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Human functional magnetic resonance imaging (fMRI) studies examining the putative
firing of grid cells (i.e., the grid code) suggest that this cellular mechanism supports not
only spatial navigation, but also more abstract cognitive processes. Despite increased
interest in this research, there remain relatively few human grid code studies, perhaps
due to the complex analysis methods, which are not included in standard fMRI analysis
packages. To overcome this, we have developed the Matlab-based open-source Grid
Code Analysis Toolbox (GridCAT), which performs all analyses, from the estimation and
fitting of the grid code in the general linear model (GLM), to the generation of grid code
metrics and plots. The GridCAT, therefore, opens up this cutting-edge research area
by allowing users to analyze data by means of a simple and user-friendly graphical user
interface (GUI). Researchers confident with programming can edit the open-source code
and use example scripts accompanying the GridCAT to implement their own analysis
pipelines. Here, we review the current literature in the field of fMRI grid code research
with particular focus on the different analysis options that have been implemented, which
we describe in detail. Key features of the GridCAT are demonstrated via analysis of an
example dataset, which is also provided online together with a detailed manual, so that
users can replicate the results presented here, and explore the GridCAT’s functionality.
By making the GridCAT available to the wider neuroscience community, we believe that
it will prove invaluable in elucidating the role of grid codes in higher-order cognitive
processes.
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INTRODUCTION

Identifying the neural mechanisms supporting spatial navigation remains a key goal for
neuroscience. In recent years, significant progress has been made with the discovery of the
grid cell in the rat medial entorhinal cortex, a neuron exhibiting firing properties that could provide
a spatial metric underlying navigational functions such as path integration (Hafting et al., 2005).
Grid cells have been found subsequently in a diverse range of mammalian species (for a detailed
review, see Rowland et al., 2016), and, more recently, the putative signature of grid cell firing,
which we refer to as the grid code throughout this article, has been identified also in healthy human
subjects using functional magnetic resonance imaging (fMRI; Doeller et al., 2010; Kunz et al., 2015;
Constantinescu et al., 2016; Horner et al., 2016). Given the increasing interest in the role of grid cells
in human cognition, and the absence of standard analysis tools to examine grid codes in fMRI, we
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present here the Matlab-based Grid Code Analysis Toolbox
(GridCAT), which generates grid code metrics from functional
neuroimaging data. The GridCAT is openly available
at the Neuroimaging Informatics Tools and Resources
Clearinghouse (NITRC) and can be downloaded from:
http://www.nitrc.org/projects/gridcat.

Unlike place cells that have single firing fields (O’Keefe
and Dostrovsky, 1971), grid cells in the rat medial entorhinal
cortex fire in multiple different locations within the environment
(Fyhn et al., 2004; Hafting et al., 2005). The firing fields
of these cells show remarkably regular organization, forming
tessellating equilateral triangles that effectively ‘‘tile’’ the world’s
navigable surface in a hexagonal lattice (Hafting et al., 2005).
The equally spaced and repetitive firing means that, for each
firing field of a grid cell, the six adjacent fields are arranged
in 60◦ intervals, creating a six-fold symmetry. Each cell’s grid
can differ, however, in several ways, such as its orientation,
spacing and the size of its firing field. Although recording
from a population of grid cells within the entorhinal cortex
reveals variability in these properties, there appears to be
topographical arrangement of these cells. For example, the
grids of neighboring cells are more similar in terms of their
orientation and spatial scale relative to cells located further
apart (Hafting et al., 2005); distal cells, however, can still
show coherence in the orientation of their grids, even though
their spatial scales may differ (Barry et al., 2007). Given that
each cell’s grid is spatially offset (to varying degrees) relative
to a neighboring one, it has been hypothesized that these
cells may provide the neural mechanism for complex spatial
navigation abilities such as path integration (Hafting et al.,
2005).

Grid cells have been found in a number of other species,
including bats (Yartsev et al., 2011), primates (Killian et al.,
2012) and humans (Jacobs et al., 2013). Although rare
and often comprising small sample sizes, studies using
intracranial recordings in humans provide an opportunity to
use experimental methods analogous to those routinely used in
behavioral neuroscience (i.e., recording directly from neurons).
Jacobs et al. (2013) recorded from cells in the entorhinal
cortex of patients with intractable epilepsy as they completed
an object-place memory task requiring them to navigate a
virtual environment. Consistent with the rat electrophysiology,
there was evidence of cells with a six-fold symmetry in
their firing rate. The grid cell, therefore, appears preserved
across different mammalian species, including humans, and
may comprise a common neural mechanism for spatial
navigation.

