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In recent years, powerful general algorithms of causal inference have been developed.
In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC
and IC∗) provide a procedure to determine which causal connections among nodes in
a network can be inferred from empirical observations even in the presence of latent
variables, indicating the limits of what can be learned without active manipulation of the
system. These algorithms can in principle become important complements to established
techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze
causal influences (effective connectivity) among brain regions. However, their application
to dynamic processes has not been yet examined. Here we study how to apply these
algorithms to time-varying signals such as electrophysiological or neuroimaging signals.
We propose a new algorithm which combines the basic principles of the previous
algorithms with Granger causality to obtain a representation of the causal relations
suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic
statistical dependencies between the signals from the causal structure. We show how
some problems for causal inference from neural signals (e.g., measurement noise,
hemodynamic responses, and time aggregation) can be understood in a general graphical
approach. Focusing on the effect of spatial aggregation, we show that when causal
inference is performed at a coarser scale than the one at which the neural sources interact,
results strongly depend on the degree of integration of the neural sources aggregated in
the signals, and thus characterize more the intra-areal properties than the interactions
among regions. We finally discuss how the explicit consideration of latent processes
contributes to understand Granger causality and DCM as well as to distinguish functional
and effective connectivity.
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INTRODUCTION
The need to understand how the interactions and coordination
among brain regions contribute to brain functions has led to an
ever increasing attention to the investigation of brain connec-
tivity (Bullmore and Sporns, 2009; Friston, 2011). In addition
to anatomical connectivity, two other types of connectivity that
regard how the dynamic activity of different brain regions is
interrelated have been proposed. Functional connectivity refers
to the statistical dependence between the activity of the regions,
while effective connectivity refers, in a broad sense, to the causal
influence one neural system exerts over another (Friston, 2011).

Attempts to go beyond the study of dynamic correlations
to investigate the causal interactions among brain regions have
made use of different approaches to study causality developed
outside neuroscience (Granger, 1963, 1980). Granger causality
was proposed in econometrics to infer causality from time-series
and has been widely applied in neuroscience as a model-free
approach to study causal interactions among brain regions (see
Bressler and Seth, 2011, for an overview). It has been applied to

different types of neural data, from intracranial electrophysiolog-
ical recordings (e.g., Bernasconi and König, 1999; Besserve et al.,
2010), Magnetoencephalography recordings (e.g., Vicente et al.,
2011), to functional magnetic resonance imaging (fMRI) mea-
sures (e.g., Roebroeck et al., 2005; Mäki-Marttunen et al., 2013;
Wu et al., 2013). New approaches have been also developed within
neuroscience, such as Dynamic Causal Modeling (DCM) (Friston
et al., 2003) which explicitly models the biophysical interactions
between different neural populations as well as the nature of the
recorded neural signals (Friston et al., 2013).

Separately, in the field of artificial intelligence, another
approach to causal analysis has been developed by Pearl and
coworkers. Pearl’s approach combines causal models and causal
graphs (Spirtes et al., 2000; Pearl, 2009). The fundamental dif-
ference with the approaches currently used to study the brain’s
effective connectivity (Granger causality and DCM) is that the
understanding of causation in Pearl’s framework ultimately relies
on the notion of an external intervention that actively per-
turbs the system. This notion of intervention provides a rigorous
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definition of the concept of causal influence but at the same time
illustrates the limitations of causal analysis from observational
studies.

The analysis of the causal influence one neural system exerts
over another (i.e., effective connectivity) requires considering
causation at different levels (Chicharro and Ledberg, 2012a), in
particular distinguishing between causal inference and quantifi-
cation or modeling of causal effects (Pearl, 2009). At the most
basic level, causal inference deals with assessing which causal con-
nections exist and which do not exist, independently of their
magnitude or the mechanisms that generate them. At a higher
level, the quantification of the magnitude implies selecting a mea-
sure of the strength of the causal effect, and the characterization of
the mechanisms implies implementing a plausible model of how
the dynamics of the system are generated. Recently, it has been
pointed out that the existence of causal connections should be dis-
tinguished from the existence of causal effects, and in particular
that only in some cases it is meaningful to understand the interac-
tions between subsystems in terms of the causal effect one exerts
over another (Chicharro and Ledberg, 2012a). Furthermore, the
possibility and the limitations to quantify causal influences with
Granger causality has been examined (Lizier and Prokopenko,
2010; Chicharro and Ledberg, 2012b; Chicharro, 2014b).

In this work we focus on the basic level of causal analysis
constituted by causal inference. In particular, we investigate how
some general algorithms of causal inference (IC and IC∗ algo-
rithms) developed in the Pearl’s framework (Verma and Pearl,
1990; Pearl, 2009) can be applied to infer causality between
dynamic processes and thus used for the analysis of effective con-
nectivity. This algorithmic approach relies on the evaluation of
the statistical dependencies present in the data, similarly to the
non-parametric formulation of Granger causality. Its particular-
ity is that it explicitly considers the impact of latent (unobserved)
processes as well as the existence of different causal structures
which are equivalent in terms of the statistical dependencies
they produce. Accordingly, it provides a principled procedure
to evaluate the discrimination power of the data with respect
to the possible causal structures underlying the generation of
these data.

Although these causal algorithms do not assume any con-
straint on the nature of the variables to which they are applied,
their application to dynamic processes has yet to be investigated.
The main goal of this paper is to study the extension of Pearls
causal approach to dynamic processes and to evaluate concep-
tually how it can contribute to the analysis of effective neural
connectivity. To guide the reader, we provide below an overview
of the structure of this article.

OVERVIEW OF THE STRUCTURE OF THE ARTICLE
We start by reviewing the approach to causal inference of Pearl
(2009) and Granger (1963, 1980) and we then focus on the
analysis of temporal dynamics. In the first part of our Results
we investigate the application to dynamic processes of the algo-
rithms of causal inference proposed by Pearl. We then recast
their basic principles combining them with Granger causality into
a new algorithm which, as the IC∗ algorithm, explicitly deals
with latent processes but furthermore provides a more suited

output representation of the causal relations among the dynamic
processes.

In the second part of our Results, we shift the focus from the
inference of an unknown causal structure to studying how statis-
tical dependencies can be predicted from the causal structure. In
particular, for a known (or hypothesized) causal structure under-
lying the generation of the recorded signals, we use graphical
criteria to identify the statistical dependencies between the sig-
nals. We specifically consider causal structures compatible with
the state-space models which have recently been recognized as an
integrative framework in which refinements of Granger causal-
ity and DCM converge (Valdes-Sosa et al., 2011). This leads us
to reformulate in a general unifying graphical approach different
effects relevant for the analysis of effective connectivity, such as
those of measurement noise (Nalatore et al., 2007), of hemody-
namic responses (e.g., Seth et al., 2013), and of time aggregation
(e.g., Smirnov, 2013). We especially focus on the effect of spatial
aggregation caused by the superposition in the recorded signals
of the massed activity of the underlying sources of neural activity
interacting at a finer scale.

Finally, in Discussion we discuss the necessity to under-
stand how causal interactions propagate from the microscopic
to the macroscopic scale. We indicate that, although the algo-
rithms here discussed constitute a non-parametric approach
to causal inference, our results are also relevant for modeling
approaches such as DCM and help to better understand how
difficult it is in practice to distinguish functional and effective
connectivity.

REVIEW OF RELEVANT CONCEPTS OF CAUSAL MODELS
In this section, we lay the basis for the novel results by review-
ing the approach to causal inference of Pearl (2009) and Granger
(1963, 1980).

MODELS OF CAUSALITY
We begin reviewing the models of causality described by Pearl
(2009) and relating them to DCM (Friston et al., 2003). For
simplicity, we restrict ourselves to the standard Pearl mod-
els which are the basis of the IC and IC∗ algorithm, with-
out reviewing extensions of these models such as settable
systems (White and Chalak, 2009), which are suitable for a
broader set of systems involving, e.g., optimization and learning
problems.

A Causal Model M is composed by a set of n stochastic variables
Vk, with k ∈ {1, . . . , n} which are endogenous to the model, and
a set of n′ stochastic variables U ′k, with k′ ∈ {1, . . . , n′}, which are
exogenous to the model. Endogenous variables are those explicitly
observed and modeled. For example, when studying the brain’s
effective connectivity, these variables may be the neural activity of
a set of n different regions. The exogenous variables correspond
to sources of variability not explicitly considered in the model,
which can for example correspond to sources of neuromodula-
tion, uncontrolled variables related to changes in the cognitive
state (Masquelier, 2013), or activity of brain areas not recorded.
Accordingly, for each variable Vk the model contains a function fk
such that

Vk = fk(pa(Vk), Uk, θk) (1)

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 64 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chicharro and Panzeri Algorithms of causal inference

That is, the value of Vk is assigned by a function fk determined by
a set θk of constant parameters and taking as arguments a sub-
set of the endogenous variables which is called the parents of Vk

(pa(Vk)), as well as a subset of the exogenous variables Uk. In gen-
eral, in Pearl’s formulation the exogenous variables are considered
as noise terms which do not introduce dependencies between the
endogenous variables, so that a single variable Uk can be related
to each Vk. Causality from Vj to Vj ′ is well-defined inside the
model: Vj is directly causal to Vj ′ if it appears as an argument
of the function fj ′ , that is, if Vj is a parent of Vj ′ (Vj ∈ pa(Vj ′ )).
However, whether the inside-model causal relation correctly cap-
tures some real physical causality depends on the goodness of the
model. To complete the model the probability distribution p({U})
of the exogenous variables is required, so that the joint distribu-
tion of the endogenous variables p({V}) is generated using the
functions. Accordingly, p({V}) can be decomposed in a Markov
factorization that reflects the constraints in terms of conditional
independence that result from the functional model:

p(V1, . . . , Vn) =
n∏

k= 1

p(Vk|pa(Vk)). (2)

Each causal model M has an associated graphical representa-
tion called causal structure G(M). A causal structure is a directed
acyclic graph (DAG) in which each endogenous variable Vk cor-
responds to a node and an arrow pointing to Vk from each of its
parents is added. A path between nodes Vj and Vj ′ is a sequence of
arrows linking Vj and Vj ′ . It is not required to follow the direction
of the arrows, and a path that respects their direction is called a
directed path. A causal structure reflects the parental structure in
the functional model, and thus indicates some constraints to the
set � = {θ1, . . . , θn} of constant parameters used to construct
the functions. The factorization of Equation (2) is reflected in Vk

being conditionally independent from any other of its ancestors
once conditioned on pa(Vk), where the ancestors of Vk—i.e., an
(Vk)—are defined in the graph as those nodes that can be attained
by following backwards any directed path that arrives to Vk.

