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Analysis of brain connectivity has become an important research tool in neuroscience.
Connectivity can be estimated between cortical sources reconstructed from the
electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable
results. However, some applications such as brain-computer interfaces (BCIs) require
single-trial estimation methods. In this paper, we present SCoT—a source connectivity
toolbox for Python. This toolbox implements routines for blind source decomposition
and connectivity estimation with the MVARICA approach. Additionally, a novel extension
called CSPVARICA is available for labeled data. SCoT estimates connectivity from various
spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR
models can be regularized to facilitate ill posed applications such as single-trial fitting.
We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we
show simulation results of utilizing SCoT for feature extraction in a BCI application. These
results indicate that CSPVARICA and correct regularization can significantly improve MI
classification. While SCoT was mainly designed for application in BCIs, it contains useful
tools for other areas of neuroscience. SCoT is a software package that (1) brings combined
source decomposition and connectivtiy estimation to the open Python platform, and (2)
offers tools for single-trial connectivity estimation. The source code is released under the
MIT license and is available online at github.com/SCoT-dev/SCoT.
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1. INTRODUCTION
Quantifying interactions between brain areas is an important and
useful tool in neuroscience (Michel and Murray, 2012). Spatially
separated brain areas form dynamic large-scale networks that are
described by functional and effective connectivity (Schnitzler and
Gross, 2005; Siegel et al., 2012). While functional connectivity
measures synchronous activation, effective connectivity explains
causal relations between areas (Friston, 1994, 2011). We will use
the term connectivity for both functional and effective connectiv-
ity throughout this manuscript.

Estimates of connectivity can be deduced from the multi-
channel EEG by employing a VAR model. However, fitting such a
model requires a large amount of data. In particular, the required
number of time samples is proportional to the number of chan-
nels and the model order. A common approach to generate
enough data is to use repeated trials of the same task. However,
the EEG also contains task-related activity that varies from trial
to trial, which would disappear when averaging over trials. Such
activity can only be studied at the single-trial level (Michel and
Murray, 2012). A framework for performing single-trial time-
varying system identification and visualization was published
recently (Mullen et al., 2013). An important use case for single-
trial analysis are BCIs, which extract control signals from ongoing
brain activity (Millán et al., 2010). Connectivity measures have
already been used in several BCI-related studies (Gysels et al.,
2005; Shoker et al., 2005; Brunner et al., 2006; Wei et al., 2007;
Hamner et al., 2011; Lim et al., 2011; Daly et al., 2012; Billinger
et al., 2013a).

Measuring connectivity from the EEG entails methodological
challenges such as volume conduction and multiple comparison
problems (Siegel et al., 2012). Due to volume conduction, electri-
cal signals originating from one source in the brain are detected
by multiple EEG electrodes. Conversely, each electrode measures a
superposition of activity from multiple sources. Thus, interpret-
ing connectivity between EEG channels if of limited usefulness.
This can be overcome by transforming the problem from the
electrode domain to the source domain. Common approaches to
estimate source activities include source localization techniques
and independent component analysis (ICA). Source localization
attempts to map the scalp potential distribution to current source
densities on the cortex. However, this approach requires accu-
rate models of head anatomy and electrical properties, as well
as accurate electrode locations (Baillet et al., 2001). In contrast,
ICA performs a blind decomposition of EEG channels with-
out having to rely on a head model. Additionally, source signals
obtained from ICA can be interpreted as originating from corti-
cal dipoles (Makeig et al., 1996). When measuring connectivity
between ICA sources, the seemingly contradictory assumptions
of dependence for connectivity estimation and independence for
ICA must be carefully taken into account. We give a detailed
discussion of this issue in section 2.

Our source connectivity toolbox (short SCoT) is a software
package for Python that contains tools for estimating connec-
tivity between cortical sources. While various implementations
of connectivity are available on other platforms, source connec-
tivity toolbox (SCoT) is the first Python package dedicated to
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Table 1 | VAR-derived measures included in SCoT.

Measure Description

A Spectral representation of the VAR coefficients

H Transfer function that transforms the innovation process into
the VAR process

S Cross spectral density

G Inverse cross-spectral density

PHI Phase angle

COH Coherence Nunez et al., 1997

pCOH Partial coherence Franaszczuk et al., 1985

PDC Partial directed coherence Baccalá and Sameshima, 2001

ffPDC Full frequency partial directed coherence

PDCF PDC factor Baccalá and Sameshima, 2001

GPDC Generalized partial directed coherence Faes et al., 2012

DTF Directed transfer function Kamiński and Blinowska, 1991

ffDTF Full frequency directed transfer function Korzeniewska et al.,
2003

dDTF Direct directed transfer function Korzeniewska et al., 2003

GDTF Generalized directed transfer function (known as directed
coherence) Faes et al., 2012

connectivity estimation. Apart from common multi-trial analy-
sis techniques, SCoT also supports single-trial connectivity. The
toolbox contains separate modules for ICA, VAR model fit-
ting, and spectral connectivity measure estimation (supported
measures are listed in Table 1). While the tools were originally
designed for single-trial BCI feature extraction, they equally work
with multiple trials and are useful for functional and effec-
tive connectivity analysis of EEG signals. SCoT implements the
MVARICA approach (Gómez-Herrero et al., 2008), which com-
bines VAR models and ICA for jointly estimating sources and
connectivity. Furthermore, we implemented a novel supervised
variant of MVARICA specifically tailored toward classification of
BCI data, which we named CSPVARICA. The toolbox contains
built-in routines for data processing, but can be configured to
use the machine learning package scikit-learn (Pedregosa et al.,
2011) or custom routines as backends. Unit tests assure correct
functionality of the core routines.