fMRI is used commonly to investigate the neural correlates
of higher-order cognitive processes in large samples of healthy
subjects, and this method has been applied to the study of
putative grid cell firing (Doeller et al., 2010). Although fMRI is
able only to detect changes in signal over thousands of neurons,
several properties of grid cell firing suggested it would be possible
to detect grid codes in the blood oxygenation level dependent
(BOLD) response at the macroscopic level. First, as described
earlier, even though grid cells are arranged topographically,
the grid orientation of distal cells may still be coherent

(Barry et al., 2007). This means that the global signal associated
with the firing of these neurons would be consistent both within
a voxel and across different voxels. Second, the firing rate of a
subpopulation of grid cells, known as conjunctive grid cells, is
further modulated by the animal’s movement direction in the
environment. Specifically, the firing rate of conjunctive grid cells
is increased when the animal travels in the cell’s ‘‘preferred’’
direction relative to other travel directions (Sargolini et al., 2006).
Furthermore, the preferred firing direction of conjunctive grid
cells is aligned with themain axes of the grid (Doeller et al., 2010).
Together, these differences in the dynamics of grid cell firing
could be reflected in a six-fold sinusoidal pattern observable
in the BOLD response (i.e., the grid code) when participants
performed translations either aligned or misaligned with the
grid’s axes (Figure 1). Using an object-place memory task in
a virtual environment, Doeller et al. (2010) found exactly this
pattern of data in several brain regions, including the entorhinal
cortex. Consistent with the results of rodent electrophysiology,
the BOLD signal showed a six-fold symmetry, with greater
activity associated with translations in which the travel direction
was aligned with the mean grid orientation, compared to when
the travel path was misaligned with a grid axis (the precise
methods for estimating themean grid orientation, and testing the
model, are described in detail below). This study, therefore, was
critical in demonstrating that fMRI could be used to study grid
codes in humans.

The identification of grid codes using fMRI has already
generated a number of promising new research questions.
For example, the estimation of grid codes has been shown
to have potential clinical applications with reduced grid code
magnitude evident in those at increased genetic risk of
Alzheimer’s disease (Kunz et al., 2015). Furthermore, although
there appear to be commonalities in the neural mechanisms
supporting navigation across diverse species, the study of
grid codes in fMRI has demonstrated that these spatial
codes may be used more flexibly in humans (Horner et al.,
2016). Specifically, Horner et al. (2016) found evidence of the
sinusoidal pattern in the BOLD response when participants
imagined navigation in a virtual environment, despite the
absence of visual input. Finally, Constantinescu et al. (2016)
demonstrated that recently acquired conceptual knowledge is
organized using the same six-fold spatial symmetry. In humans,
therefore, these grid codes may be used more abstractly in
service of higher-order cognitive processes beyond pure spatial
navigation.

Grid code analyses are distinctly non-trivial, requiring a range
of skills, including computer programming, and knowledge
of specific mathematical techniques (e.g., quadrature filter
techniques). Not all cognitive neuroscientists who wish to
examine cognitive processes related to grid cell firing in humans
possess these skills. To cater for these researchers, the GridCAT
provides a simple graphical user interface (GUI; Figure 2),
meaning that the user is not required to work directly with
the source code. Moreover, given that no standard analysis
package offers the necessary algorithms to detect grid codes in
fMRI data, even researchers who are capable of reproducing
all necessary analysis steps may find it a demanding and
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FIGURE 1 | The logic for grid code analysis in human functional magnetic resonance imaging (fMRI). Left: movement directions can be categorized either as aligned
(blue) or misaligned (gray) with the mean grid orientation (ϕ). Right: the red curve shows the expected pattern of the blood oxygenation level dependent (BOLD) signal
modulated by movement direction relative to ϕ. High signal peaks are expected for movements aligned with ϕ or a 60◦ multiple of ϕ (blue sectors). Figure adapted
from Doeller et al. (2010).

time-consuming task to write the source code required for
this type of analysis. The GridCAT addresses these issues by
performing automatically all steps in the grid code analysis
pipeline (as summarized in Figure 3). By removing the need to
develop source code independently, the toolbox opens up this
exciting research area to the wider neuroscience community,
and saves researchers time, allowing them to address novel
research questions regarding the role of grid cells in human
cognition.