In the formulation of Pearl no constraints concern the nature
of the variables in the causal model. However, in the presentation
of Pearl’s framework (Pearl, 2009) dynamic variables are seldom
used. This fact, together with the fact that the causal graphs asso-
ciated with the causal models are acyclic, has sometimes lead to
erroneously think that the Pearl’s formulation is not compatible
with processes that involve feedback connections, since they lead
to cyclic structures in the graph (see Valdes-Sosa et al., 2011, for
discussion). However, cycles only appear when not considering
the dynamic nature of the causal model underlying the graphical
representation. For dynamic variables, the functional model con-
sists of a set of differential equations, DCM state equations being
a well-known example (Valdes-Sosa et al., 2011). In particular, in
a discretized form, the state equations are expressed as

Vk,i+1 = fk(pa(Vk,i+1), Uk,i; θk); (3)

where Vk,i+1 is the variable associated with the time sampling i+1
of process k. In general, the parents of Vk,i+1 include Vk,i and can

comprise several sampling times from other processes, depend-
ing on the delay in the interactions. Depending on the type of
DCM models used, deterministic or stochastic, the variables {U}
can comprise exogenous drivers or noise processes. It is thus clear
that the models of causality described by Pearl are general and
comprise models of the form used in DCM.

STATISTICAL INDEPENDENCIES DETERMINED BY CAUSAL
INTERACTIONS
As mentioned above, a causal structure is a graph that represents
the structure of the parents in a causal model. Pearl (1986) pro-
vided a graphical criterion for DAGs called d-separation—where
d stands for directional—to check the independencies present in
any model compatible with a causal structure. Its definition relies
on the notion of collider on a path, a node on a path for which,
when going along the path, two arrows point toward the node
(→V←). The criterion of d-separation states:

D-separation
Two nodes Vj, Vj ′ are d-separated by a set of nodes C if and only
if for every path between Vj, Vj ′ one of the following conditions
is fulfilled:

(1) The path contains a non-collider Vk (→ Vk → or
← Vk → ) which belongs to C.

(2) The path contains a collider Vk (→ Vk ← ) which does not
belong to C and Vk is not an ancestor of any node in C.

For a causal model compatible with a causal structure the
d-separation of Vj and Vj ′ by C is a sufficient condition for Vj

and Vj ′ being conditional independent given C, that is

Vj⊥GVj′ |C⇒ Vj⊥MVj′ |C (4)

where ⊥G indicates d-separation in the causal structure G and
⊥M independence in the joint probability distribution of the
variables generated by the causal model M. This sufficient con-
dition can be converted into an if and only if condition if fur-
ther assuming stability (Pearl, 2009)—or equivalently faithfulness
(Spirtes et al., 2000)—, which states that conditional indepen-
dence between the variables does not result from a particular
tuning of the parameters �, which would disappear if those were
infinitesimally modified.

Considering the correspondence between d-separation and
conditional independence, an important question is the degree to
which the underlying causal structure can be inferred from the set
of conditional independencies present in an observed joint distri-
bution. The answer is that there are classes of causal structures
which are observationally equivalent, that is, they produce exactly
the same set of conditional independencies observable from the
joint distribution. Consider, for example, the four causal struc-
tures of Figure 1. Each causal structure is characterized by a list of
all the conditional independencies compatible with it. Applying
d-separation it can be checked that for Figures 1A–C we have that
X and Y are d-separated by Z (X⊥Y |Z), while in Figure 1D X
and Y are d-separated by the empty set (X ⊥ Y). Therefore, we
can discriminate Figures 1A–C from Figure 1D, but not among
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FIGURE 1 | Observationally equivalent causal structures. The causal
structures (A–C) are observationally equivalent, while the one in (D) is
distinguishable from them.

Figures 1A–C. Statistical dependencies, the only type of avail-
able information when recording the variables, only retain limited
information about how the variables have been generated.

Verma and Pearl (1990) provided the conditions for two DAGs
to be observationally equivalent. Two DAGs are observationally
equivalent if and only if they have the same skeleton and the same
v-structures, where the skeleton refers to the links without con-
sidering the direction of the arrows, and a v-structure refers to
three nodes such that two arrows point head to head to the cen-
tral node, while the other two nodes are non-adjacent, i.e., not
directly linked (as in Figure 1D). It is clear from this criterion
that the structures in Figures 1A–C are equivalent and the one
in Figure 1D is not.

CAUSAL INFERENCE
Causal inference without latent variables, the IC algorithm
Given the existence of observationally equivalent classes of DAGs,
it is clear that there is an intrinsic fundamental limitation to the
inference of a causal structure from recorded data. This is so even
assuming that there are no latent variables. Here we review the IC
algorithm (Verma and Pearl, 1990; Pearl, 2009), which provides a
way to identify with which equivalence class a joint distribution
is compatible, given the conditional independencies it contains.
The input to the algorithm is the joint distribution p({V}) on
the set {V} of variables, and the output is a graphical pattern that
reflects all and no more conditional independencies than the ones
in p({V}). These independencies can be read from the pattern
applying d-separation. The algorithm is as following:

IC ALGORITHM (INDUCTIVE CAUSATION)
(1) For each pair of variables a and b in {V} search for a set Sab

such that conditional independence between a and b given
Sab (a ⊥ b|Sab) holds in p({V}). Construct an undirected
graph linking the nodes a and b if and only if Sab is not found.

(2) For each pair of non-adjacent nodes a and b with a common
adjacent node c check if c belongs to Sab

If it does, then continue.
If it does not, then add arrowheads pointing at c to the edges
(i.e., a→ c← b).

(3) In the partially oriented graph that results, orient as many
edges as possible subject to two conditions: (i) Any alternative
orientation would yield a new v-structure. (ii) Any alternative
orientation would yield a directed cycle.

The algorithm is a straightforward application of the definition
of observational equivalence. Step 1 recovers the skeleton of the
graph, linking those nodes that are dependent in any context.

Step 2 identifies the v-structures and Step 3 prevents creating
new ones or cycles. A more procedural formulation of Step 3
was proposed in Verma and Pearl (1992). As an example, in
Figure 2 we show the output from the IC algorithm that would
result from joint distributions compatible with causal structures
of Figure 1. Note that throughout this work, unless otherwise
stated, conditional independencies are not evaluated by estimat-
ing the probability distributions, but graphically identified using
Equation (4). The causal structures of Figures 2A,C result in the
same pattern (Figures 2B,D, respectively), which differ from the
one that results from Figure 2E (Figure 2F).

The output pattern is not in general a DAG because not all
links are arrows. It is a partial DAG which constitutes a graphical
representation of the conditional independencies. D-separation
is applicable, but now it has to be considered that non-colliders
comprise edges without arrows, while the definition of collider
remains the same. Note that, to build any causal structure that
is an element of the class represented by a pattern, one has to
continue adding arrows to the pattern subject to not creating
v-structures or cycles. For example, the pattern of Figure 2B can
be completed to lead to any causal structure of Figures 1A–C,
but one cannot add head to head arrows, because this would
give a non-compatible causal structure which corresponds to the
pattern of Figure 2F.

CAUSAL INFERENCE WITH LATENT VARIABLES: THE IC∗ ALGORITHM
So far we have addressed the case in which the joint distribution
p({V}) includes all the variables of the model. Now we consider
that only a subset {VO} is observed. We have seen that while a
causal structure corresponds to a unique pattern which represents
the equivalence class, a pattern can represent many causal struc-
tures. The size of the equivalence class generally increases with
the number of nodes. This means that when latent variables are
not excluded, if no constraints are imposed to the structure of the
latent variables, the size of the class grows infinitely. For example,
if the latent variables are interlinked, the unobserved part of the
causal structure may contain many conditional independencies
that we cannot test. To handle this, Verma (1993) introduced the
notion of a projection and proved that any causal structure with
a subset {VO} of observable nodes has a dependency-equivalent
projection, that is, another causal structure compatible with the
same set of conditional independencies involving the observed
variables, but for which all unobserved nodes are not linked
between them and are parents of exactly two observable nodes.
Accordingly, the objective of causal inference with the IC∗ algo-
rithm is to identify with which dependency-equivalent class of
projections a joint distribution p({VO}) is compatible. In the
next section we will discuss how relevant it is for the application
to dynamic processes the restriction of inference to projections
instead of more general causal structures.

