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Structured, efficient, and secure storage of experimental data and associated
meta-information constitutes one of the most pressing technical challenges in modern
neuroscience, and does so particularly in electrophysiology. The German INCF Node
aims to provide open-source solutions for this domain that support the scientific
data management and analysis workflow, and thus facilitate future data access and
reproducible research. G-Node provides a data management system, accessible through
an application interface, that is based on a combination of standardized data representation
and flexible data annotation to account for the variety of experimental paradigms in
electrophysiology. The G-Node Python Library exposes these services to the Python
environment, enabling researchers to organize and access their experimental data using
their familiar tools while gaining the advantages that a centralized storage entails. The
library provides powerful query features, including data slicing and selection by metadata,
as well as fine-grained permission control for collaboration and data sharing. Here we
demonstrate key actions in working with experimental neuroscience data, such as building
a metadata structure, organizing recorded data in datasets, annotating data, or selecting
data regions of interest, that can be automated to large degree using the library. Compliant
with existing de-facto standards, the G-Node Python Library is compatible with many
Python tools in the field of neurophysiology and thus enables seamless integration of
data organization into the scientific data workflow.
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1. INTRODUCTION
Recent advancements in technology and methodology have led
to growing amounts of increasingly complex data recorded from
various species, modalities, and levels of study. Annotation and
organization of these data, which is not only important for repro-
ducibility of results and re-use of data, but also essential for
collaboration and data sharing, has become a challenging task.
An important requirement for consistent organization of data
is the availability of metadata that provide information about
the experimental conditions and context in which the data were
recorded, to enable meaningful analysis and comparison of results.
This is especially important in neurophysiology, with its enor-
mous variety of electrode configurations, types of signals recorded,
species, and experimental paradigms. With advancing method-
ologies and increasing complexity of experimental paradigms,
and consequently complexity and volume of data, it can become
challenging to keep track of data even within a single lab and, for
example, access data for re-use some time after the study was com-
pleted. When it comes to collaboration across labs, questions of
data organization, data access and data sharing become even more
critical. To help scientists deal with these challenges, the German
INCF Node1 (G-Node) is developing software solutions consisting

1www.g-node.org

of services and tools for data access and data management in this
field.

Several initiatives to support sharing of neurophysiology data
have emerged in the past years. Among those are CRCNS.
org 2, CARMEN 3, The INCF Japan Node (J-Node) 4 Brain-
Liner 5, the recent INCF DataSpace6, and other projects. Most
of the underlying solutions, however, were mainly designed to
enable data exchange based on files and do not provide interfaces
to operate with lower-level objects (data arrays, events, regions of
interest etc.) or to extensively annotate these specific data objects.
Furthermore, only a few of the current solutions were designed to
support direct data access from the computational environment,
in particular from the Python framework.

G-Node provides a data management system with functions
for storage, organization, search, and sharing of data and meta-
data7 (Sobolev et al., in review) with various tools and enhance-
ments 8. These solutions are designed to support data collection

2crcns.org
3www.carmen.org.uk
4www.neuroinf.jp
5brainliner.jp
6www.incf.org/resources/data-space
7github.com/G-Node/g-node-portal
8github.com/G-Node/
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and annotation within the data processing workflow and focus on
data accessibility, enabling reproducible research. To make them
widely usable and facilitate their use by integration with the scien-
tist’s established data handling routines, it is important to account
for the variety of conventions and formats across labs. Python
is a programming language that provides high flexibility, inte-
grates well with other software, and is increasingly used in the
neurosciences, including experimental labs. Here we present a
Python library that exposes the functionality of the G-Node Data
Platform to the Python user. Effortless integration with other
tools (Garcia and Fourcaud-Trocmé, 2009; Davison et al., 2013;
Pröpper and Obermayer, 2013) is enabled by using conventions
already established in this field, such as the Neo common data
model for electrophysiological data (Garcia et al., 2014) and the
odML format for metadata (Grewe et al., 2011).

2. APPROACH
Goal of the G-Node Data Platform is to provide services and
tools for organization and unified access to experimental data and
metadata collected at different times or by different lab members
or collaborators, to facilitate reproducible research and re-use of
data. The solution builds on existing standards and software tools
for easy integration with the researcher’s established scientific
data analysis routines.