A further aim of this article is to provide, for the first time,
a comprehensive overview of the different analysis strategies
that have been used to date. By synthesizing these different
approaches, we hope to inform researchers who are new to
the field about the different possible ways in which the fMRI
data can be modeled to assess grid code metrics. Finally, by
making a number of analysis options available in the toolbox,
the GridCAT will also help to standardize analyses across
the research community, making data analysis pipelines more
comparable across different labs, and stimulating discussion in
this exciting and rapidly developing research area.

The GridCAT allows users to input easily their study design
and performs all analyses to estimate the grid code in functional
images and generates automatically grid code metrics. Results
can be visualized using built-in plotting functions and the
data exported for further analysis depending on the user’s
needs. It requires only a basic Matlab installation (i.e., no
additional Mathworks toolboxes are required) and SPM121, and
is compatible with Windows, Linux and Mac OS. A detailed
manual guides users through all steps of a grid code analysis and
an example dataset is provided with the GridCAT to explore its
functionality.

Although there are similarities across fMRI studies in the
methods used to estimate grid code metrics, there is as yet no
standard analysis pipeline. Because of this, the GridCAT has
been designed to be flexible in accommodating a number of

1http://www.fil.ion.ucl.ac.uk/spm/

different analysis options; decisions regarding a researcher’s own
pipeline will depend upon paradigm-specifics and the research
question of interest. We note that a recent grid code study
examined the neural signal associated with imagined trajectories
in the environment (Bellmund et al., 2016). We do not discuss
this experiment here, however, because, rather than the mass
univariate method commonly used in the study of grid codes,
they used multivariate representational similarity analysis, for
which there are already several toolboxes available (e.g., Nili et al.,
2014; Oosterhof et al., 2016). In the following section, we review
extant methods for deriving grid codes in fMRI, and highlight
differences in analysis approaches. The aim of this review is to
inform the GridCAT user of the different analysis options that
have been used previously, and that are available in the toolbox,
rather than to provide a critique as to best practice for deriving
grid code metrics.

GRID CODE ANALYSIS

Although analysis pipelines for the examination of grid codes
using fMRI differ in several aspects, the overall procedure is
relatively similar. First, events of interest for the grid code
analysis (i.e., grid events) are specified in the time course of the
imaging data. Second, the imaging data are then partitioned into
estimation and test datasets. Third, a general linear model (GLM)
is fit to the estimation dataset to estimate voxel-wise orientations
of the grid code (i.e., GLM1). Fourth, these voxel-wise orientation
values are then averaged over voxels in a region of interest
(ROI) to generate a mean grid orientation used for a second
GLM in which grid events of the test dataset are modeled
with respect to their alignment with the mean grid orientation
(i.e., GLM2). Finally, grid code metrics are computed, such as
the magnitude of grid code response as well as measures of
between- or within-voxel orientation coherence of the grid code.
In the following sections, we providemore information regarding
these individual steps of the grid code analysis pipeline (see also
Figure 3 for a comprehensive overview).
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FIGURE 2 | The graphical user interface (GUI) of the Grid Code Analysis Toolbox (GridCAT). A grid code analysis can be carried out via the GUI by specifying data,
parameters and settings, depending on the individual experimental design and research question. The GUI offers all analysis options of the grid code analysis
pipeline as well as a set of additional tools to generate grid code metrics, visualize results and export the resulting data. A detailed explanation of all GUI options and
how to use all functions of the GridCAT via the GUI, is provided in the GridCAT user manual that is distributed along with the open-source code. Please note that the
visual appearance of the GUI might differ between operating systems and versions of Matlab.

Functional Image Preprocessing for Grid
Code Analysis
The GridCAT is agnostic with regards to the nature of the
preprocessing carried out on functional images prior to the
grid code analysis. For example, the analysis can be conducted
using a participant’s normalized, and smoothed, functional
images (Doeller et al., 2010; Constantinescu et al., 2016;
Horner et al., 2016). Alternatively, one could work in the
individual subject’s native functional space (Kunz et al., 2015).
Motivations for normalizing to standard space prior to analysis
include the desire to examine group-level, cluster-statistics (e.g.,
Constantinescu et al., 2016), whereas researchers concerned
about spatial distortions or interpolation errors in their data
resulting from normalization to a standard template might
choose to perform the grid code analysis in the participant’s
native space. fMRI preprocessing can be carried out in the
researcher’s neuroimaging analysis package of choice.

