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Contemporary simulators for networks of point and few-compartment model neurons

come with a plethora of ready-to-use neuron and synapse models and support

complex network topologies. Recent technological advancements have broadened the

spectrum of application further to the efficient simulation of brain-scale networks on

supercomputers. In distributed network simulations the amount of spike data that

accrues per millisecond and process is typically low, such that a common optimization

strategy is to communicate spikes at relatively long intervals, where the upper limit is given

by the shortest synaptic transmission delay in the network. This approach is well-suited

for simulations that employ only chemical synapses but it has so far impeded the

incorporation of gap-junction models, which require instantaneous neuronal interactions.

Here, we present a numerical algorithm based on a waveform-relaxation technique

which allows for network simulations with gap junctions in a way that is compatible

with the delayed communication strategy. Using a reference implementation in the NEST

simulator, we demonstrate that the algorithm and the required data structures can be

smoothly integrated with existing code such that they complement the infrastructure for

spiking connections. To show that the unified framework for gap-junction and spiking

interactions achieves high performance and delivers high accuracy in the presence of

gap junctions, we present benchmarks for workstations, clusters, and supercomputers.

Finally, we discuss limitations of the novel technology.

Keywords: gap junctions, waveform relaxation, supercomputer, large-scale simulation, parallel computing,
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1. Introduction

Electrical synapses, or gap junctions, were classically regarded
as a primitive form of neural signaling that play roles mostly
in invertebrate neural circuits. Recently, advances in molecular
biology revealed their widespread existence in the mammalian
nervous system, such as visual cortex, auditory cortex, sensory
motor cortex, thalamus, thalamic reticular nucleus, cerebellum,
hippocampus, amygdala, and the striatum of the basal ganglia
(Connors and Long, 2004; Hormuzdi et al., 2004), which suggests
their diverse roles in learning and memory, movement control,
and emotional responses (Connors and Long, 2004; Hormuzdi
et al., 2004; Dere and Zlomuzica, 2011). The functional roles of
gap junctions in network behavior are still not fully understood
but they are widely believed to be crucial for synchronization
and generation of rhythmic activity. Recent results suggest that
their contribution to synchronization is versatile, as it depends
on the intrinsic currents and morphology of the neurons as well
as their interaction with inhibitory synapses (Hansel et al., 2012).
A classification of this diversity of synchronization behaviors
is addressed by the study of phase response curves (PRCs)
(Mancilla et al., 2007; Coombes and Zachariou, 2009; Hansel
et al., 2012), which describe a neuronal oscillator by its phase

response to a perturbation. However, other prominent works also
studymore specific functional roles of gap junctions and combine

the detailed simulation of small networks with experiments
(Vervaeke et al., 2012).

Even though brain-scale neural network simulations approach

the size of the brain of small primates (Herculano-Houzel,
2009) and many biological features are already included, such

as the layer-specific connectivity and spike-timing dependent
synaptic plasticity, simulations with correct cell densities are
still lacking gap junctions. This is due to the absence of
efficient algorithms to simulate gap junctions on large parallel
computers. The seminal work of Pfeuty et al. (2003) investigates
a network of 1600 neurons with random gap-junction coupling
and an average of 10 gap junctions per neuron. The numerical
integration of the entire network is done using a second-order
Runge-Kutta scheme and a fixed step size of 0.01ms. Although
the approach yields accurate results it is not parallelizable
and therefore not applicable to substantially larger networks.
Parallelized simulators for networks of spiking neurons on the
other hand suffer from a different difficulty in the handling of
gap junctions: They exploit the delayed and point-event like
nature of the spike interaction between neurons. In a network
with only chemical synapses with delays dij, the dynamics
of all neurons is decoupled for the duration of the minimal
delay dmin = minij(dij). The synaptic delays in networks of
point-neuron models are the result of an abstraction of the
axonal propagation time of the action potential and the time
the postsynaptic potential needs to travel from the location of
the synapse on the dendrite to the soma where postsynaptic
potentials are assumed to interact. Hence, the dynamics of each
neuron can be propagated independently for the duration dmin

without requiring information from other neurons, such that in
distributed simulations processes need to communicate spikes
only after this period (Morrison et al., 2005). This delayed

communication scheme is currently implemented in the NEST
simulator and is crucial for its performance and scalability to
supercomputers, where communication is expensive, because it
is associated with a considerable latency. Gap junctions, however,
are typically represented by an instantaneous interaction between
pairs of neurons of the form

Igap,ij(t) = gij
(

Vi(t)− Vj(t)
)

. (1)

This current occurs in both cells at the site of the gap junction. In
point-neuron models where equipotentiality is assumed the gap-
junction current immediately affects the membrane potential.
This is unlike the modeling of chemical synapse in point neurons
where any axonal and dendritic delays are subsumed in a retarded
spike interaction. Implementing a gap junction between neuron
i and j in a time-driven simulation scheme therefore requires
that neuron i knows the membrane potential of neuron j and
vice verse at all times. The nature of the coupling between two
neurons mediated by a gap junction depends on the difference of
their membrane potentials; one neuron is excited, the other one
inhibited. An action potential in neuron i causes an excursion of
the membrane potential of neuron j following the shape of the
action potential and any subsequent after-hyperpolarization. This
excursion is termed spikelet (Pfeuty et al., 2003).
At present time-driven simulators supporting gap junctions
implement the instantaneous interaction with a simplification
effectively decoupling the neurons for the duration of the
computation time step h: the membrane potentials of gap-
junction coupled neurons are communicated at the beginning
of each time step and for the purpose of integration are
assumed to be constant for the duration of the time step (for
NEURON simulation software see Hines et al., 2008). There is
no communication for the duration of the computation time
step and no repeated communication of improved membrane
potential values for a given point on the computation-time grid.
In the following, we will refer to this approach as the single-
step method. Note that in this framework a solver may still use
adaptive step-size control to cover the interval h. The single-step
method has two major disadvantages: Firstly communication is
needed in every time step instead of in intervals of the minimal
delay, which can slow down the simulation due to the latency
of the employed MPI communication. Secondly the step size of
the approach needs to be small. Otherwise the error results in a
systematic shift of the membrane potential time course. This can
be easily demonstrated by a two-neuron network: Two identical
model neurons that are coupled by a gap junction should behave
exactly the same as an uncoupled pair since Igap = 0 holds at
all times. However, Figure 1 shows that the single-step approach
produces a significant shift within only 1 s of biological time, even
when simulated with a step size that is already small compared to
the time constants of the model neuron. To yield accurate results
the time step would have to be exceedingly small, requiring
evenmore communication and thereby further slowing down the
simulation.

Here, we present a new iterative method based on the
waveform-relaxation techniques of Lelarasmee (1982), which
provides a higher accuracy than the single-step implementation
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FIGURE 1 | Artefactual shift when using the single-step method. The

black curve shows the reference time course of the membrane potential of a

Hodgkin-Huxley point-neuron model subject to a constant input current of

200 pA after simulating 1 s of biological time. The other curves indicate the

time course of the membrane potential of the same neuron with the same

input for the case that the neuron is coupled by a gap junction to a second

model neuron with exactly the same properties and the simulation is carried

out with the single-step approach using a Runge-Kutta-Fehlberg solver with

an adaptive step-size control to cover the interval of one computation time

step h. The orange curve displays the result for a step size of h = 0.1ms and

the blue curve for 0.02ms.

while allowing us to use the delayed communication scheme.
The approach can be smoothly integrated into the already
existing structures of NEST as of version 2.6.0 documented in
Kunkel et al. (2014). Section 2.1 describes the basics of the
waveform-relaxation technique and its adaptation to the gap-
junction problem. The following Section 2.2 concentrates on the
technical implementation in NEST, Section 2.3 provides details
on the neuron model and the used test cases, and Section 2.4
provides information on the employed computers. Section 2.5
deals with the different accuracy measures that we employed
to evaluate the test cases. The results section comprises three
different subsections: Sections 3.1 and 3.2 focus on the accuracy
of the new iterative method in comparison to the single-step
method and Section 3.3 is concerned with the performance of
the gap-junction framework in NEST. Finally Section 4 discusses
limitations and application areas. Preliminary results have been
presented at the 7th meeting of the Brain and Neural Systems
Team of the Next-Generation Integrated Simulation of Living
Matter program of MEXT in September 2011 (see Diesmann,
2012, for a historical account). The technology described in the
present article will be made available with one of the next major
releases of NEST as open source. The conceptual and algorithmic
work is a module in our long-term collaborative project to
provide the technology for neural systems simulations (Gewaltig
and Diesmann, 2007).

2. Materials and Methods

2.1. Waveform Relaxation
The waveform-relaxation methods are a set of iterative methods
to solve systems of ordinary differential equations (ODEs) by
dividing them into subsystems. They were derived from Picard’s
iterative solution of differential equations (Lumsdaine, 1992) and
were originally invented by Lelarasmee (1982) for the simulation
of large scale electric circuits. For any given initial value problem

y′(t) = f (y(t)) with the initial value y(t0) the basic idea is to divide
the ODE-system into N (preferably weakly coupled) subsystems

y ′1(t) = f1(y1(t), . . . , yN(t))

...

y ′i (t) = fi(y1(t), . . . , yN(t))

...

y ′N(t) = fN(y1(t), . . . , yN(t))

and to solve each subsystem independently by treating the
influence of the other subsystems as given input. By defining
zi(t) = (y1(t), ..., yi−1(t), yi+1(t), ..., yN(t)) as the state of all
systems except system i (named di in Lelarasmee et al., 1982), the
subsystems can be written as

y ′1(t) = f1(y1(t), z1(t))

...

y ′i (t) = fi(yi(t), zi(t))

...

y ′N(t) = fN(yN(t), zN(t)).

Starting with an initial guess y0i (t) for the solution of each
subsystem over the entire time interval [t0, t0 + T ], the solution
of the original ODE-system is determined by iteratively solving
the independent subsystems, where zi is based on the solution of
any of the previous iteration step and hence acts as a given input
to the i-th system. The computed solutions improve step by step
with each iteration.

There are several versions of waveform-relaxation methods,
which differ mainly with respect to the input zi. Here, we employ
the Jacobi waveform relaxation, where the input for the k-th
iteration is based on the solutions of the (k − 1)-th iteration.
For each iteration this strategy enables parallel processing of the
subsystems and is hence well-suited for time-driven simulators
for neuronal networks. The input zi is updated at the beginning
of each iteration, which results in the following subsystems for
the k-th iteration:

yk′1 (t) = f1(y
k
1(t), z

k−1
1 (t))

...

yk′i (t) = fi(y
k
i (t), z

k−1
i (t)) (2)

...

yk′N(t) = fN(y
k
N(t), z

k−1
N (t)).

In order to fulfill the initial value condition, the initial guess y0i (t)
is usually chosen constant as y0i (t) = yi(t0) ∀t ∈ [t0, t0 + T ].
For any Lipschitz-continuous function f the Jacobi waveform
relaxation is known to converge super-linearly on every finite
time interval with length T (Miekkala and Nevanlinna, 1987),
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such that the distance of the k-th iteration to the solution
diminishes as

||yk − y|| ≤
(CT )k

k !
||y0 − y||, (3)

where the constant C depends on the Lipschitz-constant of f .
The Lipschitz-constant of any Lipschitz-continuous function f is

defined as supt1 6= t2
|f (t1)−f (t2)|
|t1−t2|

.