2.1. DESIGN PRINCIPLES
2.1.1. Server-Client architecture
The G-Node Data Platform provides a storage and management
system for scientific data, accessible through a network API 9.
Client tools enable accessing data and functions from different
platforms, like Python or Matlab. Scientists can use the G-Node
Data Platform server for remote data storage and data sharing,
or install a local server instance for use in the lab. Having a cen-
tralized storage unifies data management routines within the lab
and brings experimental recordings to a common format. If an
experimentalist leaves the lab, recorded data stays available and
accessible. A central data service introduces accessibility and loca-
tion independence via remote network access, and provides a
single way of data and metadata handling even for collabora-
tors from other locations. Clients libraries, including the G-Node
Python Library described in this manuscript, allow direct access
to the experimental results from the local computational environ-
ment. This makes it easier to integrate into existing data analysis
or modeling workflows.

Backend and interface of the G-Node Data Platform will be
described in detail in another paper (Sobolev et al., in review).
Here we briefly summarize the design principles and then focus
on the functionality as exposed by the G-Node Python Library to
the Python user.

2.1.2. Data model
G-Node Data Platform and G-Node Python Library build on
tools, standards and conventions established in the field of elec-
trophysiology. To address the need of facilitating standardized
data access and at the same time accounting for the variety of
experimental approaches in this domain, the approach is based

9g-node.github.io/g-node-portal/

on combining a standardized data model with a flexible and
extensible metadata format (Figure 1).

The representation of recorded data follows the data structure
defined by the Neo object model (Garcia et al., 2014). Neo is
a Python library for electrophysiological data that also supports
reading a wide range of neurophysiology file formats (Spike2,
NeuroExplorer, AlphaOmega, Axon, Blackrock etc.). It imple-
ments a hierarchical data model to represent electrophysiological
data entities with their relationships and minimal metadata (e.g.,
units, dimensions etc.). A typical experimental data representa-
ton is a dataset (Block in Neo) containing several experimen-
tal trials (Segments), each having recorded time series signals
(AnalogSignals), spike event data (SpikeTrains) and stimulus
event times as Events. A dataset (Block ) usually also contains
information about grouping of channels (Recording Channel
Groups, Recording Channels) to indicate spatial position and
arrangement, and assignment of spike trains to single or multi
units (Units). Neo is currently used by different electrophysiology
labs and initiatives (see Garcia et al., 2014). The representation
of data by the G-Node Python Library is based on the Neo
Python library,10 and thus enables seamless integration with other
software that uses the Neo objects.

Metadata are organized according to the odML data model
(Grewe et al., 2011). odML is an open, flexible and easy to use for-
mat to organize metadata as key-value pairs (odML Properties)
organized in a hierarchical structure (by odML Sections).
Sections are used to meaningfully group Properties according to
experimental aspects (Subject, Preparation, Stimulus, Hardware
Settings etc.). odML Sections can be nested, enabling a flexible
way to organize experimental metadata in a hierarchy that reflects
the structure of the experiment. In addition, odML provides ter-
minologies11 for commonly used sets of experimental descriptors,
such as hardware properties, amplifier settings, stimulus parame-
ters and many others, which can be used to achieve a standardized
description of the experimental context (Grewe et al., 2011).

The G-Node Data Platform combines these structures into an
integrated data representation with the possibility to link between
recorded data and metadata. This enables comprehensive orga-
nization of data from any electrophysiological experiment and
unified data access that facilitates data analysis.

2.2. IMPLEMENTATION
2.2.1. Functional scope
The G-Node Python Library implements tools that operate on
the local workstation in a native Python environment. It mainly
consists of functions, designed to help maintaining experimental
structures locally and periodically synchronize required datasets
with the central storage. It provides a useful interface to access
previously stored experimental datasets, search across all exper-
imental entities, download any particular dataset, single spike
trains or time series, and represent them in native Python objects.