Specifying Grid Events
Before the grid code can be estimated, it is necessary to specify
grid events within the fMRI time course. For example, grid events
could comprise periods of translational movement (e.g., Doeller
et al., 2010; Kunz et al., 2015; Horner et al., 2016) within a
virtual environment. For each grid event, an angle relative to a
nominal 0◦ reference point (e.g., a fixed landmark in the virtual
environment) is then defined, resulting in the ‘‘grid event angle’’.
More details as to how grid events are defined for use in the
GridCAT analysis pipeline are provided in the GridCATmanual.

Partitioning the Grid Code Data into
Estimation and Test Sets
Given that the functional data are labeled either as estimation
or test data, researchers must decide how to perform this
partition. One method is to split the data run-wise into
odd and even runs (Doeller et al., 2010; Kunz et al., 2015),
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FIGURE 3 | Grid code analysis pipeline. All that is required to perform a grid code analysis are functional brain images (which, depending on the user’s wishes, may
have undergone standard fMRI data preprocessing such as smoothing etc.) together with a file detailing events of interest during the fMRI time course and their
corresponding timing information. The GridCAT partitions these data into an estimation dataset and a test dataset, offering multiple options as to how to split the
data depending on the experimental design and the user’s needs. Using the estimation dataset, the GridCAT then estimates voxel-wise grid orientations of the grid
code in a first general linear model (GLM1). As a result, voxel-wise grid orientations are stored and can be plotted using the GridCAT’s specific plotting options to
visualize grid code stability both within and between voxels, or can be exported in several formats for further analysis such as group level analyses, statistical testing,
or multivariate analysis methods. Moreover, within any region of interest (ROI), the GridCAT can calculate an ROI-specific mean grid orientation, providing that the
mask image (e.g., anatomically or functionally defined) and functional data are registered to one another. Finally, in a second GLM (GLM2) the GridCAT allows events
in the test dataset to be modeled with respect to their alignment with the ROI-specific mean grid orientation, in order to quantify the grid code response magnitude
individually for all brain voxels or averaged over voxels within an ROI. All results and grid code metrics can be exported for further use with statistical and
neuroimaging analysis tools of the researcher’s choice.

performing the estimation in the odd runs and testing in the
even ones (or vice-versa). Alternatively, one could split the
data into n temporal bins, and perform the same analysis on
these odd/even bins (Horner et al., 2016). As well as offering
these data partitioning methods, the GridCAT also provides
options to separate grid events within each scanning run into
odd and even events, or to split each scanning run into two
halves so that estimation and test are calculated on the first
and second halves of runs, respectively. Furthermore, if these
default partitioning options are not suitable for a particular
experiment, bespoke partitioning schemes can be specified in
the GridCAT event-table (which is described in detail in the
GridCAT manual), allowing the user to specify whether a
particular grid event should be assigned either to the estimation
or test dataset.

Estimating Grid Orientations in the BOLD
Signal
For the estimation data (GLM1), the grid event angle is used
to create two parametric regressors for the grid events, using
sin(αt

∗6) and cos(αt
∗6), respectively, where αt represents the grid

event angle. The multiplication term (∗6) used in the calculation
of these two regressors transforms the grid event angle into
60◦ space, mirroring the hexagonal symmetry observed in
grid cell firing. By including these parametric regressors in

the GLM, voxels with time courses showing modulation of
their signal according to six evenly spaced 60◦ intervals would
have parameter estimates (i.e., beta weights that have been
estimated for a regressor in the GLM, with higher parameter
estimates indicating a better model fit) with high absolute
amplitudes. When calculating GLM1, the GridCAT allows users
to include additional regressors (e.g., nuisance regressors, such
as movement parameters), add time and dispersion derivatives
of the hemodynamic response function, and change modeling
parameters (e.g., high-pass filtering, microtime onset and
resolution, masking threshold), depending on the individual
experimental design. More details about these options can be
found in the GridCAT manual.

Voxel-wise grid orientations resulting from GLM1 can be
visualized using the GridCAT’s specific plotting options, and
different grid code metrics such as grid code stability both within
voxels (e.g., over time) and between voxels (e.g., coherence of
grid orientations within an ROI) can be calculated (see ‘‘Analysis
of Grid Code Stability’’ Section). Plots can be saved in different
file-formats, so that users can subsequently load them into any
image processing software and adapt their visual appearance,
depending on individual needs. For further analysis such as
group level analyses, statistical testing, or multivariate analysis
methods on voxel-wise grid orientations, these data can be
exported in several formats (e.g., as a data vector, or as a 3DNIfTI
image).
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Following GLM1, the GridCAT can then calculate the mean
grid orientation across all voxels in an ROI. To compute the
mean grid orientation, the beta estimates (β1 and β2) associated
with the two parametric regressors are each averaged over all
voxels in the ROI, and the resulting two values submitted to:
arctan[mean(β1)/mean(β2)]/6. Once the mean grid orientation
has been calculated, this value can be used to categorize
individual grid event angles in the test data (GLM2) to determine
the magnitude of the grid code response. For example, grid event
angles could be classified either as aligned or misaligned with the
mean grid orientation (see ‘‘Quantifying the Magnitude of the
Grid Code Response’’ Section).