The aim of this article is twofold. First, we want to intro-
duce SCoT to researchers along with code snippets that show
basic usage examples. Second, we give a technical overview of the
methods we implemented and present our new CSPVARICA.

2. MATERIALS AND METHODS
2.1. SOURCE ESTIMATION AND VAR MODEL FITTING
The EEG is commonly modeled as a linear mixture of underly-
ing cortical source activations (1). These source activations are
modeled as VAR processes (2), which contain information about
connectivity (Gómez-Herrero et al., 2008).

xn = Msn (1)

sn =
p∑

k = 1

B(k)sn−k + en (2)

FIGURE 1 | Connectivity and correlation in a bivariate AR(1) model of

order p = 1 with two signals x and y . The VAR coefficients bij describe
the dependency of signal i on the previous sample of signal j. In this
example, there is effective connectivity from x to y , but not from y to x.
Although no direct interaction between xn and yn exists, the signals are
correlated, since both xn and yn depend on xn−1. The strength of this
correlation depends on byy , byx , and additive noise (which is not shown in
this figure).

The mixing matrix M transforms every sample n of the source
activations sn into the observable EEG, which is denoted as xn.
VAR model coefficient matrices B(k) and innovation process en

form the VAR model of order p that describes the source activa-
tions; en is assumed to be a vector of independent non-Gaussian
white noise processes.

The most naive approach to connectivity estimation is to
ignore the mixing of cortical sources and assume that each EEG
sensor corresponds to a unique cortical source. However, vol-
ume conduction between EEG sensors is not correctly captured
by VAR models and therefore severely limits the usefulness of
connectivity at the sensor level (Siegel et al., 2012).

More sophisticated approaches obtain source activations by
constructing an unmixing matrix U that mathematically reverses
the mixing process so that sn = Uxn (with UM equal to the iden-
tity matrix I). ICA performs such a decomposition by attempting
to find spatial EEG components with minimal instantaneous
cross-dependencies between each other. These components can
be interpreted as cortical source activations that are not affected
by volume conduction. However, connectivity between sources
can also cause instantaneous cross-dependencies (Figure 1). ICA
assumes no temporal dependence structure within the data, but
connectivity between sources violates this assumption. Thus, ICA
treats the signals as though instantaneous cross-dependencies
were exclusively caused by the mixing process. This might
decrease the reliability of subsequent connectivity estimates, as
was demonstrated by Haufe et al. (2010).
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We provide an implementation of ICA source decomposi-
tion in SCoT. However, limitations and conflicting assumptions
of VAR and ICA should be carefully considered before apply-
ing this approach. Therefore, we recommend more sophisticated
techniques such as MVARICA or our novel CSPVARICA.

2.2. MVARICA
SCoT implements the MVARICA approach, which performs joint
source decomposition and VAR model fitting while respect-
ing their respective assumptions about dependencies (Gómez-
Herrero et al., 2008). MVARICA works in three steps (see
Figure 2). First, the EEG is transformed by applying principal
component analysis (PCA) as follows:

yn = Cxn = CMsn (3)

The signals in yn contain the PCA-transformed EEG. The PCA
transformation matrix C is pruned to remove components that
contribute least to the total EEG variance. This step reduces the
dimensionality for subsequent processing and limits the num-
ber of sources found by MVARICA. Second, a VAR model with
coefficients A(k) and residual processes rn is fitted to yn:

yn =
p∑

k = 1

A(k)yn−k + rn (4)

By combining (2–4) we can relate the VAR model fitted to yn with
the VAR model that describes the source activations:

A(k) = (CM)B(k)(CM)−1 (5)

rn = (CM)en (6)

The residuals r contain cross-dependencies that cannot be
explained by the VAR model. According to (6), all cross-
dependencies remaining in the residuals are due to the trans-
formation CM. In the third step, the residuals are decomposed
by ICA in order to obtain an estimate of the transformation
ˆCM. Finally, an estimated unmixing matrix Û is obtained as

Û = ( ˆCM)−1C so that

ŝn = Ûxn. (7)

Typically, estimates of the VAR coefficients at the source level are
obtained by inserting estimates Â and ˆCM in (5) and solving for
B̂. However, if sources are spatially stationary (constant M), the
unmixing estimate Û can be reused on other data sets to obtain
source activations and fit VAR models directly to these activa-
tions according to (2). This allows us to determine the unmixing
matrix from a set of training data, and subsequently perform
connectivity estimation between the same sources on new data.

In general, MVARICA is applied to multi-trial data. Different
strategies to obtain the VAR residuals r can be employed, depend-
ing on which stationarity assumptions hold on the data. If sta-
tionarity can be assumed across all trials, a single VAR model may
be fitted to all trials. If stationarity can be assumed only across

FIGURE 2 | Source decomposition with MVARICA and CSPVARICA.

Both approaches estimate source activations ŝ from the EEG. The EEG
signals x are transformed to y either by PCA (MVARICA) or CSP
(CSPVARICA). Subsequently, the residuals r of a VAR model fitted to y are
decomposed by ICA to obtain an estimate of the combined matrix CM. This
matrix, along with the transformation C is used to obtain estimated source
activations ŝ.

trials from the same condition, a different VAR model may be fit-
ted for each condition. Finally, if stationarity cannot be assumed
across trials, a different VAR model may be fitted for each individ-
ual trial. The last approach requires single-trial VAR model fitting,
which we will discuss in section 2.6.