Locally, the G-Node Python Library implements an interface
to connect Neo and odML objects in a flexible way and to store
annotated structures on disk. When the dataset is complete, data
together with experimental annotations can be submitted to the

10neuralensemble.org/neo
11www.g-node.org/projects/odml/terminologies
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FIGURE 1 | Data model combining Neo and odML objects with

key model classes used to describe experimental data and

metadata. Traces in the center of the plot illustrate experimental
time segments (Trials 1, 2, . . ., N) containing LFP traces taken from
corresponging channels (RC1, RC2, . . ., RC12). Each time segment

contains also spike trains for every identified unit (U1, . . ., U3),
which in turn is connected to recording channels via channel groups
(RCG1, RCG2). Dotted lines denote connections between classes and
the data they represent. Note that for clarity not all supported
objects and attributes are shown on the figure.

central data storage and later be opened for access by particular
collaborators or stakeholders. This is done by a set of G-Node
Python Library functions that allow to manage permissions for
any given object relative to a single user, several users or all user
accounts. This fine-grained data access is discussed in more detail
in the next sections.

2.2.2. Technical design
The G-Node Python Library is written in pure Python and uses
python-neo12 and python-odml13 as libraries to represent key
model objects, requests14 library for HTTP transactions, appdirs15

to access local temporary and cache folders, requests-futures 16

for asynchronous HTTP requests and h5py17 to handle array data

12github.com/NeuralEnsemble/python-neo
13github.com/G-Node/python-odml
14www.python-requests.org/
15pypi.python.org/pypi/appdirs
16github.com/ross/requests-futures
17www.h5py.org/

stored in HDF5 format. Connection to the central data platform
is done via REST (Fielding and Taylor, 2002) implemented over
HTTP. The formats for data transfer are defined by the G-Node
Data Platform. In particular, HDF518 is used for data arrays and
JSON19 for other objects, attributes or relationships. The library
implements a local cache backend for transient storage of down-
loaded or newly created objects. A standard Python testing suite
is included in the distribution.

The library implements lazy-loaded relationships, which
allows accessing an object without fetching related objects. For
some lightweight metadata analysis it is practical to use such rela-
tionships, as the download happens only when related objects
are actually accessed. This kind of data access significantly
reduces communication time and increases search and process-
ing speed. However, it is also possible to download objects with
all related array data and relationships at once, and have a

18www.hdfgroup.org/HDF5
19www.json.org
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complete dataset structure locally ready to be used in further
computations.

Importantly, all output objects are real Neo or odML python
objects as defined by python-neo and python-odml. This enables
direct integration of the library with the existing custom scripts
that already use these libraries.

3. RESULTS
Here we present several use case examples of the G-Node Python
Library to illustrate its application on real experimental data. We
focus on aspects of the library that provide benefits to the scien-
tific workflow within the whole experimental lifecycle, from the
experiment planning stage to the stage of data analysis.

The G-Node Python Library is freely available at the G-Node
github page 20. Related documentation can be compiled locally
with sphinx21 or accessed online at the project page22. For proper
operation, the library requires a server part to be available. A
demo environment 23 is provided by the G-Node, which can
be accessed for testing or introductory purposes without user
account registration or local server installation.

All examples assume that the library is already installed
and configured 24. Importing the required modules and estab-
lishing the server connection is done with only a few lines
of code:

import neo, odml
from gnodeclient import session, Model,
tools

credentials = {
"location": "http://test.gnode.org",
"username": "demo",
"password": "demo"

}

g = session.create(**credentials)

The session class handles interaction with the remote server, the
Model class contains model definitions, supported by the G-Node
Python Library. The tools module is an additional collection of
supplementing functions that add a layer of convenience on top of
the primary G-Node Python Library functions. This is useful for
combining frequently used functions or performing operations
on multiple objects within a data structure. Some examples are
given below.

For illustration, we consider a typical experimental study in
which responses from neurons in the visual cortex of macaque
monkeys are recorded (e.g., Teichert et al., 2007). Detailed
description of the experiments is omitted; instead, only the key
data and metadata entities are described as relevant for the cur-
rent paper. In this example, we assume neural responses recorded
with an array of electrodes. Local field potential (LFP) signals

20github.com/G-Node/python-gnode-client
21sphinx-doc.org/
22g-node.github.io/python-gnode-client
23test.g-node.org
24g-node.github.io/python-gnode-client/install.html

were obtained by hardware bandpass filtering, and spike trains by
online spike sorting. The experiment consisted of different trials
with stimulus parameters varying from trial to trial. Visual stimuli
were gratings varying in size, orientation, and spatial frequency,
presented one at a time. An experimental dataset is represented
as a Neo Block having experimental trials represented as Neo
Segments. Each trial (Segment) contains corresponding raw LFP
data as AnalogSignals and sorted neural event data as SpikeTrains.
Neo RecordingChannels are used to group signals recorded from
the same electrode, Neo Units to group neural events triggered by
the same source.