ROI Selection
As described above, the mean grid orientation can be calculated
in any chosen ROI, providing that the mask and functional data
are registered to one another. Popular choices of ROI include
anatomical masks, such as the entorhinal cortex (Doeller et al.,
2010; Kunz et al., 2015; Horner et al., 2016), however it is possible
also to input to the GridCAT a functionally-defined mask from
an orthogonal contrast (e.g., Constantinescu et al., 2016), or
localizer dataset.

Quantifying the Magnitude of the Grid
Code Response
The greatest degree of heterogeneity in analysis pipelines of
fMRI grid code studies stems from how the grid code is
quantified, or the choice of grid code metric. This relates, in
part, to the research question of interest, and we outline here
the different methods that have been used thus far in the
published literature. It is worth noting that these methods are
not mutually exclusive, and a researcher may want to use a
combination of different approaches to test a number of different
hypotheses.

In the following sections (‘‘Parametric Modulation’’ and
‘‘Comparing Activity Associated with Aligned vs. Misaligned
Events’’), we describe different methods to set-up GLM2 where
grid events are modeled with respect to their alignment
with the ROI-specific mean grid orientation. Irrespective of
the method used, additional regressors can be added to
GLM2, and modeling parameters can be changed depending
on the individual experimental design (as described for
GLM1).

Following GLM2, estimates of the grid code response
magnitude can be exported either as a 3DNIfTI image containing
estimates for all individual brain voxels or as an average of the
grid code response magnitude within an ROI, so that researchers
can conduct further analyses on these data using statistical
or neuroimaging data analysis and visualization tools of their
choice.

Parametric Modulation
In the original study reporting grid codes in the fMRI signal,
Doeller et al. (2010) fitted a parametric regressor to the grid
events in the test data to examine whether voxels in an entorhinal
cortex ROI showed evidence of a six-fold sinusoidal pattern

of activity. The parametric regressor was calculated by taking
each grid event angle (αt), and determining its difference from
the mean grid orientation (ϕ) by calculating cos[6∗(αt – ϕ)],
which resulted in values ranging between ‘‘1’’, for grid event
angles aligned perfectly with the mean grid orientation (or a
60◦ multiple of it), and ‘‘−1’’ for values completely misaligned
with the grid code phase (i.e., mean grid orientation +30◦,
plus any 60◦ multiple of this value). Using cluster statistics,
Doeller et al. (2010) reported voxels at the group-level showing
modulation of their signal according to this sinusoidal function.
A similar analysis was used in Horner et al. (2016), with the
exception that they used a contrast to look for brain regions
in which the sinusoidal model fits significantly better for one
condition vs. another (i.e., imagined navigation vs. stationary
periods).

Comparing Activity Associated with Aligned vs.
Misaligned Events
It is possible also to compare parameter estimates associated with
aligned vs. misaligned grid events. For example, in a subsequent
analysis, Doeller et al. (2010) separated grid events into two
regressors comprising those translations aligned within 15◦ of
a grid axis vs. those more than 15◦ from a grid axis, and again
showed that significantly greater activity in entorhinal cortex
was associated with events aligned with grid axes. This analysis
strategy was used also by Kunz et al. (2015) who found that
participants at increased genetic risk of Alzheimer’s disease
show reduced BOLD response, relative to control participants,
when contrasting trials ‘‘aligned > misaligned’’ with the grid
axis (i.e., a reduction in the ability to detect the grid code).
Constantinescu et al. (2016) used a variation of the aligned
vs. misaligned analysis by sorting the grid event angles into
12 different regressors, each representing a 30◦ bin. Six regressors
comprised aligned trials, those events within ±15◦ of the mean
grid orientation (or a 60◦ multiple of it). The remaining six
regressors comprised misaligned trials, that is events offset from
the mean grid orientation by 30◦ (plus a 60◦ multiple of this
value) ±15◦, and parameter estimates were extracted for each
regressor.