2.1.1. Adaptation to the Gap-junction Problem
Conceptually, the simulation of a network of gap-junction
coupled neurons amounts to the solution of a set of coupled
ordinary differential equations. Unlike in simulations of
networks with chemical synapses, the ODE-systems describing
the behavior of two gap-junction coupled neurons i and j cannot
be solved independently as their ODE-systems are connected
through the Igap-term (1), which mediates a mutual and
immediate influence of the corresponding membrane potentials
Vi and Vj on one another. The waveform-relaxation technique
allows us to solve these coupled ODE systems. While the
technique is compatible with the basic optimization strategies
employed in contemporary time-driven simulators such as the
delayed-communication strategy described in Section 1 and the
integration of the neuronal dynamics on the single-neuron level;
it does require changes to the fundamental simulator structure.

Typically, the partitioning of a given ODE-system into N
subsystems is the most critical part of the waveform-relaxation
method as the coupling strength between the subsystems has
a strong impact on the convergence speed. For a network
of N gap-junction coupled neurons with membrane potentials
V1, . . . ,VN , however, the partitioning is already given: The
ODE-system y ′i (t) = fi(yi(t), zi(t)) of neuron i depends only on
the membrane potentials of the neurons that neuron i connects
to through gap junctions, such that the input zi contains a subset
of V1, . . . ,Vi−1,Vi+1, . . . ,VN .

2.1.2. Algorithmic and Numerical Implementation
Applying the theoretical concept of waveform relaxation to the
current problem requires (i) conveying the k-th approximation
of the membrane potential of one neuron to another, (ii) the
definition of a communication protocol, in particular the time
points when information is exchanged between neurons and (iii)
the definition of an error estimate of the solution used as a
termination criterion. These three points are described in the
current section.

2.1.2.1. Approximation of the membrane potential
The Jacobi waveform relaxation method assumes that in the k-th
iteration the values of Vk−1

i (t) are known in continuous time for
each subsystem. A neural simulator with a time-driven update
scheme solves the system of ODEs for each neuron with an
explicit numerical method with adaptive step size control, so the
solution is only known on the discrete grid points which are
determined by the step size h. We therefore need to approximate

the continuous function Vk−1
i (t) using the known values of

the (k − 1)-th iteration. A discrete representation of the k-th
approximation is moreover needed to communicate the solution

to the other neurons with finite bandwidth demands. There are
three obvious interpolations to consider using constant, linear
or cubic interpolation between a pair of grid points. The cubic
interpolation is possible, since, as we solve a system of first order
differential equations, we also know the derivative V ′i = fi(Vi)
at each grid point. We hence have four conditions, the function
value and its derivative at the left and at the right grid point, to
uniquely determine the four parameters of a cubic interpolation.
If we denote the interpolation of order norder in the time interval
t ∈ [sh, (s+ 1)h] as

Vi

(

(s+ x)h
)

=

norder
∑

m= 0

aimx
m (4)

with x ∈ [0, 1] the coefficients of the interpolation polynomial
can be determined as stated in Table 1.
This scheme is independent of the details of neuronal dynamics,
as long as it can be written as a system of first order differential
equations. Table 2 shows the communication and storage
demands generated by the use of the different approximations.

The communication effort is hardly surprising, since each
neuron has to communicate the coefficients of the approximating
polynomial to the gap-junction coupled neurons. Even though
each neuron usually has multiple gap-junction connections the
incoming interpolation coefficients can be summed up. If we
denote the approximation of the membrane potential Vj in the
time interval t ∈ [sh, (s + 1)h] as in Equation (4) the total gap
current Iigap reads

Iigap =
∑

j

gij(Vj − Vi)

= −Vi ·
∑

j

gij +
∑

j

gij · Vj

= −Vi ·
∑

j

gij +
∑

j

gij ·

norder
∑

m=0

ajmx
m. (5)

It is obvious that within this time step the effect of all incoming
gap junctions can be reduced to the norder + 2 parameters

ḡi =
∑

j

gij and







gmi ≡
∑

j

gij · ajm







m∈[0,norder]

.

TABLE 1 | Coefficients of the interpolation polynomial depending on the

interpolation order.

norder ai0 ai1 ai2 ai3

0 V0

1 V0 V1 − V0

3 V0 hV ′0 −3V0 + 3V1 − h(2V ′0 + V ′1 ) 2V0 − 2V1 + h(V ′0 + V ′1 )

The entries use the following abbreviation: V0 ≡ Vi (sh), V1 ≡ Vi ((s + 1)h), V ′0 ≡ f (Vi (sh))

and V ′1 ≡ f (Vi ((s+ 1)h)).
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TABLE 2 | Storage and communication demand for different

approximation types.

Approximation type Number of values to...

Communicate per time step Store per time step

Constant 1 2

Linear 2 3

Cubic 4 5

The storage and communication demands only differ by the sum of the gap weights

gij , which needs to be stored in order to be able to sum up the incoming gap-junction

connections.

The sums appearing in ḡ and g0, . . . , gnorder over the connected
neurons j can hence be performed once for each iteration step
and the total gap current (Equation 5) in each time step takes the
form

Iigap = −ḡiVi +

norder
∑

m= 0

gmi x
m. (6)

Figure 2 shows the fit of the different approximations for an
exemplary course of the membrane potential. The constant
interpolation is obviously a bad fit for the membrane potential,
whereas the selection between linear and cubic is investigated
in Section 3.1, due to the fact that the linear interpolation
requires less computation and has a lower communication
and storage effort. Thereby it could possibly achieve a better
accuracy/simulation time trade-off.

2.1.2.2. Communication strategy
In general there are two different ways to use the waveform
relaxation technique in a time-driven simulator, which are
illustrated in Figure 3. The choice between the strategies is
simply a question of the simulation time, since both strategies
deliver nearly identical results for a given set of parameters. The
uncoupling of the neurons for the duration of the minimal delay
is exploited by iterating over the whole interval with length of
the minimal delay, i.e. T = dmin. This approach allows us
to keep the benefit of only one communication per minimal
delay and is therefore expected to achieve the shorter simulation
time - especially for simulations on large supercomputers, where
the communication latency is important. The other obvious
choice for the duration of an iteration is T = h. Due to
the faster convergence for shorter T (Equation 3), the latter
choice is expected to need less iterations per time step and
could for that reason be beneficial. We denote this strategy as
h-step communication or communication in every step. Both
communication strategies are investigated in Section 3.3.

2.1.2.3. Iteration control
The convergence speed of the Jacobi waveform relaxation is
dependent on multiple parameters. Firstly the gap weights gij
have an important influence, since they determine the coupling
strength between the neurons that constitute the subsystems. It
is obvious that stronger interaction causes slower convergence
speed, since the iterations are only needed due to the external

FIGURE 2 | Approximations of the membrane potential. The dashed

black curve shows the membrane potential representing an action potential

(spike) and the black dots indicate the grid points used for the approximation

(step size 0.1 ms). The displayed approximations are: piecewise constant

(orange), linear (dark-red) and cubic (blue).

A

B

FIGURE 3 | Two communication strategies using the waveform

relaxation technique in a time-driven simulator. (A) The membrane

potentials are communicated in intervals equal to the minimal synaptic delay.

(B) Potentials are communicated in every computation time step h.

influences. Another important influence is the duration T of
the iteration interval, as suggested by Equation (3). This means
that depending on the chosen communication strategy either
the choice of h (for T = h) or the value of the minimal delay
(for T = dmin) has an influence on the number of needed
iterations. As a consequence of these multiple influences the
number of necessary iterations to achieve a certain accuracy may
differ depending on the network to be simulated andmay be hard
to determine for the user of the simulator. We therefore employ
an adaptive iteration control which guarantees a certain accuracy
on the one hand and avoids unnecessary iterations on the other
hand. We introduce a new parameter prelim_tol and stop
iterating if

|Vk
i (t)− Vk−1

i (t)| ≤ prelim_tol ∀i = 1, ...,N
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holds for every grid point t1, ..., tm within the
iteration interval or the maximal number of iterations
(max_num_prelim_iterations) is reached. The
choice of those parameters is up to the user. The default
settings are 10−4 for the prelim_tol and 15 for
max_num_prelim_iterations. This kind of stopping
criterion guarantees that if the first convergence criterion is met,
further iteration would only improve the solution within the
given error bound. The second criterion can be used to limit the
computation time at time points that show slow convergence. If
the iteration process is terminated by the second criterion the
user is notified by a warning. That way the user can identify if the
setting of the maximal number of iterations is adequate for the
simulation. The max_num_prelim_iterations parameter
should be increased if the maximal number of iterations is
reached in more than a few iteration intervals. The convergence
control however does not protect from inaccuracies caused by
the approximation error of the interpolated membrane potential

Vk−1
j (t) of the respective other neurons. Therefore, the choice of

h is also relevant for the communication strategy with T = dmin,
even if it does not influence the number of iterations for this
particular strategy.

2.2. Framework for Gap Junctions in NEST
The waveform-relaxation method described in Section 2.1
enables the efficient numerical solution of a system of ODEs
on a parallel computing system, where each of the parallel
processes is responsible for a particular subsystem. It therefore
constitutes a promising way of implementing continuous
electrical coupling between neurons through gap junctions in
distributed simulations of neuronal networks. Naturally, the
method relies on inter-process communication at short time
intervals to ensure that each ODE subsystem receives up-to-date
information about the state of all other subsystems. As time-
driven neuronal network simulators such as NEST already invoke
the communication of spikes at regular intervals, it seems suitable
to use these communication points to transfer also the relevant
data for the waveform-relaxation method. To implement this,
however, the simulator needs to provide adequate infrastructure.

The waveform-relaxation method is an iterative approach,
which in the context of the presented novel gap-junction
framework implies that for each communication interval, gap-
junction coupled neurons need to repeatedly update their state
variables until a certain accuracy criterion is fulfilled. Each
iteration involves an additional communication of information
about the updated state. Hence, in order to employ this method,
the scheduler of the simulator needs to support the repetition
of neuronal updates. Section 2.2.3 addresses this issue in more
detail. Beforehand Sections 2.2.1 and 2.2.2 describe the necessary
changes to the fundamental data structures and discuss the
potential impact of these changes on run time and memory
consumption. For the design of the novel framework we also kept
in mind its potential for later extensions.

2.2.1. Connection Infrastructure
In the context of adaptations of the simulation kernel to current
supercomputers, the connection infrastructure of NEST has

undergone major changes, which reduce the memory usage. The
state-of-the-art is described in Kunkel et al. (2014). In NEST,
connection objects are stored on the machine that hosts the
target neuron of the particular connection. The corresponding
data structure is required on each thread to provide efficient
access to local connection objects of a given source neuron during
event delivery (filled pink and turquoise squares in Figure 4).
Previously, these data structures were tailored to the delivery
of spike events to local targets. The redesign presented here
still supports the delivery of these primary events as described
in Kunkel et al. (2012) and Kunkel et al. (2014) without
compromising on performance. The delivery of data to mediate
gap-junction coupling is different to the exchange of spiking
activity in two respects. First, gap junctions require us to convey
interpolation parameters of the membrane potentials from a
sending to the receiving neuron. Second, the mechanism of data
exchange should be generalizable, i.e. it should not be restricted to
the implementation of gap junctions, but also applicable to other
forms of interaction that require the exchange of data between
neurons. The latter point implies the need to distinguish different
connection types and events, called “secondary connections”
and “secondary” or “payload events,” respectively. In contrast,
in the following we call spiking events “primary events.” We
decided for a one-to-one correspondence between a secondary
synapse type and the type of secondary event that can be
sent via such a connection: A secondary event of a given type
will be delivered only to the targets that are connected by
the matching synapse type. The concrete implementation of
gap junctions requires the definition of the new connection
object GapJunction that is derived from the Connection
base class, as well as a class GapJEvent that is derived from
SecondaryEvent.