2.3. CSPVARICA
MVARICA reduces the input dimensionality by discarding the
principal components that contribute least to the total EEG vari-
ance. However, EEG components of interest often have a low
signal-to-noise ratio. Thus, PCA might remove such compo-
nents while retaining noise with higher variance. We propose
to use common spatial patterns (CSP) instead of PCA. While
PCA finds components according to their contribution to the
total variance, CSP finds components that explain the differ-
ences (in variance) between two conditions (Koles et al., 1990).
Thus, we expect CSP to be superior to PCA whenever differences
between two conditions (e.g., baseline/task, task/task, etc.) are
analyzed. CSPVARICA is implemented in SCoT as a supervised
alternative to MVARICA (see Figure 2). CSPVARICA is similar to
MVARICA except for the first step, where we replaced PCA with
CSP. Equations (3–7) are equally valid for CSPVARICA; only the
tranformation matrix C is different because it represents the CSP
transform instead of the PCA transform.

2.4. MODEL VALIDATION
MVARICA and CSPVARICA apply ICA to the residuals of VAR
models. ICA assumes no temporal structure in the data. Thus, it
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is important that the VAR models adequately describe the data so
that the residuals are serially uncorrelated.

SCoT implements a multivariate portmanteau test to test for
whiteness in the residuals (Hosking, 1980). The test compares
the multivariate Li-McLeod statistic Q against the null hypoth-
esis that the residuals are white (Lütkepohl, 2005). When the
residuals are normally distributed, Q follows a chi-squared dis-
tribution. However, we explicitly assume non-Gaussian residuals.
Thus, we estimate the distribution of Q0 under the null hypoth-
esis from surrogate residuals. Temporal structure in the residuals
is destroyed by randomly permuting the residuals along the time
axis. We repeatedly calculate Q0 from different permutations
and calculate the probability of observing a Q0 larger than Q.
A probability of less than 0.05 indicates significantly non-white
residuals.

2.5. CONNECTIVITY
Once source estimates are available, numerous connectivity mea-
sures can be extracted from VAR models. Table 1 lists all measures
currently implemented in SCoT. Some of the most commonly
used measures are summarized in Schlögl and Supp (2006). All
these measures may be extracted directly from the VAR coeffi-
cients returned by MVARICA or CSPVARICA.

In addition to well known measures, SCoT implements the
full frequency partial directed coherence (ffPDC). The ffPDC is
obtained by normalizing the partial directed coherence (PDC)
over all frequencies instead of each frequency individually:

ffPDCij(z) =
∣∣Aij(z)

∣∣
√∑

z AH
:j (z)A:j(z)

(8)

Here, i and j correspond to the indices of the sink and the source
signals, respectively. A is the inverse of the VAR transfer function.

In general, repeatedly applying MVARICA or CSPVARICA
to different data segments yields components in different order.
This makes tracking of connectivity patterns difficult. However,
it is possible to overcome this issue by re-using the unmixing
matrix obtained from one decomposition. Applying this unmix-
ing matrix to new portions of data results in varying activations
of the same sources, which facilitates three important use cases:
single-trial estimation, time-varying analysis, and comparing dif-
ferent conditions.

2.6. SINGLE-TRIAL ESTIMATION
VAR model fitting typically requires a large amount of data. To
obtain a sufficient amount of data, a model can be fitted to mul-
tiple trials, assuming stationarity across trials (i.e., each trial is
a realization of the same process). However, this is not feasible
in applications such as MI BCIs, where trial duration is several
seconds or continuous control is required. Instead, connectivity
estimates need to be obtained from a single window of data. In
SCoT, we perform single-trial connectivity estimation on short
windows of source activations, but use a training set of multiple
trials to obtain sources that are assumed to be spatially stationary.

One procedure for single-trial connectivity estimation is
described in our previous work (Billinger et al., 2013a), where
various connectivity measures were estimated on selected ICA
sources. This procedure can be improved by replacing ICA and

source selection with MVARICA or CSPVARICA. Importantly,
single-trial VAR model fitting is prone to overfitting due to the
limited amount of data available in a single trial. However, this
problem can be alleviated by regularization. Therefore, SCoT
supports ridge regression for fitting VAR models to individual
and multiple time windows. The scikit-learn backend provides
additional model fitting routines including Lasso, Elastic Net,
and generalized cross-validation (GCV) for determining the ridge
parameter.

The degrees of freedom when fitting a VAR model depends on
the model order. Typically, the order of VAR models is determined
with cross-validation or selection criteria such as Akaike infor-
mation criterion (AIC) or Bayesian information criterion (BIC).
Regularization effectively limits the degrees of freedom, so both
model order and regularization penalty can be optimized. For
simplicity, we manually set the model order to a reasonably high
value and optimize only the regularization penalty.

2.7. STATISTICS
So far, we have only discussed point estimates of connectivity.
However, scientists will usually want to make statistical inferences
about connectivity to either determine if there really is connec-
tivity from one source to another, or to determine if there is a
difference in connectivity between two conditions.

In SCoT, presence of connectivity is deduced using the method
of surrogate data generated by phase randomization. While
removing connectivity from each signal pair individually may give
better results (Faes et al., 2009), we took a simpler approach,
where connectivity is destroyed between all signals simultane-
ously. We obtain the distribution of connectivity under the null
hypothesis of no connectivity by repeatedly estimating connec-
tivity on surrogates. Connectivity estimated from actual data can
be compared against this distribution to test if it is significantly
non-zero.

Statistical difference in connectivity is obtained by perform-
ing bootstrap resampling. Bootstrap samples are drawn at the
trial level, thus this method only works for multi-trial data
sets. The distribution of difference in connectivity is obtained
by bootstrapping both conditions. The difference is signifi-
cantly different from zero if the confidence interval does not
contain 0.

Typically, such tests are performed for each frequency bin
and channel pair, which requires correction for multiple testing.
However, individual tests are likely to be positively correlated.
Thus, controlling for the family-wise error rate is likely to be
overly conservative. Instead, controlling for the false discovery
rate (Benjamini and Hochberg, 1995) is implemented in SCoT.