The input to the IC∗ algorithm (Verma, 1993; Pearl, 2009)
is p({VO}). The output is an embedded pattern, a hybrid acyclic
graph that represents all and no more conditional independen-
cies than the ones contained in p({VO}). While the patterns that
result from the IC algorithm are partial DAGs which only con-
tain arrows that indicate a causal connection, or undirected edges
to be completed, the embedded patterns obtained with the IC∗
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algorithm are hybrid acyclic graphs because they can contain
more types of links: genuine causal connections are indicated by
solid arrows (a→ b). These are the only causal connections that
can be inferred with certainty from the independencies observed.
Potential causes are indicated by dashed arrows (a ��� b), and
refer to a possible causal connection (a→ b), or to a possi-
ble latent common driver (a← α→ b), where greek letters are
used for latent nodes. Furthermore, bidirectional arrows indicate
certainty about the existence of a common driver. Undirected
edges indicate a link yet to be completed. Therefore, there is a
hierarchy of inclusion of the links, going from completely unde-
fined, to completely defined identification of the source of the
dependence: Undirected edges subsume potential causes, which
subsume genuine causes and common drivers.

Analogously to the patterns of the IC algorithm, the embed-
ded patterns are just a graphical representation of the dependency
class. Their main property is that using d-separation one can
read from the embedded pattern all and no more than the con-
ditional independencies compatible with the class. In the case of
the embedded patterns, d-separation has to be applied extending
the definition of collider to any head to head arrows of any of the
type present in the hybrid acyclic graphs.

IC∗ ALGORITHM (INDUCTIVE CAUSATION WITH LATENT VARIABLES)
(1) For each pair of variables a and b in {VO} search for a set Sab

such that conditional independence between a and b given
Sab (a ⊥ b| Sab) holds in p({VO}). Construct an undirected
graph linking the nodes a and b if and only if Sab is not found.

(2) For each pair of non-adjacent nodes a and b with a common
adjacent node c check if c belongs to Sab

If it does, then continue.
If it does not, then substitute the undirected edges by dashed
arrows pointing at c.

(3) Recursively apply the following rules:

- 3R1: if a and b are non-adjacent, they have a common adjacent
node c, if the link between a and c has an arrowhead into c and
the link between b and c has no arrowhead into c, then sub-
stitute the link between c and b (either an undirected edge or a
dashed arrow) by a solid arrow from c to b, indicating a genuine
causal connection (c→ b).

- 3R2: if there is a directed path from a to b and another path
between them with a link that renders this path compatible
with a directed path in the opposite direction, substitute the

FIGURE 2 | Causal structures (A,C,E) and their corresponding patterns

obtained with the IC algorithm (B,D,F).

type of link by the one immediately below in the hierarchy that
excludes the existence of a cycle.

Steps 1 and 2 of the algorithm are analogous to the steps of the IC
algorithm, except that now in Step 2 dashed arrows are introduced
indicating potential causes. The application of step 3 is analogous
to the completion in Step 3 of the IC algorithm, but adapted to
consider all the types of links that are now possible. In 3R1 a causal
connection (c→ b) is identified because either a causal connec-
tion on the opposite direction or a common driver would create a
new v-structure. In 3R2 cycles are avoided.

As an example of the application of the IC* algorithm in
Figure 3 we show several causal structures and their correspond-
ing embedded patterns. The causal structure of Figure 3A results
in an embedded pattern with two potential causes pointing to Z
(Figure 3B), while the one of Figure 3C results in an embedded
pattern with undirected edges (Figure 3D). The embedded pat-
tern of Figure 3B can be seen as a generalization, when latent
variables are considered, of the pattern of Figure 2F. Similarly,
the pattern of Figure 3D is a generalization of Figures 2B,D. In
the case of these embedded patterns a particular causal structure
from the dependency class can be obtained by selecting one of the
connections compatible with each type of link, e.g., a direct arrow
or to add a node that is a common driver for the case of dashed
arrows indicating a potential cause. Furthermore, like for the
completion of patterns obtained from the IC algorithm, no new
v-structures or cycles can be created, e.g., in Figure 3D the undi-
rected edges cannot be both substituted by head to head arrows.

However, in general for the embedded patterns, not all the ele-
ments of the dependency class can be retrieved by completing
the links, even if one restricts itself to projections. For example,
consider the causal structure of Figure 3E and its corresponding
embedded pattern in Figure 3F. In this case the embedded pat-
tern does not share the skeleton with the causal structure, since
a link X–Y is present indicating that X and Y are adjacent. This
makes the mapping of the embedded pattern to the underlying

FIGURE 3 | Causal structures containing latent variables (A,C,E,G) and

their corresponding embedded patterns obtained with the IC∗
algorithm (B,D,F,H).
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causal structure less intuitive and further highlights that the pat-
terns and embedded patterns are just graphical representations of
a given observational and dependency class, respectively.

As a last example in Figures 3G,H we show a causal structure
and its corresponding embedded pattern where a genuine causal
structure is inferred by applying the rule 3R1. A genuine cause
from X to Y (X→ Y) is the only possibility since a genuine cause
from Y to X (X← Y), as well as a common driver (X← α→ Y)
would both create a new v-structure centered at X. Therefore,
rule 3R1 reflects that even if allowing for the existence of latent
variables, it is sometimes possible to infer a genuine causation
just from observations, without having to manipulate the sys-
tem. As described in rule 3R1, inferring genuine causation from
a variable X to a variable Y always involves a third variable and
requires checking at least two conditional independencies. See the
Supplementary Material for details of a sufficient condition of
genuine causation (Verma, 1993; Pearl, 2009) and how it is for-
mulated in terms of Granger causality when examining dynamic
processes.

THE CRITERION OF GRANGER CAUSALITY FOR CAUSAL INFERENCE
So far we have reviewed the approach of Pearl based on models of
causality and graphical causal structures. The algorithms of causal
inference proposed in this framework are generic and not con-
ceived for a specific type of variables. Conversely, Granger (1963,
1980) proposed a criterion to infer causality specifically between
dynamic processes. The criterion to infer causality from process X
to process Y is based on the extra knowledge obtained about the
future of Y given the past of X, in a given context Z. In its linear
implementation, this criterion results in a comparison of predic-
tion errors, however, as already pointed out by Granger (1980), a
strong formulation of the criterion is expressed as a condition of
independence

p(Yi+ 1|{V}i) = p(Yi+ 1|{V}i\Xi), (5)

where the superindex i refers to the whole past of a process
up to and including sample i, {V} refers to the whole system
{X, Y, Z}, and {Vi}\Xi refers to the past of the whole system
excluding the past of X. That is, X is Granger non-causal to Y
given Z if the equality above holds. Granger (1980) indicated that
Granger causality is context dependent, i.e., adding or removing
other processes from the context Z affects the test for causality.
In particular, genuine causality could only be checked if Z was
including all the processes that have a causal link to X and Y,
otherwise a hidden common driver or an intermediate process
may be responsible for the dependence. Latent variables com-
monly result in the existence of instantaneous correlations, which
are for example reflected in a non-zero cross-correlation of the
innovations when multiple regression is used to analyze linear
Granger causality. In its strong formulation (Granger, 1980) the
existence of instantaneous dependence is tested with the criterion
of conditional independence

p(Xi+ 1, Yi+ 1|{V}i) = p(Xi+ 1|{V}i)p(Yi+ 1|{V}i), (6)

called by Granger instantaneous causality between X and Y. Both
criteria of Granger causality and instantaneous causality can be

generally tested using the conditional Kullback-Leibler divergence
(Cover and Thomas, 2006)

KL(p(Y |X); q(Y |X)) =
∑
x,y

p(x, y) log
p(y|x)

q(y|x)
. (7)

The KL-divergence is non-negative and only zero if the distribu-
tions p and q are equal. Accordingly, plugging into Equation (7)
the probability distributions of the criterion of Granger causality
of Equation (5) we get (Marko, 1973).

TX→Y |Z = I(Yi+ 1, Xi|Yi, Zi)

= KL(p(Yi+ 1|Yi, Zi, Xi); p(Yi+ 1|Yi, Zi)), (8)

which is a conditional mutual information often referred to
as transfer entropy (Schreiber, 2000). Analogously, a general
information-theoretic measure of instantaneous causality is
obtained plugging the probabilities of Equation (6) into Equation
(7) (e.g., Rissanen and Wax, 1987; Chicharro and Ledberg,
2012b):

TX·Y |Z = I(Xi+ 1;Yi+ i|Xi, Yi, Zi)

= KL(p(Yi+ 1|Xi+ 1, Xi, Yi, Zi);p(Yi+ 1|Xi, Yi, Zi)).(9)

Note that here we use Granger causality to refer to the criterion
of conditional independence of Equation (5), and not to the par-
ticular measure resulting from its linear implementation (Bressler
and Seth, 2011). In that sense, we include in the Granger causality
methodology not only the transfer entropy but also other mea-
sures developed for example to study causality in the spectral
domain (Chicharro, 2011, 2014a).

GRAPHICAL REPRESENTATIONS OF CAUSAL INTERACTIONS
Causal representations are also commonly used when applying
Granger causality analysis. However, we should distinguish other
types of causal graphs from the causal structures. The connec-
tions in a causal structure are such that they reflect in a unique
way the arguments of the functions in the causal model which
provides a mechanistic explanation of the generation of the vari-
ables. This means that, for processes, when the functional model
consists of differential equations that in their discretized form are
like in Equation (3), the causal structure comprises the variables
corresponding to all sampling times, explicitly reflecting the tem-
poral nature of the processes. Figures 4A,D show two examples of
interacting processes, the first with two bidirectionally connected
processes and the second with two processes driven by a common
driver.