The extended connection infrastructure shown in Figure 4A

enables the storage of secondary connections. The parts of
the structure that are new compared to Kunkel et al. (2014,
Figure 3) are drawn in turquoise. The two main objectives
of the presented design are small memory footprint and only
marginal impact on the performance of the delivery of the
primary spiking events. Each received primary or secondary
event carries the global id (GID) of the sending neuron. The
sparse table indicates at the given GID if the sending neuron
has at least one (primary or secondary) connection on the local
machine. That given, the sparse table provides a pointer to the
attached connection containers. A spike event to be delivered
is passed to all primary connections that are found below the
pointer. Even though there are different connection types, such
as to distinguish static connections from those exhibiting spike-
timing dependent plasticity, all primary connections convey
spike events. The situation is different for the secondary events,
because an event containing the interpolation parameters for
a gap-junction current should only be delivered to a neuron
that expects this information. The latter is indicated by an
existing gap-junction connection from the sending neuron. The
identification between secondary events and the corresponding
connection is achieved by a unique id that is assigned to each
secondary synapse type and its corresponding event type upon
registration at the simulation kernel.
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A

B

FIGURE 4 | Data structures for the representation of gap junctions. Turquoise elements indicate necessary changes to the fundamental data structures with

respect to the 4g simulation kernel of NEST (cf. Kunkel et al., 2014). (A) Thread-local connection infrastructure. For all neurons a sparse table (dark orange) encodes

whether at least one thread-local target is present or not. If a neuron has local targets, the sparse table stores a pointer (turquoise square with arrow) to a connection

container (light orange data structure), where the least significant bits of this pointer encode whether gap junctions are present or not. The container is either a

HomConnector or a HetConnector depending on whether the neuron has only one or more than one type of local connection. A HomConnector directly stores

the connection objects, whereas a HetConnector stores a vector of HomConnectors, one per connection type. The HomConnectors for spiking connections

come first in the vector and the member primary_end is the number of spiking connection types in the vector. (B) MPI send buffers accumulating outgoing

events in the scheduler. Toy example for a particular communication interval with two MPI processes, where rank 0 hosts the neurons with even global IDs (GIDs) and

rank 1 hosts the neurons with odd GIDs. Each buffer consists of two parts: the data related to spiking connections (blue boxes) followed by the data related to gap

junctions (turquoise boxes). The spike data consist of the GIDs of the local neurons that spiked in the last communication interval, where markers (light gray boxes)

define the end of a simulation interval (here four simulation steps per communication step) and thereby encode the spike time. For each local neuron that has gap

junctions (here neurons 1–4) the corresponding buffer contains an entry, which consists of the ID of the connection type (here gap junctions have the ID 4), the GID of

the neuron, and information about the state of the neuron (payload). A marker (light turquoise box) defines the end of the gap-junction data. The final valid entry in

each buffer is a boolean value (dark turquoise box), which encodes whether the local neurons require another iteration of the waveform-relaxation method. The

buffers may not be completely filled (white boxes).

The adaptive data structure presented in Kunkel et al. (2014)
in the limit of large machines collapses along the dimension
of synapse type, realized by the homogeneous connector
HomConnector in Figure 4A. As a consequence, if a given
source neuron only has a single target connection on a given
machine or several connections of the same type, the additional
infrastructure provided by the HetConnector (the linear
searchable array of different connection types, the member
primary_end) is not available. In this case we need a separate
mechanism to decide whether or not a received primary or
secondary event is to be delivered to a particular target. For
reasons of performance, this decision is done in two steps.
In the first check, in the case of a primary (spiking) event,
we determine if the target neuron has at least one primary

connection; correspondingly, for a secondary event if it has at
least one secondary connection. To perform this test as early as
possible and without the use of either an additional data member
or the need to parse the full connection structure below the
pointer, we make use of redundant information in the pointer
contained in the sparse table. As pointer addresses are aligned
to at least double word boundaries, their two lowest significant
bits are always zero. We use the lowest significant bit to indicate
whether or not the sending neuron has at least one primary
connection, the second lowest significant bit to indicate the
existence of at least one secondary connection. This first test can
hence be done directly after retrieval of the pointer from the
sparse table, which only happens if the neuron has at least one
connection of any type, be it primary or secondary. To access the
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pointed to data structure wemask away the two lowest significant
bits. The second decision depends on the container being
homogeneous (containing only connections of a unique type)
or heterogeneous. Delivering a primary event to a homogeneous
or heterogeneous connector does not require any additional
checks. The delivery of a secondary event to a homogeneous
connector requires the comparison of the secondary event id
to match the id of the stored connections which by definition
are all the same. For heterogeneous connectors this requires a
linear search in the list of secondary connections to find the
connection type that matches the secondary event type, which
is typically affordable as each neuron, if at all, typically only
has few different incoming secondary connection types. To find
the initial point of the linear search in the list of targets shown
in Figure 4A, the heterogeneous connector HetConnector
holds the index primary_end of the last primary connection
type.

2.2.2. Communication Infrastructure
The payload events, introduced in Section 2.2.1 represent the
path by which neurons exchange arbitrary data. In contrast to
primary spiking events, that only carry the id of the sending
neuron and the time stamp of event occurrence, a payload
event transports additional information. We use this concept
as an abstraction layer to the underlying MPI-based (Message
Passing Interface Forum, 2009) data exchange. To this end,
payload events support serialization of their contents into the
MPI send buffers and de-serialization of these events from the
MPI receive buffer. For reasons of performance, these buffers are
homogeneous arrays of unsigned integers. Upon serialization,
the payload event first writes out its unique type id, followed
by its length as measured in multiples of unsigned integers,
followed by its payload. Upon reception this process can without
ambiguities be inverted, as the unique type id of the payload
events allows the identification of the corresponding event type
on the receiver side. Syntactically we use streaming operators
(GapJEvent::operator>>(vector<unsigned int>
::forward_iterator &), and the corresponding
operator<<) to encapsulate the serialization and de-
serialization, which requires static type casting. To avoid the
duplication of data, the GapJEvent does not hold the array of
coefficients for interpolation directly, but rather holds iterators
to the begin and end of the corresponding coefficient arrays.
On the sending side, these iterators point to the interpolation
coefficients that are stored in the neuron. Upon collation of the
send buffers (in function gather_events of the scheduler,
see Algorithm 1), these coefficient are directly copied once from
the respective neuron to the MPI send buffer. On the receiving
side, the same iterators point to the positions in the receive
buffer that hold the corresponding coefficients. The iterator
class internally represents the positions as vector<unsigned
int>>::iterator to allow fast copy into the MPI send
buffers by standard algorithms (std::copy) and in addition
for convenience on the side of the neuron defines an iterator
interface (with functionality to increment and dereferenciation)
for the represented data type, in case of the GapJEvent for
double.

Algorithm 2 shows the use of the GapJEvent in the update
loop of the neuron. After the interpolation coefficients have been
collected during a preliminary update, the coefficient array is
passed to a newly created GapJEvent, which internally only sets
the iterators accordingly, and is then sent to the network via
the method send_secondary that registers the event in the
scheduler. Employing the above mentioned streaming operators,
upon registration secondary events are directly serialized into a
separate buffer of unsigned integers for each thread. Prior to the
communication step, the final send buffer is collocated by the
call of the function gather_events (seeAlgorithm 1) by first
collecting the spiking events separated by the time slices in which
they occurred, as illustrated in Figure 4B. The buffers may not
be completely filled as they are adapted as soon as more data
needs to be transmitted but are not reduced in size in the case of
fewer data. The number of time slices dmin/h per communication
interval of duration dmin is however fixed and the end of each
time slice is marked by a special id (shown as gray square).
Consequently, the receiving side knows when all spiking events
have been read. Therefore, in direct succession to the spiking
data the secondary events buffer for each thread is appended to
the send buffer. A reserved id, invalid_id, marks the end
of the secondary events, followed by a boolean value, indicating
whether or not the desired accuracy has been achieved in the
current iteration step, as explained in Section 2.2.3.

2.2.3. Iterative Neuronal Updates
On the scheduler level the iterative simulation of a time interval
is implemented by the code lines 9-20 in Algorithm 1. Instead
of just once, the update function of the involved neurons
(Algorithm 2) is called several times to perform so called
preliminary updates before the final update is done and the time
of the simulation is advanced. The precise number of preliminary
calls to the update function is determined by the iteration
control as introduced in Section 2.1.2. Each neuron returns to
the scheduler if its solution achieved the desired accuracy. The
scheduler summarizes the feedback and sends the information to
the other MPI processes. The result over all MPI processes is then
returned to the scheduler to determine if a further preliminary
iteration is needed.
The discrimination between the preliminary updates and the final
update is necessary, since during a preliminary update the neuron
will not issue any spiking events, as shown in Algorithm 2.
The incoming spiking events in each iteration are hence the
same. On the other hand, only within a preliminary update a
neuron will send secondary events conveying the interpolation
of its membrane potential to its peers. The final, non-preliminary
update conveys the extrapolation of the membrane potential
to the other neurons, which will be used in the first iteration
of the next time step. Figure 5 shows the realization of the
iterative update process for two neurons with special focus on
the communication of the interpolation coefficients. The first
computation of the time step is calculated with a constant
extrapolation of the membrane potential of the connected
neurons. In every further iteration of the same time interval
the interpolation generated with the last iteration is used.
Accordingly the interpolation of the current membrane potential
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Algorithm 1 | Pseudo code of the simulate function in the scheduler: Lines 9-20 show the additional code due to the new
preliminary updates. An additional boolean value passed to the update function of a neuron distinguishes a preliminary update
(true) from the final update (false). The gather_events() function builds the send buffer including the boolean value
of the variable done, that indicates whether or not additional iterations are needed, and performs the MPI communication. The
deliver_events() function distributes the received events locally and returns true only if all MPI processes indicated that the
desired accuracy was achieved. The function advance_time() updates the values of tleft and tright to the boundaries of the next
time interval.

1 simulate()
2
3 [...]
4
5 //tleft, tright given

6
7 deliver_events()
8
9 //preliminary updates
10 for i ∈ {1, . . . ,max_num_prelim_iterations}:
11 // done indicates if iteration has converged
12 // or more preliminary updates are needed
13 done ← true
14 for all neuron that need prelim_update:
15 done ← update_neuron(tleft, tright, true) && done

16
17 gather_events(done)
18 done = deliver_events()
19 if(done):
20 break
21
22 //final update
23 for all neurons:
24 update_neuron(tleft, tright, false)

25 gather_events(true);
26 advance_time()
27
28 [...]

is computed during preliminary iterations, while for the final
iteration a constant extrapolation is send to the scheduler.
Thereby the interpolation coefficients are computed as described
in Section 2.1.2 and saved in an array. The same applies for
the receiving side (Algorithm 3), where the coefficients from
the incoming connections are accumulated as described in
Section 2.1.2.