2.8. SOURCE CONNECTIVITY WORKFLOW
SCoT implements routines for estimating connectivity between
EEG sources. Two estimation approaches are possible in SCoT.
Too many Ps in approach is to estimate sources and connectiv-
ity jointly on the same data set using MVARICA or CSPVARICA.
Alternatively, a two-step approach is supported, where sources
and connectivity are estimated on different data sets. Both
approaches impose strong spatial stationarity assumptions on the
sources. However, in the latter approach source activity may vary
over time.
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Joint estimation is performed by applying MVARICA or
CSPVARICA to a data set where sources are spatially and tem-
porally stationary. Two-step estimation consists of separately
performing source decomposition and VAR model fitting, pos-
sibly on different data sets. MVARICA or CSPVARICA can be
employed in the source decomposition step by discarding their
VAR estimates. In the second step, the unmixing matrix is used
to obtain source activations on a different data set. Connectivity
measures are estimated from VAR models fitted to these source
activations.

The two-step approach is useful whenever connectivity
is expected to vary between spatially stationary sources.
Possible applications include comparing different conditions,
analyzing time-varying connectivity, and estimating single-trial
connectivity.

It is often useful to estimate time-varying connectivity. This
can be done on a multi-trial or a single-trial basis, whichever
is appropriate for the data and the research question. Time-
varying multi-trial connectivity estimation facilitates analysis of
cue-locked connectivity dynamics. Here, we estimate connec-
tivity on the first time segment of multiple trials, then for the
second (possibly overlapping) segment, and so on. This results
in an average time-course of connectivity related to the trial
start. Time-varying single-trial connectivity estimation may be
employed when connectivity dynamics are not cue locked, or no
cues are available such as in continuous BCIs. Here, we estimate
connectivity on short (possibly overlapping) windows, resulting
in a time course of instantaneous connectivity.

3. IMPLEMENTATION
3.1. OVERVIEW
SCoT is distributed as a Python package named scot. The
package contains several modules that implement the toolbox’s
functionality and the two sub-packages scot.backend and
scot.builtin. The former contains backend modules that
allow SCoT to use different implementations of low-level routines
such as PCA, ICA, or model fitting. The other package imple-
ments built-in versions of these routines. See Figure 3 for an
overview of the package structure.

SCoT depends on NumPy, SciPy (Oliphant, 2007), and
optionally on scikit-learn (Pedregosa et al., 2011). Matplotlib is
required for visualization only. Furthermore, SCoT contains the
complementary eegtopo package, which is used for EEG topog-
raphy plots based on spherical spline interpolation (Perrin et al.,
1989).

Development is test-driven, with unit tests covering core func-
tionality as far as the stochastic nature of the implemented algo-
rithms allows. The source code is released under the open source
MIT license and is available online at github.com/SCoT-dev/
SCoT.

3.2. BACKEND MECHANISM
A design goal of SCoT is to keep external dependencies at
a minimum. The backend mechanism provides a common
interface that allows SCoT to optionally utilize routines from
third-party software without introducing unnecessary depen-
dencies. A backend consists of targets that represent thin

FIGURE 3 | Overview of the dependency hierarchy in the SCoT API.

High-level interfaces are depicted above the interfaces they depend on.

wrapper functions, class implementations or even modules.
These are stored in a global dictionary, where they can
be accessed from within SCoT. The dictionary is updated
when including a backend module. Thus, the user can eas-
ily select a backend by simply importing the module. SCoT
comes with two backends: scot.backend.builtin, which
provides basic implementations of backend functionality and
scot.backend.sklearn, which provides wrappers for rou-
tines implemented in the external scikit-learn package.

The built-in ICA backend calls BINICA to perform Infomax
ICA (Makeig et al., 1996). BINICA is an external binary, which
is either shipped with EEGLAB (Delorme and Makeig, 2004), or
separately available online1 and is downloaded on demand.

Currently, the following backend targets are used by SCoT:
ICA (ICA function), PCA (PCA function), VAR (VAR model
fitting class), and utils (miscellaneous helper routines). The
backend mechanism relies on duck-typing, which allows users
to easily create custom backends by simply putting their own
functions in the global backend dictionary.

3.3. WORKSPACE
The scot.ooapi module exposes the class Workspace,
which provides convenient access to SCoT from interactive
Python sessions. This class also serves as an example for usage
of the more flexible low-level application programming inter-
face (API), which is described in detail later. An instance of the
Workspace class is optionally initialized with sampling rate,
desired dimensionality reduction, number of fast Fourier trans-
form (FFT) bins and/or electrode locations. This alleviates the
user of the burden to pass these parameters to each individual
function call. The Workspace class can perform source decom-
position on EEG data, estimate connectivity on the same or a

1http://sccn.ucsd.edu/eeglab/binica/
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different data set, conduct statistical analysis, and visualize the
results.

3.4. PACKAGE STRUCTURE
Here, we provide a summary of the modules that form the SCoT
package. Please refer to the API reference in the SCoT documen-
tation for a more detailed description. A summary of the modules
is listed in Table 2.

3.4.1. Internal modules
These are modules mainly intended for internal use in SCoT.

builtin is actually a sub-package. It contains SCoT’s own
implementations of PCA, CSP, VAR, and a wrapper to the
BINICA binary.

The config module defines global variables for configuring
SCoT. Currently, it contains only the backend dictionary. This
dictionary is populated when importing a backend. Functions like
mvarica query this variable to determine which implementa-
tions of PCA, ICA, etc., to use.

Internal utility functions are defined in the utils module.
These include among others a function for calculating autocovari-
ance matrices and the memoize decorator that caches function
return values.

3.4.2. User facing modules
These are modules that users of SCoT will often work with.

backend is actually a sub-package. It contains a separate
module for each backend currently available in SCoT. At the
moment these are builtin and sklearn.