3.1. CONSISTENT STRUCTURE FOR EFFICIENT ACCESS TO
ELECTROPHYSIOLOGICAL DATA

Here we show how experimental data, like LFP signals and
spike trains, can be stored and accessed using the G-Node
Python Library. The experimental data structure can be well
accommodated by the Neo data model. To store the entire
dataset recorded in one experimental session, a Neo “block” is
created:

block = neo.core.Block() # original Neo Block
block.name = "LFP and Spike data"

Then Neo objects for the data corresponding to the different tri-
als and channels need to be created and connected to the block,
including analog signals, spike trains, and units linked to the spike
train objects and recording channels.

segment = neo.Segment("Trial 1")
segment.block = block

# [...] commands to create a full dataset omitted

block.segments.append(segment)

As these operations mainly use the standard python-neo library
interface (see Garcia et al., 2014), the python code that creates the
appropriate structure is omitted here. For illustration, a schematic
figure of the current dataset (Figure 1) is provided.

Once the full data structure is defined, the upload neo struc-
ture function from the G-Node Python Library tools module is
used to save all the data to the server:

block = tools.upload_neo_structure(g, block)

This operation submits the whole block with all connected
recording channels and time segments, including related analog
signals and spiketrains. After submission, data on the server can
be accessed by type (e.g., time segment, analog signal) with fil-
ters25 using model attributes. For instance, according to the Neo
model, analog signals have the sampling rate as an attribute. The
following query requests analog signals with a certain sampling
rate:

25g-node.github.io/g-node-portal/key_functions/data_api/query.html
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filters = {"sampling_rate": 500, "max_results": 5}
signals = g.select(Model.ANALOGSIGNAL, filters)

The “select” function of the G-Node Python Library accepts, as a
second parameter, filters in a Python “dict” object.

Structured data can be accessed by spatial (e.g., Recording
Channel ), temporal (Segment), or source (Unit) criteria. The fol-
lowing request finds a certain recording channel and fetches all
data coming from it:

s = g.select(Model.RECORDINGCHANNEL, {"index": 8})
location = s[0].location
ch_with_data = g.get(location, recursive=True)

Here the “select” function is used to query recording channel
objects having “index” attribute set to 8. Every object, fetched
from the server, has a “location” attribute which allows the library
to determine the corresponding remote entity of the object. Then
the “get” function allows to request the first channel from the pre-
vious selection with all related data recursively (analog signals,
spike trains).

Another request finds a certain unit (in this example, a
neuron given number 3) and fetches all spike trains detected
from it:

s = g.select(Model.UNIT, {"name__icontains": "3"}
location = s[0].location
unit_with_data = g.get(location, recursive=True)

3.2. COLLECTING EXPERIMENTAL METADATA
For the organization of metadata, the G-Node Python Library
provides an interface to the python-odml26 library, so that odML
objects can be natively manipulated and stored to the central stor-
age. odML terminologies can be loaded directly from the odML
repository:

from odml.terminology import terminologies
odml_repository = "http://portal.g-node.org/" + \
"odml/terminologies/v1.0/terminologies.xml"
terminologies = terminologies.load(odml_repository)

Terminologies can be used as templates to describe certain
parts of the experimental protocol. Among basic terminolo-
gies are templates for experiment, dataset, electrode, hard-
ware configuration, cell etc 27. These terminologies can be
accessed as a Python “list” or “dict” as python-odml objects,
and can be cloned to be used to annotate the current
dataset:

exp_template = terminologies.find("Experiment")
experiment = exp_template.clone()

To describe the experiment, appropriate values are assigned to the
properties:

26github.com/G-Node/python-odml
27www.g-node.org/projects/odml/terminologies

experiment.name = \
"LFP and Spike Data in Saccade and Fixation Tasks"

experiment.properties["ProjectName"].value = \
"Scale-invariance of receptive field ..."