The neuron update function shown in Algorithm 2 has
a boolean parameter to distinguish if the current call is a
preliminary or the final update. The implementation can be used
with both communication strategies, since communicating in
every time step (dmin = h) is only a special case and does not
require further adaptation to the code.

2.3. Neuron and Network Models
2.3.1. Neuron Model
The neuron model used throughout the study is a point-
neuron model with Hodgkin-Huxley dynamics. The model
was introduced by Mancilla et al. (2007) to investigate the

synchronization of electrically coupled pairs of inhibitory
interneurons in neocortex. For the purpose of the present work
we preferred this model over the leaky integrate-and-fire model
because the former naturally includes the time course of an action
potential whereas it is a point-event in the latter. The membrane
potential of the model fulfills the ODE

V̇i =
−Iionic(Vi,m, h, n, p)+ Iex + Iin + Igap

Cm

with

Iionic = gNam
3h(Vi − VNa)

+ (gKv3p
2 + gKv1n

4)(Vi − VK)

+ gleak(Vi − Vleak)

Igap =
∑

j

gij(Vj − Vi),
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Algorithm 2 | Update function of a neuron model supporting gap junctions. The update function acts as a time-evolution operator
and propagates the state of the neuron in time from tleft to tright. The state of the neuron at time t is the vector y, where the component
ycurr represents the current flowing into the membrane and ecurr is the corresponding unit vector for this component. The contribution

of the gap current ecurr
∫ tleft+hs
tleft+h(s−1)

Igap(t
′) dt′ is given by Equation (6) and depends on the chosen method of approximation. The

integral sign symbolically represents the integrator for the differential system. The component ysyn represents the component of the
synaptic input current, the initial condition of which is affected by incoming synaptic impulses in line 15 and yV denotes themembrane
potential. The function returns if the stopping criterion is satisfied.

1 bool update_neuron(tleft, tright, bool prelim_update)

2
3 // neuron is in state y(tleft)
4
5 done ← true

6 Ncoeff = (norder + 1) ·
tright−tleft

h
7 new_coefficients[i]← 0 ∀i ∈ {0, . . . ,Ncoeff − 1}
8

9 for s ∈ {1, . . . ,
tright−tleft

h
}:

10 // propagate solution

11 // solve differential equation d
dt
y(t) = f (y(t))+ ecurrIgap(t)

12 // using ḡ and g̃i (see Alg. 3 for definition of g̃i) according to (6)

13 y(tleft + hs)← y(tleft + h(s− 1))+
∫ tleft+hs
tleft+h(s−1)

f (y(t′))+ ecurrIgap(t′) dt′

14
15 ysyn ← ysyn + input_buffer[tlag] // set new synaptic input current
16
17 if (not prelim_update):
18 // check for threshold and refractoriness
19 if not refractory:
20 if yV > 2:
21 emit spike
22 set neuron refractory for time τr
23 else:
24 decrease refractory counter
25 else: // preliminary update
26 // collect coefficients of membrane potential interpolation
27 for j ∈ {0, . . . , norder}:
28 new_coefficients[(s− 1) · (norder + 1)+ j]← aij // aij as shown in (Tab. 1)

29 // check if stopping criterion is violated
30 if(|V_last[s− 1]− yV | ≥ prelim_tol):
31 done ← false
32 V_last[s− 1] = yV
33
34 if (not prelim_update):

35 for s ∈ {1, . . . ,
tright−tleft

h
}:

36 new_coefficients[(s− 1) · (norder + 1)]← yV (tright) // constant extrapolation

37 V_last[s− 1] = 0 // reset V_last
38
39 // send interpolation coefficients to network as gap event
40 GapJEvent ge(new_coefficients);
41 send_secondary(ge);
42
43 // reset data for interpolation
44 ḡ ← 0
45 g̃i ← 0 ∀i ∈ {0, . . . ,Ncoeff − 1}
46
47 return done
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A B C

FIGURE 5 | Iterative neuronal updates. Communication of spikes and

gap-junction related data is carried out in steps of dmin (long gray lines), which

denote the minimum synaptic transmission delay in the network. Within each

communication interval neurons update their dynamics in steps of h (shorter

light gray lines); here dmin = 4 h at time t̂. Turquoise curves show the

approximation of the membrane potential, which is used by the connected

neuron to compute the solution in the current interval. (A) First iteration with

constant approximation for the membrane potential of the connected neuron.

At the end, a new approximation of the just computed membrane potential is

passed to the connected neurons. (B) Further iteration with the approximation

of the membrane potential from last iteration. This part is the actual iteration

process which can be done multiple times. (C) After the final iteration a

constant extrapolation for the next time step is communicated.

Algorithm 3 | handle function algorithm: The handle
function receives the GapJEvents and collects the gap weights
and interpolation coefficients according to Equation (6). In
contrast to Equation (6) g̃m+(s−1)·(norder+1): = gmi,s holds the values
for all time steps s within one iteration interval, instead of just for
one fixed time step.

1 handle(GapJEvent e)
2
3 //Ncoeff given as in (Alg. 2)
4
5 ḡ ← ḡ + e.g
6 for i ∈ {0, . . . ,Ncoeff − 1}:
7 g̃i ← g̃i + e.g · e.coefficients[i]

where the dot ˙denotes differentiation with respect to time. The
channel dynamics is given by

ṁ = αm(1−m)−mβm

ḣ = αh(1− h)− hβh

ṅ = αn(1− n)− nβn

ṗ = αp(1− p)− pβp.

A spike is transmitted to the network if the neuron passes the
threshold while it is not refractory. The time of the spike is
defined as the first grid point after Vi reaches its maximum
value. Without restricting generality of the results we model
synaptic events as currents described by alpha functions (see
Rotter and Diesmann, 1999, Section 3.1.2). The total excitatory
and inhibitory synaptic input currents

Iex(t) =

mex
∑

i= 1

Ji ·H
(

t − tiex
)

· e
t − tiex

τex
· exp

(

−
(

t − tiex
)

τex

)

Iin(t) =

min
∑

i= 1

Ji ·H
(

t − tiin
)

· e
t − tiin

τin
· exp

(

−
(

t − tiin
)

τin

)

,

where the Ji denote the synaptic weights, can be expressed by four
additional first order ordinary differential equations driven by
delta kicks (see Plesser and Diesmann, 2009, for a recent review)
located at the points in time {tiex}i= 1,...,mex and {t

i
in}i= 1,...,min at

which the spikes arrive at the neuron. H(x) =
{

0
1

x<0
x≥0 denotes

the Heaviside step function. The neuronmodel therefore consists
of a system of nine ODEs. Further information on the parameters
and settings can be found in Mancilla et al. (2007). The NEST
implementation hh_psc_alpha_gap of the model uses the
Runge-Kutta-Fehlberg solver (gsl_odeiv_step_rkf45)
of the GNU Scientific Library with an adaptive step-size
control (gsl_odeiv_control_y_new) to advance the
state of an individual neuron by the interval h after which
communication can occur depending on the communication
strategy (Section 2.1.2) used. Thus, the solver may use finer steps
to cover the interval according to the demands of the dynamics.
The accuracy parameter for the absolute predicted error made
in each interval h is chosen as 10−6, the parameter for the
relative predicted error is not being used and set to 0. Therefore,
there is no use in choosing the prelim_tol parameter of the
waveform relaxation below the former value.

2.3.2. Network Models
The results in Section 3 are obtained with three different test
cases. Test case 1a is used in Section 3.1 to investigate the
accuracy on the single neuron level, test case 2 belongs to the
network study in Section 3.2 and the Test cases 1b and 3 are
investigated in Section 3.3 benchmark the performance of the
framework.

Test case 1a: pair of neurons coupled by a gap junction.
The setup consists of two hh_psc_alpha_gap neurons i and
j connected by a gap junction with weight gij = 30.0 nS.
Both neurons receive a constant current of 200.0 pA. All other
parameters are kept at their default values (see Mancilla et al.,
2007) for both neurons. The minimum delay of spike interaction
is set to 1 ms.

Test case 1b: scalable network with gap junctions only.
The Test case 1a is extended to N neurons to investigate the
scaling of the gap-junction framework. Each neuron is coupled
by gap junctions of weight g = 0.5 nS to 60 other neurons.
For the sake of simplicity neuron i is coupled to the neurons
from index (i − 30 + N) mod N to (i + 30) mod N, whereat
mod denotes the modulo operator. Thus, the 30 prior and the
30 subsequent neurons if one considers the neurons aligned on
a ring. All other inputs and parameters are the same as in Test
case 1a.

Test case 2: inhibitory network. We investigate a network of
500 hh_psc_alpha_gap neurons with random initial membrane
potentials between −40 and −80 mV. Each neuron receives 50
inhibitory synaptic inputs that are randomly selected from all
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other neurons, each with synaptic weight JI = −50.0 pA and
synaptic delay d = 1.0 ms. Each neuron receives an excitatory
external Poissonian input of 500.0 Hz with synaptic weight JE =
300.0 pA and the same delay d. In addition 60·500

2 gap junctions
are added randomly to the network resulting in an average of
60 gap-junction connections per neuron. The weight g of each
gap-junction connection is chosen uniformly and will be varied
within our tests.

Test case 3: scalable network without gap junctions.
The setup consists of a balanced random network model
(Brunel, 2000) of 80% excitatory and 20% inhibitory leaky
integrate-and-fire model neurons with alpha-shaped post-
synaptic currents studied by Kunkel et al. (2014) in a maximum-
filling scenario. Both cell types are represented by the NEST
implementation iaf_neuron with a homogeneous set of
parameters. All excitatory-excitatory connections exhibit spike-
timing dependent plasticity and all other synapses are static.
In Kunkel et al. (2014) the network is used to characterize the
differences between the 3rd and 4th generation simulation kernel
of NEST. We use parameter set 1 of the former work to assess the
overhead of the gap-junction framework in simulations where no
gap junctions are present.

2.4. Computers
The results in Section 3 are obtained with three different
computer systems: a workstation computer, a single shared
memory node of a cluster and a distributed-memory
supercomputing system. The workstation is used for the
simulation of small networks investigating the accuracy of the
methods (Test cases 1a and 2), while the simulations on the
shared memory cluster and the supercomputer benchmark assess
the scalability of the new approach in terms of run time and
memory usage (Test cases 1b and 3).

The workstation computer comprises a 4-core Intel(R)
Core(TM) i7-4770 processor, which runs at 3.4 GHz and
supports simultaneous multithreading with 2 threads per core.
32 GB of random access memory (RAM) are available.
The shared memory node of the cluster HAMBACH at
the Jülich Research Centre in Germany includes compute
nodes with 4 AMD Magny-Cours 12-core Opteron 6174
with 2.2 GHz and 256 GB RAM. For our study the
parallelization on both systems is carried out by OpenMP (Board,
2008).

The employed supercomputer is the JUQUEEN BlueGene/Q
at the Jülich Research Centre in Germany. It comprises 28, 672
nodes, each with a 16-core IBM PowerPC A2 processor, which
runs at 1.6 GHz. The system supports a hybrid simulation
scheme: distributed-memory parallel computing with MPI
(Message Passing Interface Forum, 2009) and multithreading
(OpenMP) on the processor level. 16 GB RAM are available per
compute node, which are connected through a five-dimensional
torus interconnect network with a bandwidth of 2 GB/s per link.
In this study all benchmarks were run with 8 OpenMP threads
per JUQUEEN compute node and the pool allocator (see Kunkel
et al., 2014, for details). These are the same settings as in the
former work, which allow us the comparison to previous results
(see Section 3.3).