The corresponding causal structures constitute a microscopic
representation of the processes and their interactions, since they
contain the detailed temporal information of the exact lags at
which the causal interactions occur. However, when many pro-
cesses are considered together, like in a brain connectivity net-
work, this representation becomes unmanageable. Chicharro and
Ledberg (2012b) showed that an intermediate mesoscopic repre-
sentation is naturally compatible with Granger causal analysis,
since it contains the same groups of variables used in Equations
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FIGURE 4 | Graphical representations of interacting processes at

different scales. (A–C) Represent the same bivariate process at a micro,
meso, and macroscopic scale. (D–F) Represent another process also at these

different scales, and (G) represents the Granger causal and instantaneous
causality relations when only X and Y are included in the Granger causality
analysis.

(5, 6). These graphs are analogous to the augmentation graphs
used in Dahlhaus and Eichler (2003). At the mesoscopic scale the
detailed information of the lags of the interactions is lost and thus
also is lost the mapping to the parental structure in the causal
model, so that an arrow cannot be associated with a particular
causal mechanism. Accordingly, the mesoscopic graphs are not in
general DAGs, as illustrated by Figure 4B.

Macroscopic graphs offer an even more schematized represen-
tation (Figures 4C,F) where each process corresponds to a single
node. Moreover, the meaning of the arrows changes depend-
ing on the use given to the graph. If one is representing some
known dynamics, for example when studying some simulated
system, then the macroscopic graph can be just a summary of
the microscopic one. On the other hand, for experimental data,
the graph can be a summary of the Granger causality analy-
sis and then the arrows represent the connections for which the
measure of Granger causality, e.g., the transfer entropy, gives
a non-zero value. Analogously, Granger instantaneous causality
relations estimated as significant can be represented in the graphs
with some undirected link. For example, Figure 4F summarizes
the Granger causal relations of the system {X, Y, Z} when all vari-
ables are observed, and Figure 4G is a summary of the Granger
causal relations (including instantaneous), when the analysis is
restricted to the system {X, Y}, taking Z as a latent process. In
Figure 4G the instantaneous causality is indicated by an undi-
rected dotted edge. Mixed graphs of this kind have been studied
to represent Granger causality analysis, e.g., Eichler (2005, 2007).
Furthermore, graph analysis with macroscopic graphs is also
common to study structural or functional connectivity (Bullmore
and Sporns, 2009).

Apart from the correspondence to a causal model, which
is specific of causal structures, it is important to determine
for the other graphical representations if it is possible to
still apply d-separation or an analogous criterion to read
conditional independencies present in the associated probability

distributions. Without such a criterion the graphs are only a basic
sketch to gain some intuition about the interactions. For meso-
scopic graphs, a criterion to derive Granger causal relations from
the graph was proposed by Dahlhaus and Eichler (2003) using
moralization (Lauritzen, 1996). Similarly, a criterion of separa-
tion was proposed in Eichler (2005) for the mixed graphs rep-
resenting Granger causality and instantaneous Granger causality.
However, in both cases these criteria provide only a sufficient con-
dition to identify independencies, even if stability is assumed, in
contrast to d-separation for causal structures or patterns, which
under stability provides an if and only if condition.

EXTENSION OF PEARL’S CAUSAL MODELS TO DYNAMIC
SYSTEMS AND RELEVANCE TO STUDYING THE BRAIN’S
EFFECTIVE CONNECTIVITY
Above we have reviewed two different approaches to causal infer-
ence. The approach by Pearl is based on causal models and explic-
itly considers the limitations of causal inference, introducing the
notion of observational equivalence and explicitly addressing the
consequences of potential latent variables in the algorithm IC∗.
Conversely, Granger causality more operationally provides a cri-
terion of causality between processes specific for a context, and
does not explicitly handle latent influences. Moreover, the Pearl’s
approach is not restricted with respect to the nature of the vari-
ables and should thus be applicable also to processes. Since this
approach is more powerful in how it treats latent variables and in
how it indicates the limits of what can be learned, in the following
we investigate how the IC and IC∗ algorithms can be applied to
dynamic processes and how they are related to Granger causality.

CAUSAL INFERENCE WITHOUT LATENT VARIABLES FOR DYNAMIC
PROCESSES
We here reconsider the IC algorithm for the especial case of
dynamic processes. Of course one can apply the IC algorithm
directly, since there are no assumptions about the nature of the
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variables. However, the causal structures associated with dynamic
processes (e.g., the microscopic graphs in Figures 4A,D) have
a particular structure which can be used to simplify the algo-
rithm. In particular, the temporal nature of causality assures that
all the arrows should point from a variable at time i to another
at time i+ d, with d > 0. This means that the arrows can only
have one possible direction. Therefore, once Step 1 has been
applied to identify the skeleton of the pattern, all the edges can be
assigned a head directly, without necessity to apply Steps 2 and 3.
Furthermore, even Step 1 can be simplified, since the temporal
precedence give us information of which variables should be used
to search for an appropriate set Sab that renders a and b condition-
ally independent. In particular, for Vj,i and Vj′,i+d, indicating the
variable of process j at the time instant i and the variable of pro-
cess j′ at time i+ d, respectively, the existence of Vj,i → Vj′,i+d

can be inferred testing if it does not hold

p(Vj′,i+d|{V}i+d−1) = p(Vj′,i+d|{V}i+d−1\Vj,i), (10)

where {V}i+d−1\Vj,i means the whole past of the system at time
i+ d excluding Vj,i. This is because conditioning on the rest of
the past blocks any path that can link the two nodes except a
direct arrow. Therefore, Sab = {V}i+d−1\Vj,i is always a valid set
to check if Vj,i and Vj′,i+d are conditionally independent, even
if considerations about the estimation of the probability distribu-
tions lead to seek for smaller sets (e.g., Faes et al., 2011; Marinazzo
et al., 2012).

Note that the combination of the assumption of no latent vari-
ables with the use of temporal precedence to add the direction
of the arrows straightforwardly after Step 1 of the IC algorithm
leads to patterns that are always complete DAGs. This straightfor-
ward completion indicates that there is a unique relation between
the pattern and the underlying causal structure, that is, there are
no two different causal structures sharing the same pattern. For
example, from the three causal structures that are observationally
equivalent in Figures 1A–C, if only one direction of the arrows
is allowed (from right to left for consistency with Figure 4) then
only the causal structure of Figure 1B is possible.

There is a clear similarity between the criterion of Equation
(10) to infer the existence of a single link in the causal struc-
ture and the criterion of Granger causality in Equation (5). In
particular, Equation (10) is converted into Equation (5) by two
substitutions: (i) taking d = 1 and (ii) taking the whole past
Vi+d−1

j instead of a single node Vj,i. Both substitutions reflect
that Granger causality analysis does not care about the exact lag
of the causal interactions. It allows representing the interactions
in a mesoscopic or macroscopic graph, but is not enough to
recover the detailed causal structure. By taking d = 1 and tak-
ing the whole past one is including any possible node that can
have a causal influence from process j to process j′. The Granger
causality criterion combines in a single criterion the pile of cri-
teria of Equation (10) for different d. Accordingly, in the absence
of latent variables, Granger causality can be considered as a par-
ticular application of the IC algorithm, simplified accordingly
to the objectives of characterizing the causal relations between
the processes. Note that this equivalence relies on the stochastic
nature of the endogenous variables in Pearl’s model (Equation 1).

Furthermore, it is consistent with the relation between Granger
causality and notions of structural causality as discussed in White
and Lu (2010).

CAUSAL INFERENCE WITH LATENT VARIABLES FOR DYNAMIC
PROCESSES
We have shown above that in the absence of latent processes
adding temporal precedence as a constraint tremendously sim-
plifies the IC algorithm and creates a unique mapping between
causal structures and patterns. Adding temporal precedence
makes causal inference much easier because time provides us
with extra information and, in the absence of latent variables, no
complications are added when dealing with dynamic processes.

We now show that this simplification does not hold anymore
when one considers the existence of latent processes. We start with
two examples in Figure 5 that illustrate how powerful or limited
can be the application of the IC∗ algorithm to dynamic processes.
Note that the IC∗ algorithm is applied taking the causal structures
in Figures 5A,C as an interval of stationary processes, so that the
same structure holds before and after the nodes displayed.

In Figure 5A we display a causal structure of two interacting
processes without any latent process, and in Figure 5B the corre-
sponding embedded pattern. We can see that, even allowing for
the existence of latent processes, the IC∗ algorithm can result in a
DAG which completely retrieves the underlying causal structure.
In this case the output of the IC algorithm and of the IC∗ algo-
rithm are the same pattern, but the output of the IC∗ algorithm is
actually a much stronger result, since it states that a bidirectional
genuine causation must exist between the processes even if one
considers that some other latent processes exist.

Conversely, consider the causal structure of Figure 5C in
which X and Y are driven by a hidden process. The resulting
embedded pattern is a completely filled undirected graph, in
which all nodes are connected to all nodes since there are no
conditional independencies. Further using the extra information
provided by temporal precedence—by substituting all horizontal
undirected links by dashed arrows pointing to the left and vertical
links by bidirectional arrows—does not allow us to better retrieve

FIGURE 5 | Causal structures corresponding to interacting dynamic

processes (A,C) and their corresponding embedded patterns retrieved

from the IC∗ algorithm (B,D).
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the underlying causal structure since, unlike the patterns resulting
from the IC algorithm, the embedded patterns resulting from the
IC∗ algorithm do not have to share the skeleton with the causal
structures belonging to their dependency equivalence class.

