on demand with
Amazon EC2. This new Launcher would then fit seamlessly into
the other components offered by Lancet.

The Arguments objects are also designed to be extensible.
Although the basic objects offered are already suitable for many
research requirements, new Arguments objects can be written
if desired. By building a new DynamicArguments component,
Lancet can be used for more complex, online parameter space
exploration, utilizing optimization techniques such as hill climb-
ing or genetic algorithms. Currently, SimpleGradientDescent
is the only such object supplied with Lancet, designed to demon-
strate how more practical algorithms may be quickly imple-
mented. It is hoped that the ability to employ optimization
algorithms as necessary will extend the utility of Lancet and that
by making use of mature, third party libraries, users will easily be
able to rapidly implement the optimization procedures necessary
to solve their problems.

Of course, it is important to remember that Lancet is just one
small part of a toolset for achieving reproducibility. More-basic
tools like Python, pandas, and matplotlib are crucial for making
it practical to automate scientific tasks, which is a prerequisite for
being able to capture the process for later playback. Distributed
version control systems like Git and Mercurial make it easy to cap-
ture the state of anything that can be expressed in text. IPython
Notebook and matplotlib make it feasible to explore and ana-
lyze results in a text-based way that can be captured by the VCS.
Lancet simply helps tie these together with launching runs and
collating the results, to fill in the missing pieces that allow the
entire process to become reproducible in practice. In that way,
it addresses the fundamental barrier to reproducibility, which is
the large and extra investment of time and effort that would be
needed to automate and preserve tasks once the research has been
published.

Essentially, what Lancet offers are the missing utilities that
make it easy to capture all the required steps within a single
IPython notebook, from initial exploration to published results.
Using Lancet you can quickly specify and launch jobs, keep output

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stevens et al. A reproducible workflow using Lancet

files consistently organized, switch from local execution to work-
ing on a cluster, record metadata and other key information
together with your data, and load simulation output back into
the notebook for analysis and plotting. By keeping everything
under version control, the entire scientific process can then be
captured, providing a flexible and agile yet reproducible research
workflow.

The IPython notebooks that fully and automatically repro-
duce Stevens et al. (2013) are publicly available from the GitHub
repository of the Topographica project (www.topographica.org)
in the models/stevens.jn13 directory (https://github.com/
ioam/topographica/tree/master/models/stevens.jn13). Lancet
itself is freely available under a BSD license and may be down-
loaded from http://ioam.github.io/lancet/. Other examples of
using Lancet are available at these Web sites.

ACKNOWLEDGMENTS
The work has made use of resources provided by the Edinburgh
Compute and Data Facility (ECDF; www.ecdf.ed.ac.uk). Thanks
to Philipp Rüdiger for his helpful comments and suggestions.

FUNDING
This work was supported in part by grants EP/F500385/1 and
BB/F529254/1 to the University of Edinburgh Doctoral Training
Centre in Neuroinformatics and Computational Neuroscience
(www.anc.ed.ac.uk/dtc) from the UK EPSRC, BBSRC, and MRC
research councils.

REFERENCES
Antolík, J., and Davison, A. P. (2013). Integrated workflows for spiking neu-

ronal network simulations. Front. Neuroinform. 7:34. doi: 10.3389/fninf.2013.
00034

Bednar, J. A. (2009). Topographica: building and analyzing map-level
simulations from Python, C/C++, MATLAB, NEST, or NEURON
components. Front. Neuroinform. 3:8. doi: 10.3389/neuro.11.008.
2009

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the past:
approaches for reproducibility in computational neuroscience,” in 20 Years of
Computational Neuroscience, ed J. Bower (New York, NY: Springer), 73–102.

Curcin, V., and Ghanem, M. (2008). “Scientific workflow systems - can one size fit
all?” in Cairo International Biomedical Engineering Conference (CIBEC) (Cairo:
IEEE Computer Society), 1–9.

Davison, A. (2012). Automated capture of experiment context for easier repro-
ducibility in computational research. Comput. Sci. Eng. 14, 48–56. doi:
10.1109/MCSE.2012.41

Drummond, C. (2009). “Replicability is not reproducibility: nor is it good science,”
in Proceedings of the Evaluation Methods for Machine Learning Workshop at the
26th International Conference on Machine Learning (Montreal: SITE, University
of Ottawa). Available online at: http://www.site.uottawa.ca/ICML09WS.

Freire, J., Bonnet, P., and Shasha, D. (2011). Exploring the coming repositories of
reproducible experiments: challenges and opportunities. Proc. VLDB Endow. 4,
1494–1497. Available online at: http://www.vldb.org/pvldb/vol4/p1494-freire.
pdf

Freire, J., Koop, D., Chirigati, F., and Silva, C. (2014). “Reproducibility
using VisTrails,” in Implementing Reproducible Computational Research,
eds V. Stodden, F. Leisch, and R. Peng (Boca Raton, FL: Chapman &
Hall/CRC), (in press). Available online at: http://www.crcpress.com/product/
isbn/9781466561595

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D. F. M., and Brette, R. (2008). Brian: a simulator for spiking neural
networks in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible
descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456. doi:
10.1371/journal.pcbi.1000456

Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific
computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Stevens, J.-L. R., Law, J. S., Antolík, J., and Bednar, J. A. (2013). Mechanisms for
stable, robust, and adaptive development of orientation maps in the primary
visual cortex. J. Neurosci. 33, 15747–15766. doi: 10.1523/JNEUROSCI.1037-
13.2013

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 04 November 2013; accepted: 13 December 2013; published online: 30
December 2013.
Citation: Stevens J-LR, Elver M and Bednar JA (2013) An automated and reproducible
workflow for running and analyzing neural simulations using Lancet and IPython
Notebook. Front. Neuroinform. 7:44. doi: 10.3389/fninf.2013.00044
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2013 Stevens, Elver and Bednar. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 44 | 11

www.topographica.org
https://github.com/ioam/topographica/tree/master/models/stevens.jn13
https://github.com/ioam/topographica/tree/master/models/stevens.jn13
http://ioam.github.io/lancet/
www.ecdf.ed.ac.uk
www.anc.ed.ac.uk/dtc
http://www.vldb.org/pvldb/vol4/p1494-freire.pdf
http://www.vldb.org/pvldb/vol4/p1494-freire.pdf
http://www.crcpress.com/product/isbn/9781466561595
http://www.crcpress.com/product/isbn/9781466561595
http://dx.doi.org/10.3389/fninf.2013.00044
http://dx.doi.org/10.3389/fninf.2013.00044
http://dx.doi.org/10.3389/fninf.2013.00044
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook
	Introduction
	Basic Lancet Example
	Using Lancet to Rapidly Specify a Task
	Succinctly Specifying a Parameter Space with Lancet
	Specifying how Lancet Supports your External Tools
	Specifying your Chosen Computational Platform

	A Realistic, Agile, and Evolvable Workflow
	Discussion
	Acknowledgments
	Funding
	References