The connectivity module provides a class for extracting
connectivity measures from VAR model coefficients (see Table 1
for a list of available connectivity measures). Some connectivity
measures are calculated from other measures (e.g., the dDTF).
To avoid unnecessary recalculations of repeatedly used measures,
this class makes use of the memoize decorator to quickly get the
cached return values of member functions that have been called
before.

Functions for statistical evaluation of connectivity are avail-
able in connectivity_statistics. These include surro-
gate estimation under the null-hypothesis of no connectivity,
bootstrapping, statistical tests, and correction for multiple testing.

The datatools module contains functions for manipulat-
ing EEG data, such as cutting segments from continuous data
or applying spatial filters to segmented data. The matfiles
module allows loading and saving of MATLAB .mat files. This
module converts the result of scipy’s loadmat to nested Python
dictionaries.

The ooapimodules provides the Workspace class, which is
described in detail above.

ICA source decomposition is implemented in the plainica
module. It performs optional dimensionality reduction with PCA
and subsequent ICA source decomposition.

The plotting module contains visualization routines.
This module depends on matplotlib to create plots similar to
MATLAB. The dependency is optional and required only for visu-
alization; if matplotlib is not available, the module can still be
imported, but the functions cannot be called. The visualization

Table 2 | Python modules that form the SCoT API.

Module Purpose

backend (sub-package) Backend interfaces

builtin (sub-package) Implementation of the
builtin backend

config Global configuration

connectivity Connectivity analysis

connectivity_statistics Statistical evaluation of connectivity

datatools Basic data manipulation

matfiles Routines for loading and saving
MATLAB. mat files

ooapi Object oriented API (Workspace)

plainica Source decomposition with ICA

plotting Visualization

utils Utility functions

VAR VAR model interface

varica Joint source/VAR estimation

xvschema Cross-validation strategies

routines rely on the eegtopo package to plot scalp projections
of sources.

The VAR module contains the class VARBase, which is the
VAR base class for VAR models in SCoT. This class implements
routines common to all implementations of VAR models, such as
prediction or model validation. However, model fitting routines
are provided by the derived classes scot.builtin.var.VAR
and scot.backend.sklearn.VAR.

The MVARICA and CSPVARICA procedures are implemented
in the varica module. The module exposes one function for
each procedure.

Cross-validation strategies are implemented in xvschema.
This module contains functions that generate indices for test-
ing and training sets for single-trial and multi-trial opti-
mization. While multi-trial strategy is a normal leave-one-out
cross-validation, the single-trial strategy creates training sets that
contain only single trials.

4. RESULTS
4.1. USING SCoT
4.1.1. Basic usage
Here, we will demonstrate how to use SCoT to estimate multi-
trial connectivity from EEG data. More detailed examples are
distributed with the source code.

First, the SCoT package must be made available to the Python
interpreter. By default, SCoT uses the built-in routines for PCA
and ICA. Alternatively, scikit-learn can be used by importing the
sklearn backend.

import scot
import scot.backend.sklearn

SCoT works with three-dimensional NumPy arrays. The three
dimensions of an EEG data set are time, signals, and trials. An
example data set is available with SCoT. This data set contains a
recording of 45 EEG channels from one subject performing hand
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and foot MI. The subject was instructed to perform either MI task
by a visual cue. Every 9.5–10.5 s such cues were presented 90 times
for each class in randomized order.

from motorimagery import data

In the following code snippets we use the variables raweeg,
triggers, classes, and fs. These variables are taken from
the example data set and contain the continuous EEG data (sam-
ples × channels), a list of trigger locations (sample indices) that
mark individual trials, class labels (’hand’, ’foot’) for each
trial, and the sampling rate (Hz).

Convenience functions for basic data manipulation are avail-
able. The following example cuts segments of 1 s starting 3 s after
each trigger from continuous EEG and arranges them in three
dimensions as described above.

eeg =
scot.datatools.cut_segments(
raweeg, triggers, 3*fs, 4*fs)

The Workspace class provides a high-level interface to the tool-
box. As the name suggests, an instance of this class provides
a workspace on which SCoT routines operate. The workspace
contains data, source and connectivity estimates, and settings.

ws = scot.Workspace(
{’model_order’: 40},
reducedim=4,
locations=locs)

This command initializes a new workspace with VAR model
order 40, dimensionality reduction to four components, and EEG
electrode locations described in the variable locs.

If reducedim was not set, it would default to retaining 99 %
of the EEG variance. Alternatively, PCA can be disabled by setting
reducedim to ’no pca’.

A dataset is passed to the workspace with the set_data
method. The optional second argument may contain a list of
labels that assigns a class label to each trial in the data. The
method do_mvarica decomposes the EEG data into source
activations and fits a VAR model in the process. It is important
to test the VAR residuals for whiteness. A p-value of less than
e.g., 0.05 returned by VAR.test_whiteness would indicate
significantly non-white residuals, and the VAR settings would
need to be tuned. To obtain separate VAR models for each class,
we call set_used_labels() to specify which classes to use
in subsequent operations. Once VAR models are fitted with the
fit_var method, we can plot spectral connectivity measures
with get_connectivity. Finally, show_plots displays the
plots.