2.5. Measures of Accuracy
Different measures are used to determine the accuracy of the
solution. The initial two measures compare the membrane
potential V(t) to a known reference solution V∗(t). To
demonstrate that the integration method can qualitative change
the network dynamics, we also use further measures which
characterize the emergent properties of the network such as firing
rate and synchrony.

2.5.1. Error in Membrane Potential Time Course
Firstly we employ the well-known root mean square error
(RMSE)

ǫ =

√

1

T

∫

T

0
(V∗(t)− V(t))2dt, (7)

which measures the deviation of the solution V(t) for the
membrane potential from a reference solution V∗(t) on a time
interval t ∈ [0, T ].
Since the solution is unknown in continuous time, a discrete
approximation with linear interpolation between the grid points
as in Henker et al. (2012) is used. This first order approximation
with N grid points at times t1, ..., tN with 1Vn = V∗(tn)−V(tn)
and 1tn = tn+1 − tn can be determined as

ǫ ≈

√

√

√

√

1

3T

N−1
∑

n= 1

1tn(1V2
n +1V2

n+1 +1Vn1Vn+1). (8)

In contrast to the mean relative error measure

l2 =

√

∫

T

0 (V∗(t)− V(t))2dt
√

∫

T

0 V∗(t)2dt
=

ǫ
√

1

T

∫

T

0 V∗(t)2dt

,

which was employed to determine the error in the membrane
potential time course in Rotter and Diesmann (1999), the RMSE
calculates the mean absolute error. We decided to use the latter
as error measure ǫ since the behavior of the membrane potential
in our test cases is well-known, which makes the absolute error a
more descriptive measure.

2.5.2. Temporal Displacement
Secondly we introduce a measure for the shift δ betweenV(t) and
the reference solutionV∗(t). The measure determines the relative
time shift τ between the two signals that minimizes the RMSE

δ = argmin
0≤τ≤τ∗

√

1

T

∫

T

0
(V∗(t)− V(t + τ ))2dt. (9)

Of course this error measure is only reasonable, if the RMSE is
indeed caused by a shift. In addition periodic signals can lead
to misleading results, if, for example, there is shift of exactly
one period. Nevertheless, the shift is a descriptive measure if
the neurons under consideration match the required conditions.
For practical usage we employ the same discretization as for
the RMSE and calculate V(tn + τ ) through linear interpolation
between the grid points.
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2.5.3. Network Synchrony
For a network of N neurons with membrane potentials
V1, ...,VN we determine the degree of synchrony of the network
state as in Hansel et al. (2012) and Morrison et al. (2007) by the
temporal fluctuations σV of the average membrane potential

V(t) =
1

N

N
∑

i= 1

Vi(t)

normalized by the average temporal fluctuation σVi of the single
cells in the population. The resulting measure χ(N) reads

χ(N) =

√

√

√

√

√

σ 2
V

1

N

∑N
i= 1 σ 2

Vi

(10)

and covers the interval from 0 to 1, where 1 denotes a fully
synchronized network and 0 denotes the asynchronous state. The
variance σ 2

V (and analogously σ 2
Vi
) can be calculated as

σ 2
V =

1

T

∫

T

0
[V(t)]2dt −

[ 1

T

∫

T

0
V(t)dt

]2
.

For our calculations the occurring integrals are approximated by
the trapezoidal rule

1

T

∫

T

0
x(t)dt =

1

N − 1

(

x(t1)+ x(tN)

2
+

N−1
∑

i= 2

x(ti)

)

.

2.5.4. Average Spike Rate
For a given spike train S(t) with spikes at time t1, . . . , tm, the
spike count function n(t) counting the number of spikes that have
occurred up to and including time t can be written as

n(t) =

m
∑

j= 1

H(t − tj)

where again H(x) denotes the Heaviside step function. We
determine the spike rate ν in the interval (0, T ] as

ν =
n(T )

T
,

and denote the average spiking rate of a network of N neurons as

ν̄ =
1

N

N
∑

i= 1

νi.

This estimate of the spike rate ν is consistent to the assumption
that n(t) is an homogeneous Poisson process with intensity λ for
which we try to estimate λ by the given realization (Kaas et al.,
2014, Chapter 19).

3. Results

We employ three network models to study different aspects of
the iterative method in comparison to the single-step method.
First we investigate the pair of neurons coupled by a gap junction,
which was already presented in the introduction to demonstrate
the problems of the single-step method in contrast to the
advanced integration schemes introduced in the present work.
The approach discloses the general behavior of the methods
and provides access to the single-neuron integration error not
measurable in recurrent networks with chaotic dynamics (see
Hanuschkin et al., 2010; Henker et al., 2012 for earlier uses of
this technique). Subsequently a network of inhibitory neurons
is investigated to demonstrate the simultaneous integration
of spiking and gap-junction dynamics and to confirm the
accuracy of the iterative method in capturing a parameter
value at which a qualitative change in network activity occurs.
Finally the scalable network model of Kunkel et al. (2014) is
used to assess the influence of the gap-junction framework on
memory consumption and simulation speed in simulations that
exclusively use spiking synapses. The performance in simulations
with gap junctions is measured with a scaled version of the
two neuron test case. Further details on the employed test
cases can be found in Section 2.3. For the remainder of the
article simulation results on different hardware systems are
distinguished in the figures by color: shades of green for
workstations and shared memory clusters and shades of blue for
the JUQUEEN BlueGene/Q at the Jülich Research Centre (see
Section 2.4 for details on the employed computers).

3.1. Pair of Gap-junction Coupled Neurons
We employ a pair of gap-junction coupled neurons with identical
parameters and constant input current to investigate the accuracy
on the single neuron level. Since both neurons behave exactly the
same, their membrane voltages are identical and consequently
Igap = 0 holds at all times. Therefore, the results of a consistent
gap-junction implementation should be exactly the same as for
two uncoupled neurons with the same properties. In this setting
the results of the uncoupled pair of neurons can be used as a
reference solution to determine the quality of the investigated
integration methods. The employed gap weight g of 30 nS
represents the typical total coupling of a single neuron with
the remainder of the network: the natural weight of a single
gap junction is much smaller, but each neuron is connected to
a couple of tens of other neurons. The test case exposes how
the integration methods operate on networks of synchronized
neurons coupled by gap junctions. In the absence of any chemical
synapses, the minimum delay of spike interaction is set to 1 ms
in order to obtain realistic results for the integration scheme
that only communicates when spike times need to be exchanged.
Further details on the parameters of the pair of neurons are
described in Section 2.3.2 (Test case 1a).

Figure 6A shows the functionality of the iterative method
by measuring the error ǫ in the membrane potential for
different numbers of iterations. The RMSE decreases with
every iteration until it converges to some plateau error. The
plateau error depends on the used interpolation order and
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A

B

FIGURE 6 | Integration error as a function of the number of iterations.

Solid curves indicate cubic interpolation, dashed curves linear interpolation.

Filled circles show results for the communication interval of NEST

communication, open circles show the results for communication in every time

step h. Color indicates the hardware system; in this and all subsequent figures

shades of green represent workstations (here) or shared memory cluster node.

The RMSE ǫ of the membrane potential was measured over 1 s of biological

time. The step size h was chosen as 0.05 ms leading to r = 1.0
0.05 = 20 time

steps within one minimal delay communication interval. (A) RMSE for different

numbers of iterations. (B) Mean number of iterations when using the iteration

control with default settings (prelim_tol chosen as 10−4 and a maximum

of 15 iterations, which was not reached for any simulation interval).

is independent of the employed communication strategy. Its
origin will be discussed later in Figure 8. As expected, a faster
convergence is reached with the h-step communication, while
the communication in intervals of the minimal delay takes
a few more iterations. The lower panel (Figure 6B) shows
the mean number of iterations when the same simulation
is run with the iteration control described in Section 2.1.2.
The number of needed iterations is mostly independent of
the step size h and the used interpolation order, but differs
by about four iterations for the different communication
strategies.

In simulations with distributed memory the total number
of communications is an important quantity, as each
communication is associated with a considerable latency. If
we denote with ιh and ιdmin the mean number of iterations with

the corresponding strategy and define as r = dmin
h

the number
of time steps per minimal delay interval, the total numbers of
communications in each step (Ch) and after each minimum
delay (Cdmin ) relate to each other as

Ch ≈
ιh

ιdmin

· r · Cdmin . (11)

As the coupling strength of the test case relates to the total
coupling of a single neuron, the simulation provides a realistic

estimate for the number of iterations needed within larger
network simulations. For this given estimate Ch exceeds Cdmin for
r ≥ 3. Since r = 10 or r = 20 are more likely for an average
simulation, we have Ch ≫ Cdmin , so communication after each
minimum delay is beneficial despite the faster convergence of the
h-step communication strategy.

Figure 7 compares the results of the iterative method with
the results of the single step methods in terms of accuracy and
simulation time. Panel B measures the error ǫ of both methods
for different step sizes h. For any given step size h the RMSE
of the iterative method is much smaller than the RMSE of the
single-step approach, which does not even reach a satisfying
accuracy for step size 0.001 ms. Within the iterative method a
cubic interpolation leads to a higher accuracy. Figure 7A shows
that the error relates to a shift in comparison to the reference
solution. This shift can be reduced up to 10−6 ms for the iterative
method with cubic interpolation and step size 0.01 ms. At given
step size h and leaving accuracy considerations aside, the single
step method is the fastest implementation for any given step size,
since no additional iterations are needed to compute the results.
The iterative approach with linear interpolation saves some time
in comparison to the version with cubic interpolation since less
interpolation data needs to be computed and communicated.
For this simple test case h-step communication outperforms the
communication strategy in intervals of the minimal delay by
a factor of 1.5, due to the very low amount of communicated
data and because the communication in the employed shared
memory system is fast compared to the computation. Further
simulation time results for simulations on supercomputers are
presented in Section 3.3. Figure 7D compares the methods in
terms of efficiency. We therefore analyze the simulation time
as a function of the integration error (Morrison et al., 2007),
measured through the RMSE. There are two ways of reading
this graph: Horizontally, one can find the most accurate method
for a given simulation time. Vertically one can find the fastest
method for a desired accuracy. The results show that the iterative
method delivers better results in shorter time than the single
step method. Also the additional effort of the cubic simulation
pays off, since the method computes more accurate results in the
same simulation time and reaches an accuracy which cannot be
reached with the linear interpolation.

We observe from Figures 6 and 7 that the error of the iterative
method converges to a certain plateau error that decreases
with smaller step size. Figure 8 shows that the approximation
of the membrane potential is the reason for this inaccuracy.
The upper panel shows the error when approximating the
reference spike shape in Figure 2 with different step sizes.
The lower panel compares this error to the NEST RMSE
when using the corresponding interpolation and same step
size h. It turns out that the errors are basically the same, as
indicated by the dotted line. The approximation error of the
cubic interpolation is slightly higher than the mean simulation
error, since the approximation of a spike is the most difficult
part of the interpolation. The membrane potential between
two spikes can be approximated almost perfectly with a cubic
interpolation, although the spike shape still deviates from a cubic
behavior.
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A B

C D

FIGURE 7 | Efficiency of a two-neuron simulation. Triangles show results with the single-step method, while circles indicate results obtained by the

iterative method. Again solid curves indicate cubic interpolation and dashed curves were obtained with linear interpolation. The used communication

scheme is indicated by open (h-step communication) and filled symbols (communication in intervals of the minimal delay). The iteration control was used

with prelim_tol chosen as 10−6. (A) Shift of the spike times after 1 s of biological time plotted against used step size h. (B) RMSE ǫ measured

over 1 s of biological time plotted against the step size h. (C) Simulation time of the different approaches for 1 s of biological time. (D) Simulation time

vs. RMSE ǫ of the corresponding simulation.