The IC∗ algorithm is not suited to study dynamic processes for
two main reasons. First, the embedded pattern chosen as a rep-
resentation of the dependency class is strongly determined by the
selection of projections as the representative subset of the class.
The projections exclude connections between the latent variables
or latent variables connected to more than two observed variables.
By contrast, a latent process generally consists per se in a complex
structure of latent variables. In particular, commonly causal inter-
actions exist between the latent nodes, since most latent processes
will have a causal dependence on their own past, and each node
does not have a causal influence on only two observable nodes.

Second, the IC∗ algorithm is designed to infer the causal
structure associated with the causal model. This means that, for
dynamic processes, for which generally an acyclic directed graph
is only obtained when explicitly considering the dynamics, the
IC∗ algorithm necessarily infers the microscopic representation
of the causal interactions. In contrast to the case of the IC algo-
rithm in which there are no latent variables, it is not possible
to establish an immediate correspondence with Granger causal-
ity analogous to the relation between Equation (5) and Equation
(10). The fact that the IC∗ algorithm necessarily has to infer the
microscopic causal structure is not desirable for dynamic pro-
cesses. This is because of several reasons related to the necessity
to handle a much higher number of variables (nodes). In first
instance, it requires the estimation of many more conditional
independencies in Step 1 of the algorithm, which is a challenge
for practical implementations (see Supplementary Material for
discussion of the implementation of the algorithms). In second
instance, the microscopic embedded pattern, as for example the
one in Figure 5D, can be too detailed without actually adding
any information about the underlying causal structure but, on
the contrary, rendering the reading of its basic structure less
direct.

Here we propose a new algorithm to obtain a representation
of the dependency class when studying dynamic processes. The
new algorithm recasts the basic principles of the IC∗ algorithm
but has the advantage that it avoids the assumptions related to
the projections, and allows to study causal interactions between
the processes at a macroscopic level, without necessarily exam-
ining the lag structure of the causal interactions. With respect
to usual applications of Granger causality, the new algorithm
has the advantage that it explicitly considers the existence of
potential latent processes. It is important to note that the new
algorithm is not supposed to outperform the IC∗ algorithm in
the inference of the causal interactions. They differ only in the
number of conditional independencies that have to be tested,
much lower for the new algorithm since only the macroscopic
causal structure is examined, and in the form of the embed-
ded pattern chosen to represent the dependency equivalent class.
In simpler terms, for dynamic processes, the new algorithm
offers a more appropriate representation of the class of networks
compatible with the estimated conditional independencies. Both
algorithms rely on the same framework to infer causality from

conditional independencies, and theoretically their performance
is only bounded by the existence of observationally equivalent
causal structures. None of the two algorithms addresses the
practical estimation of the conditional independencies, and thus
any evaluation of their practical performance is specific to the
particular choice of how to test conditional independence (see
Supplementary Material for discussion of the implementation).

In comparison to the assumptions related to projections, the
new algorithm assumes that any latent process is such that its
present state depends in a direct causal way on its own past,
that is, that its autocorrelation is not only indirectly produced
by the influence of other processes. In practice, this means that
we are excluding cases like an uncorrelated white noise that is a
common driver of two observable processes. The reason for this
assumption is that, excluding these processes without auto-causal
interactions, we have (Chicharro and Ledberg, 2012b) that there
is a clear difference between the effect of hidden common drivers
and the effect of hidden processes that produce indirect causal
connections (i.e., X→ α→ Y). In particular, if we have a system
composed by two observable processes X and Y such that a hid-
den process α mediates the causal influence from X to Y, we have
that

X→ α→ Y ⇒ TX→Y > 0 ∧ TX·Y = 0, (11)

where ∧ indicates conjunction. Conversely, if the system α is a
common driver we have that

X← α→ Y ⇒ TX→Y > 0 ∧ TX·Y > 0, (12)

We see that common drivers and mediators have a different
effect regarding the induction of instantaneous causality. This
difference generalizes to multivariate systems with any number
of observed or latent processes (see Supplementary Material).
Common drivers are responsible for instantaneous causality. In
fact, if there is no set of observable processes such that when con-
ditioning on it the instantaneous causality is canceled, then some
latent common drivers must exist since per se causality cannot be
instantaneous unless we think about entanglement of quantum
states. Accordingly,

∀S TX·Y |S > 0⇔ common driver latent processes cause

instantaneous causality, (13)

where one or more common driver latent processes may be
involved. Properties in Equations (11–13) are used in the new
algorithm. The input is the joint distribution that includes the
variables corresponding to sampling time i+ 1 and to the past of
the observable processes VO, i.e., p({VOi+1}, {Vi

O}). The output
is a macroscopic graph which reflects all and no more Granger
causality and instantaneous causality relationships than the ones
present in p({VOi+1}, {Vi

O}). The algorithm proceeds as follows:

ICG∗ ALGORITHM (INDUCTIVE CAUSATION WITH LATENT VARIABLES
USING GRANGER CAUSALITY)
(1) For each pair of processes a and b in {VO} search for a set

Sab of processes such that Ta·b|Sab = 0 holds in p({VO}), i.e.,
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there is no instantaneous causality between a and b given
Sab. Construct a macroscopic graph with each process rep-
resented by one node and linking the nodes a and b with a
bidirectional arrow a↔ b if and only if Sab is not found.

(2) For each pair a and b not linked by a bidirectional arrow
search for a set Sab of processes such that Ta→b|Sab = 0 holds
in p({VO}), i.e., there is no Granger causality from a to b given
Sab. Link the nodes a and b with a unidirectional arrow a→ b
if and only if Sab is not found.

(3) For each pair a and b not linked by a bidirectional arrow
search for a set Sab of processes such that Tb→a|Sab = 0 holds
in p({VO}), i.e., there is no Granger causality from b to a given
Sab. Link the nodes a and b with a unidirectional arrow a← b
if and only if Sab is not found.

The zero values of the Granger measures indicate the existence
of some conditional independencies. Step 1 identifies the exis-
tence of latent common drivers whenever Granger instantaneous
causality exists and marks it with a bidirectional arrow. Steps 2
and 3 identify Granger causality in each direction when there is
no Granger instantaneous causality. In fact Granger causality will
also be present for the bidirectionally linked nodes, but there is
no need to check it separately, given Equation (12). Steps 1–3
are analogous to Step 1 of the IC∗ algorithm since conditioning
sets of different size have to be screened, but now the conditional
independencies examined are not between single variables but
between processes and this is why Granger causality measures are
used.

The algorithm differs in two principle ways from how Granger
causality is commonly used. First, Granger causality is not applied
once for each pair of nodes, but one has to search for a context
that allows assessing if a conditional independence exists. This
is different from applying bidirectional Granger causality to all
combinations of nodes, and also from applying to all combina-
tions of nodes conditional Granger causality conditioning on the
whole rest of the system. The reason is that, as discussed in Hsiao
(1982) and Ramb et al. (2013), when latent processes exist, fur-
ther adding new processes to the conditioning can convert a zero
Granger causality into positive.

Second, an explicit consideration of the possible existence of
latent processes is incorporated, to our knowledge for the first
time, when applying Granger causality. A bidirectional arrow
indicates that the dependencies between the processes can only
be explained by latent common drivers. We should note that
this does not discard that in addition to common drivers there
are directed causal links between the processes, in the same way
that unidirectional arrows do not discard that the causal influ-
ence is not direct but through a mediator latent processes. This
is because the output of the algorithm is again a representa-
tion of a class of causal structures and thus these limitations are
common to the IC∗ algorithm which also implicitly allows the
existence of multiple hidden paths between two nodes or of latent
mediators. Of course, when studying brain connectivity it can
be relevant to establish for example if two regions are directly
causally connected, but this cannot be done without recording
from the potential intermediate regions, or using some heuristic
knowledge of the anatomical connectivity.

The output of the ICG∗ algorithm most often is more intu-
itive about the causal influences between the processes than the
embedded pattern resulting from the IC∗ algorithm and does not
need to consider the microscopic structure. For example, while
for the causal structure of Figure 5C we found that the IC∗ algo-
rithm provides as output the embedded pattern of Figure 5D
(which has a lot of edges that are not in the underlying causal
structure so that a direct mapping is not possible), we found that
the ICG∗ algorithm simply provides as output X ↔ Y thereby
revealing synthetically, directly, and correctly the existence of at
least one latent common driver.

However, to be meaningful as a representation of the con-
ditional independencies associated with the Granger causality
relationships, we need to complement the algorithm with a crite-
rion of separation analogous to the one available for the patterns
and embedded patterns obtained from the IC and IC∗ algorithms,
respectively. In particular, d-separation can be again used, now
considering a collider on a path to be any node with two head to
head arrows on the path, where the heads can belong to the two
types of arrows, i.e., unidirectional or bidirectional. Accordingly,
the subsequent sufficient conditions can be applied to read the
Granger causal relations from the graph:

Graphical sufficient condition for Granger non-causality
X is d-separated from Y by S on each path between X and Y with
an arrow pointing to Y ⇒ TX→Y |S = 0.
Graphical sufficient condition for instantaneous
non-causality
X is d-separated from Y by S on each path between X and
Y with an arrow pointing to X and an arrow pointing to
Y ⇒ TX·Y |S = 0.