# perform source decomposition
# and plot source topos
ws.set_data(eeg, classes)
ws.do_mvarica()
p = ws.var_.test_whiteness(50)
print(’Whiteness:’, p)
fig = ws.plot_connectivity_topos()

# estimate and plot connectivity
ws.set_used_labels([’foot’])
ws.fit_var()
ws.get_connectivity(’ffDTF’, fig)

# estimate and plot connectivity
ws.set_used_labels([’hand’])
ws.fit_var()
ws.get_connectivity(’ffDTF’, fig)

ws.show_plots()

Figure 4 (left) shows the result of applying these steps
to the example data set. By replacing do_mvarica with
do_cspvarica, we obtain different sources (Figure 4, right).
The two frequency bands μ (8–12 Hz) and β (16–24 Hz)
are known to play a part in motor processing (Pfurtscheller,
1981). While MVARICA detects connectivity mostly in the μ

band, CSPVARICA reveals connectivity in the μ and β bands.
Furthermore, connectivity between the CSPVARICA sources
varies more between classes. This difference between MVARICA
and CSPVARICA is somewhat expected, because MVARICA
selects sources that explain as much of the EEG variance as pos-
sible, while CSPVARICA prefers sources with maximally different
activations between classes.

4.1.2. Time-varying connectivity
The plots in Figure 4 only show a snapshot of connectiv-
ity in one time segment. In order to get an overview on
how connectivity evolves over time, the estimation process is
repeated for multiple time-shifted segments. However, source
decomposition should not be performed for every time seg-
ment individually. Even if the same sources were detected
in consecutive windows, their signs and order would change
randomly. This in turn would make interpreting the results
very difficult. Instead, it is reasonable to re-use the same
sources (represented by the unmixing matrix) in each time
segment.

In the following example, such time-frequency analysis is per-
formed over the whole trial of the data set. The new data set is
prepared by cutting 10 s long slices starting 2 s before each trigger
from the continuous EEG.

eeg_long =
scot.datatools.cut_segments(
raweeg, triggers, -2*fs, 8*fs)

The source decomposition obtained before from the short time
segments will be re-used by simply assigning the new data set to
the workspace. Time-frequency analysis does not require the user
to call fit_var. Instead, separate models are fitted internally
for each time segment. The function get_tf_connectivity
takes three mandatory arguments: the measure to use, window
length, and step size.

fig = ws.plot_connectivity_topos()
ws.set_used_labels([’hand’])
ws.get_tf_connectivity(’ffDTF’,

1*fs, fs/5, plot=fig)
ws.show_plots()
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FIGURE 4 | Directed connectivity with MVARICA (left) and CSPVARICA

(right). The ffDTF between four components is plotted for hand (green) and
foot (blue) motor imagery. The estimation window was set from 3 s to 4 s
after cue on-set. The x-axes correspond to frequencies from 0 to 30 Hz, and

the y -axes are the magnitude of the ffDTF (in arbitrary units). Columns
correspond to sources and rows to sinks. Scalp projections are arbitrarily
scaled to provide a qualitative representation of the sources. Each source’s
power spectral density is plotted along the diagonal for reference.

The code snippet above produces output similar to the right side
of Figure 5. Here, it becomes clear that most of the differences
between the classes are due to reduced connectivity during hand
motor imagery.

4.2. BCI SIMULATION
Using SCoT, we performed a BCI simulation study to demon-
strate the efficacy of CSPVARICA and MVARICA on single trial
classification on EEG recordings of MI data. Fourteen subjects
participated in this study, all of them gave informed consent and
were paid for their participation. Each participant took part in
two sessions on separate days, with six recording runs of 30 tri-
als in each session. The sessions comprised 90 right hand MI and
90 foot MI trials. Trial duration was 7 s with breaks of varying
duration (2.5–3.5 s) between trials. EEG preprocessing included
removing electrooculogram (EOG) artifacts (Schlögl et al., 2007)
and downsampling to 100 Hz. A more detailed description of the
data and preprocessing procedure can be found in Billinger et al.
(2013a).

We performed cross-validation per subject and session, using
each of the six runs for testing once and the remaining five
runs for initializing the procedure. In each cross-validation step,
we decomposed the raw EEG into 16 components with either
CSPVARICA or MVARICA. Subsequently, we split the compo-
nent activation signals into segments of 1.5 s length that over-
lapped by 0.2 s. The following two steps were applied to each
segment individually. First, we determined the optimal regular-
ization parameter λ for subsequent single-trial VAR model fitting.
Second, we extracted full frequency directed transfer function
(ffDTF), ffPDC, and band power (BP) features in two frequency
bands (7–13 Hz and 15–25 Hz). While ffDTF and ffPDC were
based on the VAR model, logarithmic BP was calculated directly
from the time signals to serve as a baseline. Finally, we trained

a shrinkage linear discriminant analysis (sLDA) classifier on the
time segment where classes were best discriminated for each
feature type.

We tested the procedure on the run that was previously with-
held from initialization. First, we decomposed the EEG into the
same components as in the initialization step by spatially filtering
the test set with the unmixing matrix obtained during initializa-
tion. For each time segment, we subsequently fitted regularized
VAR models individually on every trial, extracted the ffDTF,
ffPDC, and BP features, and applied the classifier. This resulted in
a confusion matrix for each time segment. We calculated Cohen’s
kappa κ for each segment during the MI phase. The κ metric is
preferable over classification accuray because it takes class distri-
bution into account (Billinger et al., 2013b). From all segments,
we took the 0.9 quantile of κ as classification performance, which
is less sensitive to outliers than peak performance. This measure
of classification performance was obtained for each subject and
session.

Classification performance is significantly higher with
CSPVARICA than with MVARICA (Figure 6). Thus, CSPVARICA
seems to be preferable over MVARICA for MI classification.
It is also reasonable to assume that CSPVARICA is use-
ful for studying connectivity under varying conditions or
tasks.