experiment.properties["Description"].value = \
"description of the project"

experiment.properties["Type"].value = \
"electrophysiology"

experiment.properties["Subtype"].value = \
"extracellular"

experiment.properties["ProjectID"].value = \
"PMC1913534"

Additional properties can be introduced as needed (Grewe et al.,
2011). For example, stimulus parameters can be documented
using custom odML section with custom properties:

from odml import Section, Property
s = Section(name="Stimulus", type="stimulus")

# stimulus parameters

sizes = ["1.2", "2.4", "4.8", "9.6"]
orien = ["0", "45", "90", "135"]
sfreq = ["0.4", "0.8", "1.6", "3.2"]

s.append(Property("Luminance", "25", unit="cd/m2"))
s.append(Property("StimulusType", "SquareGrating"))
s.append(Property("NumberStimConditions", "128"))
s.append(Property("Sizes", sizes, unit="deg"))
s.append(Property("Orientations", orien, unit="deg"))
s.append(Property("SpatialFrequencies", sfreq, \

unit="1/deg"))

Note that these assignments can be easily automatized if the
parameters are available from the stimulation software or con-
figuration files. Furthermore, if the parameters are stored by the
software in odML format (Grewe et al., 2011), instead of creat-
ing metadata objects in Python, odML metadata structures can
be read directly from files using the standard odML library. The
odML format allows nested sections to capture the logical strucu-
ture of the experiment. For example, a stimulus can be defined as
part of an experiment:

experiment.append(s)

This tree-like structure can be saved with the G-Node Python
Library:

experiment = tools.upload_odml_tree
(g, experiment)

After submission, data and metadata stored on the server can
be accessed in various ways. Metadata can not only be accessed
as Python objects, using the G-Node Python Library, but also
with Matlab, using the G-Node Matlab Toolbox 28. Additionally,
it can be browsed via a web interface29 or by custom software via
the API.

28github.com/G-Node/gnode-client-matlab
29www.g-node.org/data/
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As for the recorded data, the G-Node Python Library allows
searching for metadata of a particular type, using different filters
that can be applied for object attributes:

filters = {"name__icontains": "LFP and Spike Data"}
sections = g.select(Model.SECTION, filters)

For complex experiments, the entire tree of metadata subsections
can be very large. Therefore, the “select” function does not return
the whole tree, instead it returns only the top level section objects
with lazy-loaded relationship attributes, which will fetch related
objects at the moment when they are first accessed. If the user
wants to download the entire tree, it can be fetched with the “get”
function with “recursive” parameter:

location = sections[0].location
experiment = g.get(location, recursive=True)

If another, similar experiment is performed, the metadata tree
can simply be cloned and only the metadata that have changed
updated. This is highly convenient and saves the time of re-
entering parameters that stay the same across a series of experi-
ments.

3.3. CONNECTING DATA AND METADATA
To meaningfully annotate data by metadata, the G-Node
Python Library allows to connect datasets with the meta-
data:

block.section = experiment
block = g.set(block) # updates on the server

Note that an association between objects can only be set
on one side of the one-to-many relationship. In this case
a section can have many blocks, thus the block has to be
changed to establish a connection. This constraint is imposed
by the current Neo library and is expected to disappear in a
future release. To work around potential limitations, the func-
tions provided in the G-Node Python Library tools module
can be used to conveniently create and upload data struc-
tures.

Additionally, the G-Node Python Library allows to con-
nect data and metadata to indicate certain specific attributes
for any of the Neo-type objects. A typical use case for this
kind of data annotation is to specify which stimulus was
applied in each trial of the experiment. This connection is
done using the “metadata” attribute that uses existing meta-
data properties and values to “tag” a number of data-type
objects:

s = experiment.sections["Stimulus"]
orien = s.properties["Orientations"].values[3]
size = s.properties["Sizes"]. values[1]
sfreq = s.properties["SpatialFrequencies"].values[2]

segment.metadata = [orien, size, sfreq]
segment = g.set(segment) # updates on the server

Such assignments can easily be automatized if the parameters
used in each trial can be obtained in machine-readable form from
the software controling the experiment.