Proofs for these conditions are provided in the Supplementary
Material. As in general for d-separation, these conditions become
if and only if conditions if further assuming stability. The con-
ditions here introduced for the graphs resulting from the ICG∗
algorithm are very similar to the ones proposed by Eichler (2005)
for mixed graphs. Also for mixed graphs Eichler (2009) proposed
an algorithm of identification of Granger causality relationships.
The critical difference with respect to this previous approach is
that here instantaneous causality is considered explicitly as the
result of existing latent variables, according to Equations (11–13),
while in the mixed graphs there is no explanation of how it arises
from the underlying dynamics.

ANALYSIS OF THE EFFECT OF LATENT VARIABLES
The results above concern the application of general algorithms of
causal inference to dynamic processes, and how these algorithms
are related to the Granger causality analysis. The perspective was
focused on how to learn the properties of an unknown causal
structure from the conditional independencies contained in a
probability distribution obtained from recorded data. In this sec-
tion we address the opposite perspective, i.e., we assume that we
know a causal structure and we focus on examining what we learn
by reading the conditional independencies that are present in any
distribution compatible with the structure. We will see that a sim-
ple analysis applying d-separation can explain in a simple way
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many of the scenarios in which Granger causality analysis can lead
to inconsistent results about the causal connections. We here term
the positive values of Granger causality that do not correspond to
arrows in the causal structure as inconsistent positives. These are to
be distinguished from false positives as commonly understood in
hypothesis testing, since the inconsistent positives do not result
from errors related to estimation, but, as we show below, they
result from the selection of subordinate signals as the ones used
to carry out the causal inference analysis.

The definition of d-separation does not provide a procedure
to check if all paths between the two variables which condi-
tional independence is under consideration have been examined.
However, a procedure based on graphical manipulation exists
that allows checking all the paths simultaneously (Pearl, 1988;
Kramers, 1998). We here illustrate this procedure to see how it
supports the validity of Granger causality for causal inference
when there are no latent processes and then apply it to gain more
intuition about different scenarios in which inconsistent positive
values are obtained. The procedure works as follows: to check if
X is d-separated from Y by a set S, first create a subgraph of the
complete structure including only the nodes and arrows that are
attained moving backward from X, Y or the nodes in S (i.e., only
the ancestors an(X,Y,S) appear in the subgraph); second, delete all
the arrows coming out of the nodes belonging to S; finally, check
if there is still any path connecting X and Y and if such a path does
not exist, X and Y are separated by S.

In Figure 6 we display the modifications of the graph per-
formed to examine the conditional independencies associated
with the criterion of Granger causality. In Figure 6A we show the
mesoscopic graph of a system with unidirectional causal interac-
tions from Y to X. In Figures 6B,C we show the two subsequent
modifications of the graph required to check if TY→X = 0, while
in Figures 6D,E we show the ones required to check if TX→Y = 0.
In Figure 6B the subgraph is selected moving backward from
{Xi+1, Xi, Yi}, the nodes involved in the corresponding criterion
in Equation (5). In Figure 6C the arrow leaving the conditioning
variable Xi is removed. The analogous procedure is followed in
Figures 6D,E. It can be seen that in Figure 6C Yi and Xi+1 are still
linked, indicating that TY→X > 0, while there is no link between
Xi and Yi+1 in Figure 6E, indicating that TX→Y = 0.

Therefore, d-separation allows us to read the Granger causal
relations from the structure of Figure 6A. One may ask why we
should care about d-separation providing us with information
which is already apparent from the original causal structure in
Figure 6A that we assume to know. The answer is that, when
one constructs a causal structure to reproduce the setup in which
the observable data are recorded, the Granger causal relations
between those are generally not so obvious from the causal struc-
ture. To illustrate that, we consider below a quite general case in
which the Granger causality analysis is not applied to the actual
processes between which the causal interactions occur, but to
some time series derived from them. In Figure 7A we display
the same system with a unidirectional causal interaction from Y
to X, but now adding the extra processes X∗ and Y∗, which are
obtained by some processing of X and Y, respectively. If only the
processes X∗ and Y∗ are observable, and the Granger causality
analysis is applied to them, this case comprises scenarios such as

FIGURE 6 | Graphical procedure to apply d-separation to check the

conditional independencies associated with Granger causality. (A)

Causal structure corresponding to a system with unidirectional causal
connections from process Y to X. (B,C) Steps 1 and 2 of modification of the
original graph in order to check if TY→X = 0. (D,E) Analogous to (B,C), but
to check if TX→Y = 0.

FIGURE 7 | Analogous to Figure 6 but for a causal structure in which

the subordinate processes X∗ and Y ∗ are recorded instead of

processes X and Y between which the causal interactions occur. (A)

The original causal structure. (B,C) Steps 1 and 2 of modification in order to
check if TY→X = 0. (D,E) analogous to (B,C), but to check if TX→Y = 0.

the existence of measurement noise, or the case of fMRI in which
the observed BOLD responses only indirectly reflect the hidden
neuronal states (Friston et al., 2003; Seth et al., 2013).

We can see in Figure 7C that TY∗→X∗ > 0, as if the analy-
sis was done on the original underlying processes X and Y, for
which TY→X > 0. However, in the opposite direction we see in
Figure 7E that an inconsistent positive value appears, since also
TX∗→Y∗ > 0, while TX→Y = 0. We can see that this happens
because Yi acts as a common driver of Y∗i+1 and X∗i, through

the paths Yi → Yi+1 → Y∗i+1 and Yi → Xi → X∗i, respectively.
This case, in which the existence of a causal interaction in one
direction leads to an inconsistent positive in the opposite direc-
tion when there is an imperfect observation of the driven system
(here Y), has been recently discussed in Smirnov (2013). Smirnov
(2013) has exemplified that the effect of measurement noise or
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time aggregation—due to low sampling- can be understood in
this way. However, the illustration in Smirnov (2013) is based on
the construction of particular examples and requires complicated
calculations to obtain analytically the Granger causality values.
With our approach, general conclusions are obtained more easily
by applying d-separation to a causal structure that correctly cap-
tures how the data analyzed are obtained. Nonetheless, the use of
graphical criteria and exemplary simulations is complementary,
since one advantage of the examples in Smirnov (2013) is that it is
shown that the non-negative values of the Granger causality mea-
sure in the opposite direction can have a magnitude comparable
or even bigger than those in the correct direction.

In Table 1 we summarize some paradigmatic common scenar-
ios in which a latent process acts as a common driver leading to
inconsistent positives in Granger causality analysis. In all these
cases Granger causality can easily be assessed in a general way
from the corresponding causal structure that includes the latent
process. First, when non-stationarities exist, time can act as a
common driver since the time instant provides information about
the actual common dynamics. This is the case for example of coin-
tegrated processes, for which an adapted formulation of Granger
causality has been proposed (Lütkepohl, 2005). Also event-related
setups may produce a common driver, since the changes in the
ongoing state from trial to trial can simultaneously affect the two
processes (e.g., Wang et al., 2008).

The other cases listed in Table 1 are analogous to the one illus-
trated in Figure 7. Discretizing continuous signals can induce
inconsistent positives (e.g., Kaiser and Schreiber, 2002) and also
measurement noise (e.g., Nalatore et al., 2007). In both cases
Granger causality is calculated from subordinate signals, obtained
after binning or after noise contamination, which constitute a
voluntary or unavoidable processing of the underlying interact-
ing processes. Similarly, the hemodynamic responses h(X) and
h(Y) only provide with a subordinate processed signal from the
neural states (e.g., Roebroeck et al., 2005; Deshpande et al., 2010).

Table 1 | Cases in which a hidden common driver leads to

inconsistent positive Granger causality from the observed process

derived from process X to the observed process derived from process

Y when there are unidirectional causal connections from Y to X (or

processes Yk to Xk ).

Observed variables Common driver

1 Non-stationarity Xi and Yi Time

2 Event-related
setup

Xi and Yi Trial ongoing
state

3 Discretizing Bin(X )i and Bin(Y )i Underlying
process Y

4 Measurement
noise

X *
i = Xi + εx,i and Y *

i = Yi + εy,i Underlying
process Y

5 fMRI analysis h(X )i and h(Y )i Underlying
process Y

6 Time
aggregation

XTi and YTi Unsampled time
instants of Y

7 Spatial
aggregation

X *
i = �k Xk,i and Y *

i = �k Yk,i Underlying
processes Yk

In the case of time aggregation, the variables corresponding to
unsampled time instants are the ones acting as common drivers
(Granger, 1963). The continuous temporal nature of the pro-
cesses has been indicated as a strong reason to advocate for the
use of DCM instead of autoregressive modeling (see Valdes-Sosa
et al., 2011 for discussion). Finally, aggregation also takes place
in the spatial domain. To our knowledge, the consequences of
spatial aggregation for the interpretation of the causal interac-
tions have been studied less extensively so far than those posed
by time aggregation, and thus we focus on spatial aggregation in
the section below.

THE CASE OF SPATIAL AGGREGATION
We next investigate what happens when it is not possible to mea-
sure directly the activity of the neural sources among which the
causal interactions occur because only spatially aggregated sig-
nals that aggregate many different neural sources are recorded.
For example, a single fMRI voxel reflects the activity of thousands
of neurons (Logothetis, 2008), or the local Field Potential ampli-
tude measured at a cortical location captures contributions from
several sources spread over several hundreds of microns (Einevoll
et al., 2013). The effect of spatial aggregation on stimulus coding
and information representations has been studied theoretically
(Scannell and Young, 1999; Nevado et al., 2004), but its effect
on causal measures of the kind considered here still needs to be
understood in detail.