Furthermore, we demonstrate the effects of regularization
on classification performance. In Figure 7, we compare per-
subject optimization of the regularization parameter with no
regularization and with applying over-regularization by set-
ting the parameter to a high value. Optimal regularization was
determined in the initialization phase of the cross-validation
for each time segment individually, resulting in κ = 0.62 ±
0.18. Clearly, no regularization performs worst with κ = 0.38 ±
0.11. For over-regularization, we chose λ roughly an order
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FIGURE 5 | Time/frequency plots as obtained with CSPVARICA. The
ffDTF between four components is plotted for foot (left) and hand
(right) motor imagery. A 1 s long estimation window was sliding
between t = −2 and t = 8. The x-axes correspond to the center of
the sliding window which ranges from −1.5 to 7.5 s, where t = 0

represents the trigger (cue). The y -axes correspond to frequencies
from 0 to 30 Hz. Columns correspond to sources and rows to sinks,
while the diagonal shows the scalp projections of the respective
components. Scalp projections are arbitrarily scaled to provide a
qualitative representation of the sources.

FIGURE 6 | Classification performance (0.9 quantile of Cohen’s kappa)

for PCA-based dimensionality reduction (MVARICA) and CSP-based

dimensionality reduction (CSPVARICA). The standard error of mean
classification performance is indicated on top of the bars.

of magnitude higher than the average optimal value, which
slightly decreased classification performance to κ = 0.57 ± 0.15.
However, the impact of too much regularization is difficult to
quantify.

5. DISCUSSION
In this article, we introduced SCoT, the Python toolbox for source
connectivity estimation. It provides tools for ICA-based source
decomposition, VAR model fitting, and extraction of connectivity
measures.

FIGURE 7 | Classification performance (0.9 quantile of Cohen’s kappa)

for different regularization approaches. Regularization was optimized for
individual subjects (λopt), set to zero (λ0), and to a high value (λ300). The
standard error of mean classification performance is indicated on top of the
bars.

Widely used neuroscience software packages 2 (Hanke and
Halchenko, 2011) such as EEGLAB (Delorme and Makeig, 2004),
Fieldtrip (Oostenveld et al., 2011), and Biosig (Schlögl and
Brunner, 2008) support connectivity analysis. Particularly, the
SIFT toolobx (Delorme et al., 2011) includes routines for adap-
tive and segmented VAR model fitting with various smooth and
sparse regularization techniques. Furthermore, SIFT supports

2http://neuro.debian.net/survey/2011/results.html
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SCSA (Haufe et al., 2010) for jointly estimating sources and con-
nectivity. These packages are released under open source licenses
and are available for MATLAB 3. In contrast, the MNE soft-
ware package 4 supports model-based source reconstruction and
exposes functionality for calculating several non-parametric con-
nectivity measures in a Python API. With SCoT, we attempt to
provide reusable and modular routines, which can help appli-
cation developers avoid re-implementing the wheel in future
projects based on Python.

For the first time, we presented our new CSPVARICA method
and demonstrated that it is a useful source decomposition
approach for data that contains different labeled conditions.
Currently, our implementation supports only two conditions, but
generalization to an arbitrary number of conditions is planned for
a future release. Our BCI simulations showed that CSPVARICA
outperforms MVARICA in terms of classification performance.
This is not surprising since CSPVARICA favors sources that con-
tain highly discriminative signals. However, MVARICA might be
less susceptible to noise because it retains high-variance compo-
nents. Whether or not one of these methods yields physiologically
more meaningful results is an open question.

Although we conceived CSPVARICA mainly for application in
BCIs, it is likely to be useful for other disciplines of neuroscience
as well. Therefore, we encourage researchers to consider using
CSPVARICA when analyzing differences between conditions.

SCoT relies on MVARICA or CSPVARICA for source
decomposition. Alternative joint source/connectivity estimation
techniques such as SCSA (Haufe et al., 2010) have not been imple-
mented yet in SCoT. Furthermore, model-based source recon-
struction is not included, because source localization is not within
the scope of SCoT. However, SCoT can work with source decom-
positions obtained from such approaches by utilizing unmixing
matrices obtained from other software packages.

VAR model fitting in SCoT is performed with regularized least
squares optimization in general. Routines for ridge regression are
built in, and other approaches such as Lasso, Elastic Net, LARS, or
Bayesian regression are available through scikit-learn. Our simu-
lations show an improvement in classification performance from
κ = 0.38 without regularization to κ = 0.62 when applying ridge
regression, which underscores the importance of regularization in
single-trial connectivity. Support for more VAR fitting and reg-
ularization strategies is planned. A noteworthy approach is the
group LASSO (Vidaurre et al., 2013), which promotes sparse con-
nectivity. This could prove useful for the visualization of large
networks, as it limits the number of non-zero connections.

Time-varying connectivity analysis is possible in SCoT by
employing a sliding window. An alternative could be adaptive
VAR models. However, adaptive models can be more difficult to
handle due to their inherent exponential window. Furthermore,
such models need to be updated for every single sample, while
sliding windows can skip an arbitrary number of samples.

Our default implementation of ICA uses an external
Linux binary to perform Infomax ICA. On other platforms,
the FastICA implementation from scikit-learn may be used

3http://www.mathworks.com/products/matlab/
4http://www.martinos.org/mne/

instead. Furthermore, the flexible backend mechanism should
make it easy to include other ICA implementations such as
CUDAICA (Raimondo et al., 2012) or the ICAs shipped with
MDP (Zito et al., 2009).