3.2. Network with Combined Dynamics of
Chemical Synapses and Gap Junctions
The results in Section 3.1 show the functionality of the iterative
approach in purely gap-junction coupled networks. The current
section investigates if the new integration method also captures
the global network dynamics correctly, when both chemical
synapses and gap junctions are involved, which is another
important aspect for the integrator. In order to do so, we
turn to population measures like the spike rate and synchrony
in the network and study a network with a phase transition.
Capturing the correct parameter value at which the transition
occurs is a good indication that not only the single neuron
error is low but also the global error. This idea and the network
setting have a history in Hansel et al. (1998), Morrison et al.
(2007), Coombes and Zachariou (2009), and Hansel et al. (2012).
The employed network (Test case 2) consists of 500 neurons
with external excitatory Poissonian input, which are coupled
by inhibitory synapses and gap junctions. Without the gap
junctions (meaning for g = 0 nS) the network shows an
asynchronous irregular state (Brunel and Hakim, 1999) that is
caused by the external excitatory Poissonian drive being balanced
by the inhibitory feedback within the network. The network is
expected to synchronize with increasing g. A qualitatively similar
synchronization has been observed previously (Coombes and
Zachariou, 2009). In this setup it is natural to use g as the
bifurcation parameter.

Figure 9 shows the spiking behavior of the employed network
for different choices of the gap weight g. For a lower gap weight
g = 0.3 nS the network remains in an asynchronous state. In

panel B (g = 0.54 nS) the network switches randomly between
the asynchronous to the synchronous state, while for the highest
gap weight g = 0.7 nS a stable synchronous state is reached.
The exact transition between these two states as a function of the
gap weight and depending on the employed integration method
is visualized in Figure 10. To overcome statistical fluctuations
caused by the random transitions between the asynchronous
and the synchronous state, which can be observed in Figure 9B,
the system needs to be simulated for prolonged time to obtain
smooth transition curves. The transition is investigated for
two different choices of the synaptic weight of the inhibitory
synapses to demonstrate the influence of the chemical synapses
on the location of the transition. The shift of the transition
point between both choices of JI guarantees the influence of
the chemical synapses on the global network dynamics, which
is needed in order to show the correctness of the new iterative
method for networks with chemical synapses and gap junctions.

As expected an increase of the gap weight leads to a higher
network synchrony which also influences the spike rate. For the
two choices of JI the figure shows differences in the gap weight
at which the network turns from the partly synchronized state
to the almost fully synchronized state. In order to demonstrate
the correctness of the new iterative method over the single-step
method the latter is simulated for different step sizes h. The inset
of Figure 10A shows the difference of the spike rate (measured
through the RMSE) between the two methods depending on
the step size. It demonstrates that the solution of the single-
step method converges to the solution of the iterative method.
In agreement with the results presented in Section 3.1, the
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A

B

FIGURE 8 | Effect of membrane potential interpolation on network

error. (A) RMSE ǫapprox of linear (dashed curves) and cubic (solid curves)

interpolation for the action potential shown in Figure 2 as a function of the

computation step size h. (B) Integration error for the two-neuron network

(Figure 7) as a function of the interpolation error shown in (A).

convergence is slow so that even for the step size h = 0.001 ms
the difference is still apparent.

Disregarding of the parameter value at which the transition
occurs, the inaccuracy of the single-step method is also notable in
the spike rate for higher gap weights (g > 0.6nS), as the influence
of the employed method increases with the used gap weight.
The lower spike rate of the single-step method is an immediate
consequence of the previously seen shift. The shift goes along
with a longer distance between two spikes, which leads to the
observed lower spike rate.

3.3. Performance of Gap-junction Framework in
NEST
The design of the framework for gap junctions in NEST
(Section 2.2) is guided by the requirements not to impair code
maintainability nor to impose penalties on run time or memory
usage for simulations that exclusively use chemical synapses. The
first requirement is addressed by the design choice to tightly
integrate the novel framework with the existing connection and
communication infrastructure of NEST instead of developing an
independent pathway for gap-junction related data. Thus, we are
interested in the performance of (i) simulations exclusively using
chemical synapses and (ii) simulations including gap junctions.

We employ the balanced random network model (Brunel,
2000) to investigate the former issue (Test case 3) and measure
the deviation in simulation time and memory usage due to the
inclusion of the framework. Figure 11 shows the network in a
maximum-filling scenario, where for a given machine size VP
we simulate the largest possible network that completely fills the

A

B

C

FIGURE 9 | Spike patterns for different gap weights. The panels show

the spike times of the first 50 neurons of the inhibitory network described in

Section 2.3 (Test case 2) over 3 s of biological time for JI = −25 pA. All results

were obtained with the iterative method with cubic interpolation and step size

0.05 ms. (A) gap weight g = 0.3 nS (B) gap weight g = 0.54 nS (C) gap weight

g = 0.7 nS.

memory of the machine. Although the simulation scenario is
maximum filling, we were able to simulate the same network size
as before as the increase in memory usage is within the safety
margin of ourmaximum-filling procedure (see Kunkel et al., 2014
for details on the procedure). Measured in percentage of the prior
memory usage (Figure 11B) the memory consumption increases
by 0.6–2.7 percent. The run time of the simulation increases by
0.5–3.8 percent. The small increase of memory usage is caused
by the changes to the thread-local connection infrastructure
and the communication buffer described in Sections 2.2.1 and
2.2.2. In case of primary events only (no use of gap junctions)
the only extra data member is primary_end, which only
affects the connection container called HetConnector. As
the HetConnector is only instantiated if there are two or
more synapse types targeting neurons on a given machine and
having the same source neuron, this additional data member is
irrelevant in the limit of large machines (sparse limit), where
practically all connections are stored in HomConnectors; the
latter containers only hold connections of identical types and
do not have the additional data member primary_end. The
small increase of the run time is due to an additional check
for existence of secondary connections, which has to be done
during the delivery of the events. The check is done directly after
retrieving the pointer address from the sparse table and does
not require additional memory as this information is encoded in
redundant bits of the pointer address itself (see Section 2.2.1 for
details). The reduced increase of the run time at higher numbers
of virtual processes VP is due to the prolonged simulation time,
as some part of the overhead is caused by the initialization in the
beginning of the simulation.
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A

B

FIGURE 10 | Network behavior depending on the gap weight g. (A) The

average spike rate ν̄ and (B) the synchrony χ (Equation 10) of the neurons in

the network, depending on the gap weight. The results for the iterative method

with cubic interpolation are shown as solid curves (step size 0.05 ms) and for

the single-step method with dashed (step size 0.05 ms) and dotted (step size

0.001 ms) curves. Two different synaptic amplitudes JI = −50 pA and

JI = −25 pA were used, as indicated by the figure legend. The prelim_tol

was chosen as 10−5 and the maximum number of iterations was not used as

a stopping criterion. The simulation duration was 100 s (JI = −25 pA),

respectively 180 s (JI = −50 pA) of biological time. The inset of (A) shows the

difference between the results of the iterative method (step size 0.05 ms) and

the results of the single-step method for different step sizes h measured by the

RMSE. The dotted vertical lines correspond to the panels of Figure 9.

Next we turn to simulations with gap junctions. The
benchmarks use a scaled version of the network simulating a
pair of neurons (Test case 1b), where each neuron is coupled
to 60 other neurons by gap junctions. The number of neurons
performing the computation and the amount of communicated
data increase with N. We keep the conductance of a neuron
accumulated over all gap junctions the same as in the case of
the network comprised of a single pair (Test case 1a). As a
consequence, the computations carried out by the integrator of
each individual neuron are the same and hence its dynamics is
independent of N. Thus, the performance of the gap-junction
framework can be measured in a setting with fixed single neuron
dynamics despite the presence of additional neurons.

Figure 12 compares the run time of both communication
strategies on JUQUEENwith their performance on workstations.
On the workstation the h-step communication performs better
due to the smaller number of iterations per interval and the
fast communication through shared memory. On JUQUEEN,
however, the communication in dmin steps outperforms
communication in every step. As discussed in Section 3.1 the
total number of communications (Equation 11) of the h-step
communication strategy Ch exceeds Cdmin . Due to the latency
of the communication in a system with distributed memory
the original NEST communication strategy performs better on

A

B

FIGURE 11 | Overhead of gap-junction framework for network with

only chemical synapses. VP denotes the overall number of processes used

in line with our distribution strategy described in Section 2.4. In this and all

subsequent figures shades of blue indicate the JUQUEEN supercomputer. (A)

Triangles show the maximum network size that can be simulated in the

absence of gap junctions (Test case 3). Circles show the corresponding

wall-clock time required to simulate the network for 1 s of biological time. Dark

blue symbols indicate the results with the 4th generation simulation kernel of

NEST without the gap-junction framework and blue curves and symbols are

obtained with the framework included. (B) Increase of time (blue circles) and

memory consumption (blue triangles) due to the gap-junction framework in

percent compared to the 4th generation simulation kernel.

FIGURE 12 | Comparison of simulation times on different systems.

Simulation of the scaled version of the pair of neurons (Test case 1b) with

different network sizes. Open symbols show the results for communication in

every step (T = h) while filled symbols show the results for the original NEST

communication scheme (T = dmin ). The simulations on the workstation

(green) are executed with 8 virtual processes (8 threads). The JUQUEEN

simulations (blue) use 128 virtual processes (16 MPI processes a 8 threads).

500 ms of biological time are simulated with step size h = 0.05 ms.

JUQUEEN despite the comparatively small number of 16 MPI
processes.

There are two major differences between simulations with
and without gap junctions. Firstly, the iterative method requires
the repetition of neuronal updates. Since this repetition only
multiplies the run time by the number of iterations it does
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not affect scalability. Secondly, the approximation of the
membrane potential of each neuron needs to be computed
and communicated to its gap-junction coupled partners. As
NEST uses MPI_Allgather to communicate data between the
MPI processes, the receive buffer grows proportionally with the
number of neurons. The size of the approximation data 1 of a
single neuron depends on the ratio r between the step size h and
the minimal delay of the network as

1 = r · (norder + 1) · 8 (Bytes), (12)

because each time step requires norder + 1 double values to
represent the interpolation polynomial between two adjacent
time points. All interpolation coefficients are stored as 8 Bytes
double variables. Consequently the number of neurons N is a
crucial parameter for simulations with gap junctions as even in a
weak-scaling scenario the local memory consumption increases
with the global number of neurons. The growth is dominated
by the receive buffer and effects both maximum network size
and run time. This is not a particular issue of the new iterative
method but rather a general property of the communication by
MPI_Allgather also appearing in the single-step algorithm.