Possible distortions introduced by spatial aggregation depend
on the nature of the processes and the scale at which the analysis is
done. In particular, neuronal causal interactions occur at a much
more detailed scale (e.g., at the level of synapses) than the scale
corresponding to the signals commonly analyzed. It is not clear,
and to our knowledge it has not been addressed, how causal rela-
tions at a detailed scale are preserved or not when zooming out to
a more macroscopic representation of the system. As we will dis-
cuss in more depth in the Discussion, the fact that a macroscopic
model provides a good representation of macroscopic variables
derived from the dynamics does not assure that it also provides a
good understanding of the causal interactions.

In general, the effect of spatial aggregation on causal inference
can be understood examining a causal structure analogous to the
one of Figure 7, but where instead of a single pair of underlying
processes X and Y there are two sets Xk, k = 1, . . . , N, and Yk′ ,
k′ = 1, . . . , N ′ between which the causal interactions occur. The
signals observed are just an average or a sum of the processes,

X∗ =∑N
k= 1 Xk and Y∗ =∑N ′

k= 1 Yk. For example, in the case
of the brain, the processes can correspond to the firing activity of
individual neurons, and the recorded signals to some measure of
the global activity of a region, like the global rates rX and ry. Even
if for each pair Xk, Yk a unidirectional causal connection exists,
the Granger causality between rX and ry will be positive in both
directions, as can be understood from Figure 7.

We will now examine some examples of spatial aggregation.
As we mentioned in the Introduction, here we specifically focus
on causal inference, i.e., determining which causal interactions
exist. We do not address the issue of further quantifying the
magnitude of causal effects, since this is generally more diffi-
cult (Chicharro and Ledberg, 2012b; Chicharro, 2014b) or even
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in some cases not meaningful (Chicharro and Ledberg, 2012a).
In the case of spatial aggregation, the fact that Granger causality
calculated from the recorded signals has always positive values in
both directions is predicted by the graphical analysis based on d-
separation. However, in practice the conditional independencies
have to be tested from data instead of derived using Equation (4).
When tested with Granger causality measures, the magnitude of
the measure is relevant, even if not considered as a quantification
of the strength of the causal effect, because it can determine the
significance of a non-negative value. The relation between mag-
nitude and significance depends on the estimation procedure and
on the particular procedure used to assess the significance lev-
els (e.g., Roebroeck et al., 2005; Besserve et al., 2010). It is not
on the focus of this work to address a specific implementation
of the algorithms of causal inference, which requires specifying
these procedures (see Supplementary Material for discussion).
Nonetheless, we now provide some numerical examples follow-
ing the work of Smirnov (2013) to illustrate the impact of spatial
aggregation on the magnitude of the Granger causality measures
and we show that the inconsistent positives can have comparable
or even higher magnitude than the consistent positives, and thus
are expected to impair the causal inference performance.

In Figure 8A we show the macroscopic graph representing the
spatial aggregation of two processes in two areas, respectively. The
processes are paired, so that a unidirectional interaction from Xk

to Yk exists, but the signals recorded on each area are a weighted
sum of the processes, that is, we have X = mx X1 + (1−mx) X2,
and analogously for Y with my. This setup reproduces some basic
properties of neural recordings, in which different sources con-
tribute with different intensity to the signal recorded in a position.
To be able to calculate analytically the Granger causality measures
we take, as a functional model compatible with the causal struc-
ture that corresponds to Figure 8A, a multivariate linear Gaussian
autoregressive process. Considering the whole dynamic process
W= {X1, X2, Y1, Y2}, the autoregressive process is expressed as

⎛
⎜⎜⎝

X1i+1

X2i+1

Y1i+1

Y2i+1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c11 c12 0 0
c21 c22 0 0
0.8 0 0.8 0
0 0.8 0 0.8

⎞
⎟⎟⎠

⎛
⎜⎜⎝

X1i

X2i

Y1i

Y2i

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

εx1i

εx2i

εy1i

εy2i

⎞
⎟⎟⎠ , (14)

where C is the matrix that determines the connectivity. For exam-
ple, the coefficient c12 indicates the coupling from X2 to X1.
Matrix C is compatible with the graph of Figure 8A: we fix
c13 = c14 = c23 = c24 = c32 = c41 = 0 so that inter-areal connec-
tions are unidirectional from Xk to Yk. Furthermore, to reduce
the dimensions of the parameter space to be explored, we also
fix c34 = c43 = 0, so that Y1 and Y2 are not directly connected,
and c31 = c42 = c33 = c44 = 0.8. The autoregressive process is of
order one because the future values at time i+ 1 only depend on
time at i. We assume that there are no latent influences and thus
the different components of the noise term ε are uncorrelated,
i.e., the innovations have a diagonal covariance matrix. We fix the
variance of all innovations to 1. Accordingly, the parameter space
that we explore involves the coefficients c11, c22, c12, and c21. We
exclude those configurations which are non-stationary.

The observed signals are obtained from the dynamics as
a weighted average. The Granger causality measures can then
be calculated analytically from the second order moments (see
Chicharro and Ledberg, 2012b and Smirnov, 2013 for details). In
all cases 20 time lags of the past are used, which is enough for con-
vergence. If the Granger causality measures were calculated for
each pair of underlying processes separately, we would get always
TXk→Yk > 0 and TYk→Xk = 0. However, for the observed signals
X and Y, inconsistent positive are expected. To evaluate the mag-
nitude of these inconsistent positives we calculate their relative
magnitude.

r = TY→X/TX→Y . (15)

In Figure 8B we show the values of r in the space of c12, c21, fix-
ing c11 = 0.8 and c22 = 0.2. Furthermore, we fix mx = 0.3 and
my = 0.7. This means that X2 has a preeminent contribution
to X while Y1 has a preeminent contribution to Y. We indicate
the excluded regions where non-stationary processes are obtained
with r = −0.3. In the rest of the space r is always positive, but can
be low (∼10−5). However, for some regions r is on the order of 1,
and even bigger than 1. In particular, this occurs around c12 = 0,
where TX→Y is small, but also around c21 = 0, where TX→Y is
high. Here we only intend to illustrate that non-negligible high
values of r are often obtained, and we will not discuss in detail
why some particular configurations enhance the magnitude of the
inconsistent positives (a detailed analysis of the dependencies can
be found in Chicharro and Ledberg, 2012b and Smirnov, 2013).
In Figure 8C we show the number of configurations in the com-
plete space of the parameters c11, c22, c12, and c21 in which a given
r-value is obtained. We show the results for four combinations of
weights. We see that the presence of values r > 0.1 is robust in this
space, and thus it is not only for extreme cases that the inconsis-
tent positives would be judged as having a non-negligible relative
magnitude. In particular, for this example, r increases when the
weights at the two areas differ, consistently with the intuition that
the underlying interactions can be characterized worse when pro-
cesses from different pairs are preeminently recorded in each area.
Note that none of the algorithms of causal inference, including in
particular the ICG∗, can avoid obtaining such inconsistent posi-
tives. In fact, for the examples of Figure 8, in which the only two
analyzed signals are those that are spatially aggregated, the ICG∗
algorithm is reduced to the calculation of TX→Y , TY→X , and TX.Y

for these two signals. This illustrates that no algorithm of causal
inference can overcome the limitation of not having access to the
sources between which the causal interactions actually occur.

In the example above we focused on evaluating the rel-
ative magnitude of inconsistent positives of Granger causal-
ity. However, spatial aggregation also affects the magnitude of
Granger causality in the direction in which a true underlying
causal connection exists. We also examine these effects since,
although as we mentioned above it may not be safe to use this
magnitude as a measure of the strength of the causal effect, it has
been widely used with this purpose or more generally as a mea-
sure of directional connectivity (see Bressler and Seth, 2011 for a
review). To appreciate this, we examine a system sketched in the
macroscopic graph of Figure 8D. Here we consider two areas X
and Y each comprising N processes. For simplification, instead of
considering causal connections internal to each area, the degree of
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FIGURE 8 | Effects of spatial aggregation on Granger causality. (A) Causal
graph representing two areas composed each of two processes and from
which signals are recorded as a weighted sum. See the text for details of
how a system compatible with the graph is generated as a multivariate linear
Gaussian autoregressive process. (B) Dependence of the relative magnitude
r of the inconsistent positives of Granger causality (Equation 15) on the space
formed by coupling coefficients between X1 and X2. (C) Number of
configurations with a given value r for all stationary configurations in the
space of the parameters c11, c22, c12, and c21 and for different weights

combinations. (D) Another example of causal graph where spatial
aggregation is present in the recording of the signals from the two areas. The
system is again generated as a multivariate autoregressive process with
identical connections from Z to each Xk , identical from W to each Yk , and
identical from each Xk to each Yk (see the main text for details). (E) The
Granger causality measure T<X>→<Y> as a function of the coefficient cyw

and the number of processes N. (F) The relative changes �T ′ (Equation 16)
of the Granger causality measure as a function of the coefficient cyx and the
number of processes N.

integration within each area is determined by a common driver to
all the processes of one area, Z for Xk and W for Yk. The coupling
between the areas is unidirectional for the pairs Xk → Yk, and
only the average of all the processes is recorded from each area,
<X> and <Y>. We now focus on examining how T<X>→<Y>

depends on the number of processes N. Again, the processes are
generated with a multivariate autoregressive process for which
the entries of the coefficient matrix C are compatible with the
connections of Figure 8D:
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(16)

Furthermore, the innovations covariance matrix is again an iden-
tity matrix. In Figure 8E we fix all the non-zero coefficients to
0.8 except cxz and cyw, which determine the degree of integra-
tion in area X due to the common driver Z, and of area Y due
to common driver W, respectively. We then display T<X>→<Y>

as a function of cyw and N fixing cxz = 0.5, in the middle of
the interval [0, 1] examined for cyw. We see that T<X>→<Y>

either increases or decreases with N depending on which coupling

is stronger, cxz or cyw. This means that, T<X>→<Y>, which is
commonly interpreted as a measure of the strength of the connec-
tivity between the areas, is highly sensitive to properties internal
to each of the region when evaluated at a macroscopic scale
at which spatial aggregation is present. Changes in the level of
intra-areal integration could be interpreted as changes in the
inter-areal interactions, but in fact TXk→Yk is constant for all the
configurations shown in Figure 8E.