In summary, SCoT provides tools required for estimating con-
nectivity on EEG data to the free and open Python platform. It is
designed to tightly integrate with popular scientific computation
and visualization modules in order to be accessible to researchers
familiar with Python.
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Korzeniewska, A., Mańczak, M., Kamiński, M., Blinowska, K. J., and Kasicki, S.
(2003). Determination of information flow direction among brain structures
by a modified directed transfer function (dDTF) method. J. Neurosci. Methods
125, 195–207. doi: 10.1016/S0165-0270(03)00052-9

Lim, J. H., Hwang, H. J., Jung, Y. J., and Im, C. H. (2011). “Feature extraction for
brain–computer interface (BCI) based on the functional causality analysis of
brain signals,” in Proceedings of the 5th International Brain-Computer Interface
Conference (Graz), 36–38.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Berlin
Heidelberg: Springer. doi: 10.1007/978-3-540-27752-1

Makeig, S., Bell, A. J., Jung, T.-P., and Sejnowski, T. J. (1996). “Independent
component analysis of electroencephalographic data,” in Advances in Neural
Information Processing Systems, eds D. Touretzky, M. Moser, and M. Hasselmo
(Cambridge, MA: MIT Press), 145–151.

Michel, C. M., and Murray, M. M. (2012). Towards the utilization of EEG as a brain
imaging tool. Neuroimage 61, 371–385. doi: 10.1016/j.neuroimage.2011.12.039

Millán, J. D. R., Rupp, R., Müeller-Putz, G., Murray-Smith, R., Giugliemma, C.,
Tangermann, M., et al. (2010). Combining brain-computer interfaces and assis-
tive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161. doi:
10.3389/fnins.2010.00161

Mullen, T., Kothe, C., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., et al. (2013).
Real-time modeling and 3d visualization of source dynamics and connectivity
using wearable EEG. Conf. Proc. IEEE Eng. Med. Biol. Soc. 35, 2184–2187. doi:
10.1109/EMBC.2013.6609968

Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M.,
Silberstein, R. B., et al. (1997). EEG coherency I: statistics, reference elec-
trode, volume conduction, Laplacians, cortical imaging, and interpretation
at multiple scales. Electroencephalogr. Clin. Neurophysiol. 103, 499–515. doi:
10.1016/S0013-4694(97)00066-7

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.
doi: 10.1109/MCSE.2007.58

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. (2011). Fieldtrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysiological
data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/2011/156869

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830.

Perrin, F., Pernier, J., Bertrand, O., and Echallier, J. F. (1989). Spherical splines
for scalp potential and current density mapping. Electroencephalogr. Clin.
Neurophysiol. 72, 184–187. doi: 10.1016/0013-4694(89)90180-6

Pfurtscheller, G. (1981). Central beta rhythm during sensorimotor activities in
man. Electroencephalogr. Clin. Neurophysiol. 51, 253–264. doi: 10.1016/0013-
4694(81)90139-5

Raimondo, F., Kamienkowski, J. E., Sigman, M., and Fernandez Slezak, D. (2012).
CUDAICA: GPU optimization of infomax-ICA EEG analysis. Comput. Intell.
Neurosci. 2012, 206972. doi: 10.1155/2012/206972

Schlögl, A., and Brunner, C. (2008). Biosig: a free and open source software library
for bci research. Computer 41, 44–50. doi: 10.1109/MC.2008.407

Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., and Pfurtscheller,
G. (2007). A fully automated correction method of EOG artifacts in
EEG recordings. Clin. Neurophysiol. 118, 98–104. doi: 10.1016/j.clinph.2006.
09.003

Schlögl, A., and Supp, G. (2006). “Analyzing event-related EEG data with
multivariate autoregressive parameters,” in Event-Related Dynamics of Brain
Oscillations, eds C. Neuper and W. Klimesch (Amsterdam: Elsevier),
135–147.

Schnitzler, A., and Gross, J. (2005). Normal and pathological oscillatory communi-
cation in the brain. Nat. Rev. Neurosci. 6, 285–296. doi: 10.1038/nrn1650

Shoker, L., Sanei, S., and Sumich, A. (2005). “Distinguishing between left and
right finger movement from EEG using SVM,” in Engineering in Medicine and
Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference
(Shanghai), 5420–5423.

Siegel, M., Donner, T. H., and Engel, A. K. (2012). Spectral fingerprints
of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134. doi:
10.1038/nrn3137

Vidaurre, D., Bielza, C., and Larrañage, P. (2013). Classification of neural sig-
nals from sparse autoregressive features. Neurocomputing 111, 21–26. doi:
10.1016/j.neucom.2012.12.013

Wei, Q., Wang, Y., Gao, X., and Gao, S. (2007). Amplitude and phase coupling
measures for feature extraction in an EEG-based brain-computer interface. J.
Neural Eng. 4, 120–129. doi: 10.1088/1741-2560/4/2/012

Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. (2009). Modular toolkit for data
processing (MDP): a python data processing frame work. Front. Neuroinform.
2:8. doi: 10.3389/neuro.11.008.2008

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 October 2013; accepted: 20 February 2014; published online: 11 March
2014.
Citation: Billinger M, Brunner C and Müller-Putz GR (2014) SCoT: a Python toolbox
for EEG source connectivity. Front. Neuroinform. 8:22. doi: 10.3389/fninf.2014.00022
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Billinger, Brunner and Müller-Putz. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original pub-
lication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroinformatics www.frontiersin.org March 2014 | Volume 8 | Article 22 | 11

http://dx.doi.org/10.3389/fninf.2014.00022
http://dx.doi.org/10.3389/fninf.2014.00022
http://dx.doi.org/10.3389/fninf.2014.00022
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	SCoT: a Python toolbox for EEG source connectivity
	Introduction
	Materials and Methods
	Source Estimation and VAR Model Fitting
	MVARICA
	CSPVARICA
	Model Validation
	Connectivity
	Single-Trial Estimation
	Statistics
	Source Connectivity Workflow

	Implementation
	Overview
	Backend Mechanism
	Workspace
	Package Structure
	Internal modules
	User facing modules


	Results
	Using SCoT
	Basic usage
	Time-varying connectivity

	BCI Simulation

	Discussion
	Acknowledgments
	References