Figure 13 investigates the slowdown due to gap-junction
dynamics. This is done by simulating Test case 1b with a
single iteration per time interval. The obtained results are then
compared to the run time of a simulation without gap junctions
but otherwise identical setup. This way the difference of the two
run times Tgap can be interpreted as the time required for the
additional computational load and communication. Figure 13A
is a weak-scaling scenario. It demonstrates that the scalability
of the method is impaired by the additional communication.
Despite the constant number of neurons per virtual process
and constant MPI send-buffer size the run time increases
substantially. This is due to the increasing total number of
neurons, which has an effect on the MPI receive buffer size
and thereby on the communication time. Figure 13B studies the
same setup in strong scaling with N ≈ 3 · 107 neurons. In this
scenario the receive buffer size is constant, while the size of the
send buffer shrinks with increasing number of virtual processes.
Here the additional time required for MPI communication is
almost constant. Tgap decreases at first and then stagnates for
more than 1024 virtual processes. The saturation is explained
by the additional MPI-communication, which constitutes the
major contribution to Tgap in this setup. As the simulation
without gap junctions uses exactly the same pattern of MPI
communication this is not an issue of latency but an issue of
bandwidth. The initial decrease is due to the parallelization of the
gap-junction dynamics: the computations on the single-neuron
level, like the handling of incoming gap events, the calculation
of the interpolation coefficients and their central storage in
the scheduler is parallelized. In conclusion the additional time
required by simulations with gap junctions on JUQUEEN is
determined by the total number of neurons N. As the increase
in run time is dominated by MPI bandwidth it cannot be
eliminated by using more virtual processes VP. Therefore, it
is advisable to use as few compute nodes as possible. In this
setting the communication required for gap junctions increases

A

B

C

FIGURE 13 | Costs of the gap-junction dynamics. Open symbols show

the results with h-step communication (T = h) while filled symbols show the

results with the original NEST communication scheme (T = dmin, here

dmin = 1 ms). The solid curves with triangles indicate the simulation time Tsim
in the absence of gap junctions. The corresponding darker blue curves with

asterisks show the ratio ρ of Tsim with and without gap junctions, while gray

curves with asterisks show the difference Tgap of both simulation times.

Simulations represent 50 ms of biological time for (A,B) and 100ms for (C) at a

step size of h = 0.05 ms. All simulations use only a single iteration per time

interval. (A) Weak scaling of Test case 1b on JUQUEEN with N = 185 · VP

neurons. (B) Strong scaling of Test case 1b on JUQUEEN with

N = 185 · 16384 = 3,031,040 neurons. (C) Strong scaling of Test case 1b run

on the shared memory cluster node with N = 100,000 neurons.

the simulation time of one iteration for a network of N ≈

3 · 107 neurons by a factor of ρ = 2.5. One can multiply this
factor ρ from Figure 13 with the average number of iterations
ιh, respectively ιdmin to receive an estimate of the overall increase
in run time. Figure 13C shows a strong scaling scenario for
a smaller network with N = 100, 000 neurons simulated on
a shared memory compute node. This setup differs from the
one in panels A and B as the parallelization is implemented
by OpenMP and no MPI communication is needed. Here the
impact of additional virtual processes on ρ is more moderate.
ρ increases from ρ = 2 for 2 threads up to ρ = 3 for 48
threads for the case where communication takes place in intervals
of the minimal delay. The scalability of NEST is preserved and
the time for a single iteration per time interval decreases from
1366 s with 1 thread to 56 s with 48 threads. In contrast
to Figure 13B the additional time Tgap is not dominated by a
constant overhead and decreases due to parallelization of the
gap-junction dynamics. In the case of h-step communication,
however, again a limit of scaling is observed. The limit is not
dominated by the communication between threads but due to the
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serial component of event delivery in NEST; all threads inspect all
incoming events.

In the following we employ the memory consumption model
of Kunkel et al. (2014) to predict the maximum network size
which can be simulated with both communication strategies.
The model divides the overall memory into three components.
M0(M) denotes the base memory usage of the simulator
including external libraries such as MPI and for the sake of
convenience also contains the buffers of theMPI communication.
Mn(M,N) is the additional memory usage that accrues when
neurons are created and Mc(M,T,N,K) denotes the additional
memory usage that accrues when neurons are connected. The
memory consumption per MPI process is thus given by

M(M,T,N,K) = M0(M)+Mn(M,N)

+Mc(M,T,N,K), (13)

where M denotes the number of compute nodes, T the number
of threads per node, N the number of neurons and K the number
of synapses per neuron.
Here we extend the model to include the effect of gap junctions
on memory consumption. The memory overhead of neurons
withmore than one local targetm>1

c increases by 1 Byte due to the
extra data member primary_end. The memory consumption
of a connection object of type gap_junctionm

gap
c is the same

as for a static synapsemstat
c . The memory usage of a single neuron

supporting gap junctions m
gap
n differs from the usage of an other

neuron mn by 21 + 8r, as the current interpolation needs to
be stored while the new interpolation coefficients are calculated
(thus the factor 2) and the values from the last iteration are
needed for the iteration control. In addition the base memory
usage M0(M,Ngap) is dependent on the number of neurons

supporting gap junctions Ngap as it increases by (Ngap+
Ngap

M ) ·1
due to the increases of the send and receive buffer.

Figure 14 shows the contributions of gap junctions to the
memory consumption under maximum filling for the network
model introduced by Brunel (2000). This is Test case 3 with
the addition of gap junctions between inhibitory neurons. We
here use this network model to simplify the comparison to
existing benchmarks (Kunkel et al., 2014). Dynamically the
network model as is would not be able to support gap-junction
coupling, as the leaky integrate-and-fire model (iaf_neuron)
employed in this test case does not produce the shape of the
action potential. Hence the interaction across gap junctions
exerted by the large and positive membrane potential excursions
is missing, see below for the range of neuron models available
in the literature for the study of networks with gap junctions.
Nevertheless, the test case provides a good estimate for the
additional memory usage caused by gap junctions as the memory
usages of neuronmodels iaf_neuron and hh_psc_alpha
do not differ significantly relative to the total amount of memory
consumed by chemical synapses and gap junctions. The figure
shows that with increasing number of virtual processes VP the
base memory component containing the MPI communication
buffers becomes the dominant consumer. This is particularly
apparent for communication in intervals of the minimal delay
as the volume of data communicated at once is r times higher
than for the h-step communication. As communication in

A

B

C

FIGURE 14 | Predicted cumulative memory usage as a function of

number of virtual processes for a maximum-filling scaling. Contributions

of different data structure components to total memory usage M of NEST for

Test case 3 with a network size that just fits on VP cores of JUQUEEN. The

dashed black curves indicate the corresponding network size Nmax.

Contributions of synapse objects and relevant components of connection

infrastructure are shown in pink and shades of orange, respectively. The

contribution of the base memory usage, particularly containing the receive

buffer, are marked in gray. Other contributions as the neuron objects, and

neuron infrastructure are significantly smaller and hence not visible at this

scale. Dark orange: sparse table, orange: intermediate infrastructure

containing exactly 1 synapse, light orange: intermediate infrastructure

containing more than 1 synapse. The cumulative memory usage is calculated

using the memory-consumption model of Kunkel et al. (2014). The horizontal

dashed black line indicates 2 GB limit of a single MPI communication. Vertical

lines indicate the largest number of virtual processes possible, due to full

JUQUEEN, respectively exceeding a 2 GB communication buffer. (A) Test case

3 without gap junctions (B) Test case 3 with additional gap junctions between

inhibitory neurons (60 gap junctions per neuron). The communication is carried

out in intervals of the minimal delay (dmin = 1.5 ms and h = 0.1 ms) (C) Same

setup as (B) with communication in every time step.

NEST is carried out in a single MPI_Allgather call there
is another relevant limit to the MPI buffer size. According to
the MPI standard (Message Passing Interface Forum, 2009) the
recvcount parameter counting the elements in the receive
buffer is an integer value. This limits the largest possible receive
buffer size to 2 GB for machines with 32 bit integer values.
Therefore, the maximum network size decreases from 8 · 108 for
the case without gap junctions to 2 · 107 for the communication
in intervals of the minimal delay and to 3.5 · 108 for the h-step
communication. This is however not a limitation of the iterative
numerical method described in this article, but a consequence
of the overall communication scheme of the NEST simulation
software.

4. Discussion

It may seem odd to discuss the integration of neuronal networks
coupled by gap junctions in the context of a simulation code
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for which the major application area is large networks of
highly simplified spiking neuron models. In these models the
occurrence of an action potential is often abstracted to a
threshold operation and the shape of the action potential is
neglected because it has no influence on network dynamics. This
changes, however, in the presence of gap junctions as the gap
current depends on the difference of the membrane potentials,
mediating an instantaneous coupling. The sign of the coupling
depends on the time courses of the two membrane potentials.
The positive excursion during an action potential of one cell
exerts an excitatory drive, while the fast after-hyperpolarization
immediately following the depolarization has the opposite effect.
Components of the after-hyperpolarization with a longer time
constant but low amplitude still have an inhibitory effect on
average. The network level dynamics may not only depend on
the integral effect of action potential and after-hyperpolarization
but also on the time course of the interaction pattern.

Nevertheless, simulation codes designed to faithfully
represent the architecture of neuronal networks typically
contain a phenomenological step in their neuron models that
extracts a spike time to trigger synaptic events and organize
communication between the computational nodes participating
in a simulation. This is independent of whether the neuron
model employed is an integrate-and-fire type model or a model
based on the morphological reconstruction of thousands of
compartments and a detailed representation of the spiking
dynamics generated by the interplay of voltage-gated ion
channels. Therefore, these simulation codes have to solve the
common problem of how to combine the exchange of spikes
as point events with gap-junction coupling without losing the
performance capability which originally motivated the design.
In line with our general strategy, we use NEST for a reference
implementation but the algorithm and data structures with the
accompanying analysis can be transferred to other simulation
codes and also to digital neuromorphic hardware like SpiNNaker
(Furber et al., 2013).

The developed iterative method guarantees a high accuracy
for network simulations with gap junctions regardless of the
coupling strength. For networks with relatively weak coupling
a sufficient accuracy can also be achieved using the less time
consuming single-step method (Figure 10 before the transition
phase). Here the additional expenses of the iterative method
are however low, due to the integrated iteration control.
For networks with sufficiently strong coupling the single-step
approach causes a shift in the membrane potentials time course
(Figure 1). This temporal shift reduces with the step size of the
simulation. In practice, however, a researcher may firstly not
be able to judge whether the coupling strength in the network
model under consideration is weak enough to achieve sufficiently
accurate results with the single-step method. Secondly, when
the step size of the single-step approach is reduced to improve
accuracy, the iterative method eventually achieves a better
tradeoff between computation time and accuracy (Figure 7D).