In Figure 8F we examine how vary, depending on the num-
ber of processes N, the changes of T<X>→<Y> as a function of
the actual coupling coefficient between the areas at the lower
scale (cyx). We again fix all the non-zero coefficients to 0.8 except
cxz = 1.4, cxx = 0.2, and cyx ∈ [0.1, 1.4]. Since cxz > cyw the
Granger causality increases with N. We examine if this increase is
different depending on cyx. For that purpose, for each value of N
we take as a reference the Granger causality calculated for the low-
est coupling cyx = 0.1. We then calculate T′<X>→<Y>(cyx, N) =
T<X>→<Y>(cyx, N)/T<X>→<Y>(0.1, N), that is, the propor-
tion of the Granger causality for each cyx with respect to the
one for cyx = 0.1. We then consider the relative changes of
T′<X>→<Y>(cyx, N) depending on N:

�T′(cyx, N) = T′<X>→<Y>(cyx, N)− T′<X>→<Y>(cyx, 1)

T′<X>→<Y>(cyx, 1)
(17)

We see in Figure 8F that the changes of Granger causality with
cyx are different for different N. This means that if we want
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to compare different connections with different strength (deter-
mined by cyx), the results will be affected by the degree of spatial
aggregation. However, as illustrated in Figure 8F the influence of
changes in the actual coupling strength cyx is low compared to the
influence of the intra-areal integration, as shown in Figure 8E.
These results were robust for other configurations of the setup
represented in Figure 8D.

Altogether, we have shown that spatial aggregation can pro-
duce inconsistent positives of a high relative magnitude, and
renders the measures of connectivity particularly sensitive to
intra-areal properties, because these properties determine the
resulting signals after spatial aggregation.

DISCUSSION
We started by reviewing previous work about causal inference,
comprising Granger causality (Granger, 1980) and causal mod-
els (Pearl, 2009). In particular, we described how causal models
are associated with graphical causal structures, we indicated that
Dynamic Causal Models (DCM) (Friston et al., 2003) are sub-
sumed in the causal models described by Pearl, and that Pearl’s
approach does not exclude feedback connections because feed-
back interactions can be represented in acyclic graphs once the
temporal dynamics are explicitly considered. Furthermore, we
reviewed the criterion of d-separation to graphically read condi-
tional independencies, and the algorithms proposed by Pearl and
collaborators (Pearl, 2009) for causal inference without (IC algo-
rithm) and with (IC∗ algorithm) the existence of latent variables
being considered. These algorithms have as output a graphical
pattern that represents the class of all observationally equivalent
causal structures compatible with the conditional independencies
present in the data.

We then investigated the application of these algorithms to
infer causal interactions between dynamic processes. We showed
that Granger causality is subsumed by the IC algorithm. From
our analysis it is also clear that other recent proposals to decom-
pose Granger causality in different contributions or to identify
the delay of the interactions (Runge et al., 2012; Wibral et al.,
2013) are also subsumed by the IC algorithm. Moreover, we illus-
trated that the IC∗ algorithm provides an output representation
not suited for the analysis of dynamic processes, since it assumes
the lack of structure of the latent variables. Accordingly, we pro-
posed an alternative new algorithm based on the same principles
of the IC∗ algorithm but specifically designed to study dynamic
processes. We did not conceive the new algorithm intending
to outperform the IC∗ algorithm, whose performance is the-
oretically optimal given the bounds imposed by the existence
of observationally equivalent classes. Rather the new algorithm
intends to provide a more appropriate and concise representation
of the causal structures for dynamic processes. Furthermore, the
algorithm integrates Pearl’s algorithmic approach with the use of
Granger causality. To our knowledge, this new algorithm is the
first to use Granger causality explicitly considering the existence
of latent processes. This improvement can be very helpful to assess
how informative are the observed Granger causality relations to
identify the actual causal structure of the dynamics.

Furthermore, we showed that an adequate graphical model of
the setup in which some data are recorded is enough to predict,

without any numerical calculation, the existent Granger causality
relationships using d-separation. We used this graphical analy-
sis to explain, in a unified way, scenarios in which inconsistent
positives of Granger causality have been reported. These com-
prise non-stationary correlated trends (Lütkepohl, 2005), related
ongoing state variability (Wang et al., 2008), discretization (Kaiser
and Schreiber, 2002), measurement noise (Nalatore et al., 2007),
hemodynamic responses (Deshpande et al., 2010), time aggre-
gation (Granger, 1963; Valdes-Sosa et al., 2011), and spatial
aggregation. Regarding the effect of hemodynamic responses, our
results may seem contradictory to the recent study of Seth et al.
(2013) which shows that Granger causality is invariant when the
hemodynamic response is an invertible filter. We note that the
graphical analysis with d-separation is suited for stochastic vari-
ables, such as the ones in the causal models described in section
“Models of Causality.” The invariance of Granger causality is lost
if noise variability is incorporated to the hemodynamic response.

We specifically focused on the effect of spatial aggregation of
the underlying neural sources between which the causal interac-
tions occur. The effects of spatial aggregation concern virtually all
measures of causation calculated from neuroimaging data, and to
those obtained with intracranial massed signals such as LFP. Yet,
to our knowledge, this problem still remains to be fully under-
stood. We showed that spatial aggregation can induce inconsistent
positive Granger causality values of a magnitude comparable to
the consistent ones. More generally, it renders Granger causality
particularly sensitive to the degree of integration of the processes
spatially aggregated. This means that in the presence of spa-
tial aggregation Granger causality, independently of being used
for causal inference or as a measure of functional connectivity
(Valdes-Sosa et al., 2011; Friston et al., 2013), may reflect more the
intra-areal properties of the system than inter-areal interactions.

In this work we followed the framework of Pearl based on
causal models and associated graphical causal structures, in which
a non-parametric approach to causal inference is proposed that
is based on evaluating conditional independencies. In neuro-
science applications, and in particular in fMRI analysis, there
has been a recent controversy comparing Granger causality and
DCM (Valdes-Sosa et al., 2011; Friston et al., 2013). We pointed
out that both approaches are theoretically subsumed by Pearl’s
framework. In fact, much more relevant than this comparison
is the distinction between non-parametric causal inference and
model-based causal inference. Granger causality can be calculated
in a model-based way, with autoregressive or more refined mod-
els (Lütkepohl, 2005), or it can be estimated in a non-parametric
way using transfer entropy (e.g., Besserve et al., 2010). The moti-
vation of using a generative model of the observed signals from
underlying processes, which is at the core of DCM, is the same
of proposing Kalman filters to improve the estimation of Granger
causality (Winterhalder et al., 2005; Nalatore et al., 2007).

All the considerations regarding the limitations of causal infer-
ence due to observational equivalence and latent variables also
hold for model-based approaches like DCM. In DCM the iden-
tification of the model causal structure is partially done a priori,
by the selection of the priors of the parameters in the model,
and partially carried out together with the parameters estimation.
Therefore, the model selected (and thus the corresponding causal
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structure) is not chosen only based on capturing the conditional
independencies observed in the data, but also on optimizing some
criterion of fitting to the actual data. Given the sophistication
of the procedure of model inference, it is not straightforward
to evaluate how the selected DCM model reflects the observed
conditional independencies (and this may vary across different
types of DCM models). Furthermore, the framework of network
discovery within DCM (Friston et al., 2011) is very powerful eval-
uating the posterior probability—evidence- for different models,
but still does not incorporate an evaluation of the influence of
latent variables, like they do the algorithms of causal inference.

Modeling goes beyond causal inference. A good model gives us
information not only about the causal structure, but also about
the actual mechanisms that generate the dynamics. But a model
can be good in terms of statistical prediction without being an
appropriate causal model. That is, the effect of latent processes
can be captured indirectly so that the parameters reflect not only
the interactions between the observed processes but also the hid-
den ones. Therefore, even if by definition inside-model causality is
well-defined in any DCM model, obtaining a good causal model is
much harder than a good statistical model, and cannot be evalu-
ated without interventions on the system. This means that, in the
same sense that the Granger causality measures are measures of
functional connectivity which, in some cases, can be used to infer
causal relations, DCM models are functional connectivity mod-
els which, to the extent to which they increasingly reproduce the
biophysical mechanisms generating the data, converge to causal
models.

The issue of spatial aggregation we addressed here is particu-
larly relevant for causal models, and not only to infer the causal
structure. This is because it regards the nature of each node in
the graph and requires understanding how causal mechanisms
that certainly operate at a finer scale can be captured and are
meaningful for macroscopic variables. That is, to which degree
can we talk about a causal model between variables representing
the activity of large brain areas? This is a crucial question for the
mechanistical—and not only statistical—interpretation of DCM
models, which, despite their increasing level of biological com-
plexity, necessarily stay at a quite macroscopic level of description.
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