3.4. DATA ACCESS FROM DIFFERENT ANGLES
Proper annotation brings more consistency in data and metadata,
and allows to select data by metadata in various ways. For exam-
ple, for data analysis it is often necessary to select all data recorded
under the same experimental conditions. The following exam-
ple selects all LFP data across all trials with a certain stimulus
properties:

filters = {"odml_type__icontains": "stimulus"}
stimulus = g.select(Model.SECTION, filters)[0]

v1 = stimulus.properties["Orientations"].values[0]
v2 = stimulus.properties["Sizes"].values[0]

filters = {}
filters["name__icontains"] = "4"
filters["^1metadata"] = v1.location
filters["^2metadata"] = v2.location

segment = g.select(Model.SEGMENT, filters)[0]
signals = segment.analogsignals

In this example we select a section describing the stimulus and
use stimulus parameter values to build a required filter. This fil-
ter is then used to query the trials where this particular stimulus
was applied. This type of query makes it straightforward, for
instance, to compute averages across trials for a certain stimulus
configuration,

import numpy as np
signalaverage = np.mean(signals, axis=0)

or to plot the actual LFP traces for visualization:

from matplotlib import pylab as pl

s1 = signals[0] # one of the signals
fig = pl.figure()
lfp = pl.subplot(111)

text_params = {
"horizontalalignment": "center",
"transform": lfp.transAxes)
} # caption from time segment name
lfp.text(.85, .05, s1.segment.name, **text_params)

for s in signals:
label = s.recordingchannel.index
lfp.plot(s.times, s, label=label)

pl.xlim([s1.t_start, s1.t_stop]) # set X axis range

x_unit = s1.times.units.dimensionality.string
y_unit = s1.units.dimensionality.string
pl.xlabel("time [%s]" % x_unit) # set X units
pl.ylabel("voltage [%s]" % y_unit) # set Y units

# [...] # commands for axes and legend omitted

pl.show()
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Figure 2 illustrates the resulting plot. Note that the availability
of metadata together with data immediately enables meaningful
labeling of the axes without having to collect further infor-
mation from files or hand-written documentation. Aside from
being convenient and time efficient, this integration also offers
enormous potential for automated analysis and facilitates repro-
ducible research.

3.5. INTEGRATION INTO EXPERIMENTAL WORKFLOW
One of the key objectives is easy integration into existing scientific
environments or data processing workflows. This often requires
access to data stored in proprietary formats. For this purpose, the
G-Node Python Library uses Neo I/O, Python modules that can
access a variety of data formats from different aquisition systems
(Garcia et al., 2014).

Compatibility with Neo enables object representation ready
for direct use in modeling or data analysis. Electrophysiology data
objects and their attributes are represented using standard Python
numerical packages, like “numpy”30, “scipy”31, and “quantities”32.
This implies that every data object is a numpy array or has a
numpy-based data attribute, with units implemented as Python
“quantities.” Data access queries with the G-Node Python Library
return Neo python objects that are ready to be included into anal-
ysis scripts, simulation or modeling programs, making data access
more native and “pythonic.”

3.6. IMPLEMENTATION FEATURES
3.6.1. Data caching
The library uses a local cache backend to store transient
data, downloaded from the server. All downloaded data

FIGURE 2 | Plot of LFP responses from a trial that was selected for a

given stimulus configuration (see text). Note that the information used
for axes, labels, and legend was taken from the stored data and metadata
directly.

30www.numpy.org
31scipy.org/scipylib/index.html
32pypi.python.org/pypi/quantities

is available for offline use. Any downloaded data object
will not be downloaded again if selected by a subsequent
query, unless the object has changed or the cache is cleared
explicitly.

g.clear_cache() # clear previously downloaded data
ch = g.select(Model.RECORDINGCHANNEL, {"index": 8})[0]
# downloads all data
ch_with_data = g.get(ch.location, recursive=True)
# will not download again
ch_with_data = g.get(ch.location, recursive=True)

Objects stored in the cache are permanently available between
sessions, unless the clear cache function is called. This signifi-
cantly increases performance when several computations on the
same dataset are required. In case an object is changed on the
server, changes can be explicitly fetched by using a “refresh”
parameter:

# fetch changes and update object in the cache
channel = g.get(ch.location, refresh=True)

3.6.2. Permissions
The G-Node Python Library allows fine-grained managing of per-
missions to access the data objects. Access to every object on the
server can be opened for a particular user by the original object
owner. This is particularly useful to support collaborative work
and sharing of data.

acl = {"shared_with": {"bob": "read-only"}}
permissions = g.permissions (block, acl)

Managing permissions may usually be more conveniently done
through the web interface of the G-Node Data Platform.
Nevertheless, these functions are also available in the library at
the Python level.