To facilitate generalization, in the present work we use as an
example a neuron model with Hodgkin-Huxley dynamics that
intrinsically generates an action-potential time course and was
used to study the synchronization dynamics of networks with

gap junctions (Mancilla et al., 2007). However, the literature
contains a range of point-neuron models suitable for interaction
by gap junctions. These include alternative models of similar
complexity, such as theWang-Buzáki model (Wang and Buzsáki,
1996) that represents a fast spiking interneuron in hippocampus
or cortex, but also reduced models that combine analytical
tractability with the salient features of action-potential generation
including a brief after-hyperpolarization, such as the absolute
integrate-and-fire model (Karbowski and Kopell, 2000, reviewed
in Coombes and Zachariou, 2009), and finally the exponential
integrate-and-fire model (Fourcaud-Trocmé et al., 2003) and
the quadratic integrate-and-fire model (Hansel and Mato, 2003)
representing an intermediate level of complexity. Although the
gap junction current Igap in this study is implemented within
the employed neuron model as gij

(

Vi − Vj

)

, the novel gap
junction framework in general is able to process any form
of gap junction that only depends on the involved neurons
states and parameters. The necessary changes are limited to
an adaptation of the neuron model and the creation of a new
connection type in the hierarchy of data structures (Figure 4)
to distinguish the different representations of gap junctions. A
prominent example for a more complex gap junction model
are voltage dependent gap junctions (Paulauskas et al., 2012).
For those the optimized summation of coefficients (Equation 6)
is no longer possible, resulting in a higher storage load of the
single neuron. Due to the modular structure of NEST, researchers
interested in understanding network dynamics can start with
a detailed, possibly multi-compartmental, neuron model and
then change to a more abstract and analytically tractable model
while investigating the network dynamics for qualitative changes.
Different parts of the network may also be described at a different
level of detail.

So far simulation studies with gap junctions have only been
carried out with network sizes up to a few hundred neurons
and extremely simplified topology like all-to-all connectivity and
only one or two cell types. These initial studies were useful
to understand fundamental properties of networks with gap
junctions and to verify that the new analytical tools developed are
accurate. For neocortical networks this size constitutes, however,
a dramatic downscaling. The number of chemical synapses per
neuron is of order 10,000 and the average connection probability
within a volume of a cubic millimeter where a neuron can
in principle contact any other neuron is about 0.1. Thus, the
minimal network size where both of these parameters can
simultaneously be realized is 100,000; two orders of magnitudes
larger than the networks studied up to now. The need to study
neuronal networks at their natural scale has recently gained
urgency by the finding that in downscaling first order measures
such as spike rate can often be well preserved but already
second order measures like the correlation coefficient of the spike
times of two neurons are generally not preservable (van Albada
et al., in press). We assume that the primary reason for the
present restriction of network size found in the literature is just
due to the technical difficulties in efficiently simulating larger
systems and the absence of a commonly available simulation
code providing such capabilities for point-neuron models. The
NEURON simulation software (Carnevale and Hines, 2006)
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provides two multiprocessor solvers for gap junctions between
electrical compartments. One incorporates the here presented
single-step method using the modified Euler integration scheme
into the first order backward Euler integration scheme for tree
cables (Hines et al., 2008). The other uses the Sundials variable
time step, variable order, ODE solver (CVODE, Cohen and
Hindmarsh, 1996) to solve the global set of equations for all
cells. The latter is generally too costly for large spiking network
simulations as the arrival of every spike constitutes a new initial
value problem. Nevertheless, the solver was successfully used
in the simulation of a gap-junction coupled heart cell network
(Casaleggio et al., 2014). The novel technology presented here
overcomes this limitation; now networks with gap junctions
can be studied at full scale. As above in the discussion of the
complexity of neuronmodels, this does notmean that researchers
have to carry out all simulations at full scale. Simulation results
should just be checked with full-scale simulations to verify that
they do not occur as an artifact of downscaling. The same is true
for analytical results derived in the limit of infinite network size.
Researchers should verify that the results hold for networks of
natural size.

The additional run time costs due to the inclusion of gap
junctions in an existing network simulation depend on the
number of neurons of the model, as well as the kind of
parallelization and the coupling strength of the gap junctions
in combination with the desired accuracy. Let us look at a
model of the cortical microcircuit as recently published by
Potjans and Diesmann (2014) and available as open source
(www.opensourcebrain.org/projects/potjansdiesmann2014). The
model represents a surface area of about 1 square millimeter
of cortex and has approximately the same number of neurons
as the test case studied in Figure 13C. The model can easily be
simulated on a single node of the compute cluster used in the
present study but is time expensive because of short synaptic
delays. The simulation takes 128 s with a single thread for 100ms
of biological time and about 16 s using 16 threads (data not
shown). Figure 13C shows that for a network of the same size
with gap junctions, using the same computational resources, and
the same communication interval of 0.05 ms the time consumed
by the gap-junction dynamics in a single iteration is reduced
from 804 s to about 215 s. The single threaded simulations show
that the additional numerical computations required for gap
junctions increase run time by a factor of 128+804

128 · ιh ≈ 7.3 · ιh.
In a realistic application the number of iterations ιh required
to reach the desired accuracy goal is below 5 and does not
affect the scaling because no additional communication is done.
At 16 threads the scaling of the network with gap junctions
reaches saturation due to the large number of communication
steps. Communication with a minimal delay of 1 ms reduces
Tgap of a single iteration by a factor of 3.4–63 s and restores
scaling. This corresponds to the reduction by a factor of 11
relative to the single threaded simulation. In conclusion networks
of the size of 100, 000 neurons can comfortably be simulated
on a single node of a compute cluster in the presence of gap
junctions. The simulation time stays within the same order
of magnitude and with increasing communication interval the
difference diminishes. However, looking at a single iteration

in our test case using an expensive single neuron model the
contribution of gap junction dynamics to the total run time
increases from 51% at a single thread to 77% at 16 threads.
For the simple neuron model used in the study of the cortical
microcircuit the initial contribution of gap junctions is already
86% and at 16 threads reaches 93%. Thus, for the latter network
model the additional costs of gap junctions are perceived as more
painful.

The component limiting network size is the receive buffer
of a computational node which needs to store on the order of
100 Bytes for each neuron in the network (Equation 12). With
memory in the gigabyte range on a computational node, this
limits network size to the order of 10 million (107) neurons
(see Figure 14). Thus, entire areas of the neocortex can be
represented. This is promising because larger networks coupled
by long-range connections should be under influence of chemical
synapses only. This opens the possibility to exploit themodularity
of neuronal networks in future communication algorithms to
reach the brain scale.

There is still further potential of optimization. In terms of
performance it might be possible to save some computation
time by applying a less time consuming solver to the cell
equations during the iterations because due the iterative scheme
a limited accuracy may be sufficient. The benefit of such an
approach is however limited, as the simulation time is mainly
dominated by communication (see Figure 13). In addition the
convergence theory of the waveform relaxation method assumes
exact analytical solutions of the subsystems. Therefore, a high
accuracy of the numerical method for the single cell equations is
generally desirable as there might be an effect on the convergence
speed resulting in further iterations, which would absorb the
computation time savings of a less accurate solver. In terms
of accuracy, given a suitable neuron model, it is possible to
combine the gap junction framework with the capability of NEST
to handle spike times independent of the grid spanned by the
computation time step (Hanuschkin et al., 2010). A requirement
on the neuron model is that an incoming synaptic impulse does
neither cause a step in the membrane potential nor in its first
derivative, since such discontinuities would preclude an accurate
cubic approximation of the membrane potential within one time
step. The neuron model studied in the manuscript satisfies these
requirements, as it features alpha-shaped synaptic currents.

The framework for representing and simulating gap junctions
extends the capabilities of a simulation engine for neuronal
networks like NEST and widens the domain of applications.
However, this comes at the price of a decrease in simulation speed
by up to 3.8 percent and an increase of memory consumption
of up to 2.7 percent even if no gap junctions are used. This
is in contrast to the general strategy of NEST development
that a researcher should only pay for features actually needed
in a simulation and that a new release should not be slower
or consume more memory than the previous one. The two
software releases of 2014 (2.2.0 and 2.6.0) documented in
Helias et al. (2012), and Kunkel et al. (2014) have concentrated
on the reduction of memory consumption and also increased
simulation speed. In relation to these advances the overhead
of the gap-junction framework is only a minor regression;
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nevertheless it constitutes a nuisance future work should strive
to overcome.

The limitation of the maximal network size that can be
studied with the framework presented here arises from the need
to communicate approximations of the membrane potential
time courses between neurons. As the employed communication
scheme uses collectiveMPI calls, these approximations are sent to
all nodes that take part in the simulation irrespective of whether
or not these nodes harbor neurons that require this information.
This situation is qualitatively similar to the spike times being
collectively communicated. However, there are two quantitative
differences, the number of connections per neuron (order 10,000
vs. order 100) and the amount of information communicated (4
Byte per spike / order 100 Bytes per minimum delay). A yet more
extreme scenario occurs in simulations of multi-compartment
neuron models, where the approximation of the membrane
potential time course of a particular compartment is relevant only
for a few (order 10 down to 1) other compartments. Future work
on the simulation code should assess the potential of targeted
communication. Due to the low number of connections and their
locality, directed communication will be particularly beneficial
for gap-junction coupling.

A radically different alternative architecture was described
by Kozloski and Wagner (2011) where the neuronal tissue is
compartmentalized into elements of finite volume. By definition
a volume element only needs to communicate with its neighbors
independent of network size and parallelization is ideal.

A large body of literature already exists on the analysis of the
dynamics of spiking neuronal networks. One successful route of
analysis is the mapping of the spiking neuronal network to a
network of nodes with continuously interacting state variables
(see Bressloff, 2012, and references therein). These nodes can
either represent individual neurons or populations of neurons in
a mean-field sense. In both cases the result is a system of ordinary
differential equations. Often instantaneously coupled systems are
considered but Roxin et al. (2005) point out the importance
of delays in capturing the dynamical states of the original
system. In the quest for insight into the mechanisms governing
network behavior, researchers routinely do further steps of
simplification by linearizing effective equations that describe
activity fluctuations around some steady state background
activity to arrive at analytically treatable expressions. In this
cascade of simplifications from the original spiking neuronal
network to the analytical expression it is not always obvious
under which conditions the combination of approximations
hold. Therefore, researchers routinely compare simulations of
spiking with rate-based models. In the absence of established
tools the latter are carried out with ad-hoc code. Such
publications do not only have to describe the implementation and
numerics in detail but also the simulation experiment has to be
coded twice, once for the spiking network simulator and once
for the rate-based network. Thus, computational neuroscience

would profit from a unique code base that features both, spiking
and rate-based neuronmodels. The recent work by Grytskyy et al.
(2013) discussing the analytical mapping of spiking network and
binary networks to an effective linear rate equation including
synaptic delays is an example. Future work should explore to
which extend the integration framework developed here for gap
junctions can also be used for networks of rate-based model
neurons.

The seminal work of Hertz et al. (1991) discusses rate-based
model neurons as a tool for understanding neural computation.
From these origins the field of artificial neuronal networks has
emerged (see Haykin, 2009, for an introduction and references)
in the domain of engineering and separated from the natural
sciences. The ideas are also used by researchers interested
in network function and following a top-down approach. An
integration framework for rate-based models embedded in a
simulator for biological neuronal networks would open-up the
simulation code for scientists working on functional models and
facilitate the translation of ideas to spiking networks models by
providing a common platform.

Recently evidence is accumulating that not only neurons
are coupled by gap junctions but also astrocytes and that both
networks are recurrently interacting with each other (see Giaume
et al., 2010, for a review). It needs to be investigated whether
the technology presented here can be generalized to the study of
neuroglial interactions.

Neuroscience is still challenged by the heterogeneity of
the constituents of the neuronal tissue. We hope that the
progress reported here adds gap junctions as another type
of brick to the Lego kit of the computational neuroscientist.
The network sizes reachable with the technology described
in these pages combined with the supercomputers available
today now enable researchers to investigate the functional role
of gap junctions in the context of an anatomically accurate
circuitry.
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