4. DISCUSSION
The G-Node Python Library offers a combined local and remote
way of handling electrophysiological data. To replace the usual
way of copying data between hard disks and shared folders,
G-Node provides a central storage where scientists can orga-
nize experimental data together with metadata. This approach of
unified data and metadata management is a key to achieve repro-
ducibility and has several advantages, especially in the long term.
It is easier to maintain reproducibility when data are hosted at
a central storage, either in the lab or at a remote server, even
years after the study was done. Data kept at a single, accessible
place can be easily opened for collaborators. Keeping data and
metadata together in a standardized format requires less time
to understand the data, thus finding and accessing the desired
data as well as performing appropriate analyses is strongly facil-
itated. Furthermore, a standardized data representation makes it
straightforward to apply analysis or visualization tools, or to com-
pare the data with other results from experimental or simulation
studies.
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4.1. EXTENSIONS AND FUTURE DEVELOPMENTS
High-level interface
For efficient use of the G-Node Python Library the neuroscien-
tist has to become familiar with the Neo and odML concepts
and data models. Adapting data and metadata handling and for-
mats to the Neo and odML standards may require some efforts.
However, the long-term benefits of interoperability and repro-
ducibility that the use of common formats and interfaces achieves
will outweigh these initial costs for many labs. To further lower
the entrance barrier we started to develop high-level functions
that allow to automate certain operations and provide patterns
for creation of common data structures. Some of these functions
are already available in the tools module of the G-Node Python
Library. To increase the coverage of use cases, we encourage users
to contribute their own custom functions.

Search and query
One of the key advantages of the G-Node Python Library is
the potential to have all the information about a dataset avail-
able for easy search and efficient querying of data. Currently
the search implemented in the G-Node Python Library is
still limited to basic functions. While even with this limita-
tion the availability of data and metadata for search brings a
huge advantage, the full potential of this approach will only
be exploited with more advanced search capabilities includ-
ing relationships between object types and options for refined
queries across the metadata. These extensions are currently in
development.

Working offline
To minimize data transmission, as well as for practical reasons,
a permanent connection to the server is not always desired. In
some situations it is more suitable to work locally on the data
or metadata and, when complete, submit appropriate structures
to the server. Therefore a local storage management to save and
access new data and metadata objects in the cache before sync-
ing to the server is being developed and will be included in the
next version of the G-Node Python Library. Several functions
built on top of the main library interface are already available via
the tools module, including functions that automatically resolve
object relations and help to upload odML and Neo hierarchies
recursively.

Integration with other Python tools
We are aiming at an even closer integration with other Python
tools. The compatibility with the Neo data model makes it
straightforward to combine the G-Node Python Library with
other tools that use this data model. A pilot integration with
the Spyke Viewer (Pröpper and Obermayer, 2013) is currently
under development that will allow applying analysis scripts with
Spyke Viewer directly on the data accessed via the G-Node Python
Library. We are also developing a specific input/output module
for the Neo package that supports reading and writing data to the
G-Node Data Platform using the G-Node Python Library, so that
every software using Neo can access data not only from data files
but gains all the data management benefits of the G-Node Data
Platform.

Standards and extension to other domains
The G-Node Python Library is built on a combination of exist-
ing formats with a focus on electrophysiology data. However, the
same design principles can be easily applied to other domains. We
plan extensions of the data objects to support imaging and mor-
phological data. This will allow common organization of these
multiple data types, which is also important for data obtained
in research projects that employ multiple methods. Likewise,
data objects specifically supporting analysis results will be imple-
mented. The Standards for Data Sharing Program of the INCF
is currently developing standards for formats and data struc-
tures for both the field of electrophysiology33 and the field of
neuroimaging34. The G-Node Python Library will adopt those
standards as they are released.
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