Analysis of Grid Code Stability
The ability to detect the grid code in fMRI can be affected by
the stability of the estimated grid orientation either between
voxels within an ROI, or within voxels across different
scanning runs and/or conditions (e.g., stability over time
or different spatial environments, respectively). In terms of
grid orientation stability between voxels within an ROI, if
all voxels provide a different orientation value, then the
resulting mean grid orientation would be random, and the
coding of grid events in the test data depending on their
deviation from the mean grid orientation would be arbitrary.
To test whether there was evidence of coherence in the
orientation of the grid code between different voxels in their
entorhinal cortex ROI, Doeller et al. (2010) submitted all voxel
orientation values to Rayleigh’s test for non-uniformity of
circular data. Doeller et al. (2010) reported significant clustering
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of estimated orientations in around three-quarters of their
participants.

Alternatively, an inability to detect grid codes in the fMRI
signal could result from instability of the estimated grid
orientation within a voxel over time. Kunz et al. (2015) tested
the stability of the grid orientation over time by extracting the
orientation of a voxel in one half of the data and comparing
this to the same voxel’s orientation in the second half of the
data. These data were scored such that if the values were
within ±15◦ of one another, then the grid orientation for the
voxel was classified as stable. At the ROI level, the percentage
of voxels showing stability in their estimated orientation over
time could then be calculated. Even though participants at risk
of Alzheimer’s disease showed coherence in grid orientation
between voxels within a single scanning run, over time the
orientation estimates for a given voxel differed. It was concluded,
therefore, that the reduced ability to detect grid codes in
the risk group resulted from instability in the orientation
within-, but not between-, voxels in the Alzheimer’s risk
group.

Control Analyses
Given that grid cells identified in rodents show a strict six-fold
symmetry in their firing, it is necessary to test whether the
best fit for the grid code analysis in fMRI is also a six-fold
model, or whether other sinusoidal models fit the data equally
well. In all studies published to date, the six-fold model has
proven a better fit to estimate the orientation of the grid code
in comparison to other symmetrical models (three-, four-, five-,
seven- and eight-fold models; Doeller et al., 2010; Kunz et al.,
2015; Constantinescu et al., 2016; Horner et al., 2016). These
different models can be implemented in the GridCAT, allowing
the user to examine whether the six-fold model provides a better
fit to the data.

An alternative control analysis, which can be carried out
using the GridCAT, is to test for the grid code in regions
where one would not expect to observe this signal (e.g., the
visual cortex). Although this type of control analysis has been
used previously (Doeller et al., 2010), it may be difficult to
predict exactly where in the brain one would expect to see
this pattern of data. For example, using an orthogonal localizer
contrast, Constantinescu et al. (2016) found evidence of the
sinusoidal response in a number of different regions including
the ventromedial prefrontal cortex, and the posterior cingulate
cortex.

ANALYSIS OF EXAMPLE DATASET

To demonstrate some of the key features of the GridCAT, we
detail here the analysis of functional data from an example
participant who was scanned whilst completing a spatial
navigation task. The dataset of this example participant is
available for download, so that the complete analysis pipeline
described here can be reproduced using the GridCAT, giving
the user the opportunity to explore its tools and functions.
Furthermore, all necessary steps to analyze the example dataset
are described in detail in the GridCAT manual.

Methods
The example participant was 28 years old, right handed, had
normal vision and no history of psychiatric or neurological
disorders. Informed consent was obtained in writing in
accordance with the Declaration of Helsinki before the
measurements, and the experiment received approval from
the Ethics Committee of the Otto-von-Guericke University of
Magdeburg.

Spatial Navigation Task
Prior to scanning, the participant was asked to navigate a square
virtual space (160× 160 virtual meters) using a joystick and learn
the location of three target-objects. Afterwards, the participant
underwent two separate runs of fMRI scanning during which the
participant navigated in the same virtual space. Each trial had the
following structure: at the start, all target-objects disappeared and
an image of one of them was shown at the bottom of the screen
(Figure 4). The participant was asked to navigate to the position
of the cued target-object and confirm their choice of location
with a button-press. After the button-press, feedback was given
to the participant via the target-object appearing at its correct
location and a smiley-face displayed on the screen that was either
green (if the ‘‘error distance’’ between the correct location and
the participant’s response was below 20 virtual meters), yellow
(for ‘‘error distances’’ between 20 and 30 virtual meters), or
red (for ‘‘error distances’’ larger than 30 virtual meters). After
each trial, the participant was automatically transported to a
random position within the virtual space. Each scanning run
lasted 16 min, and the participant was asked to complete as many
trials as possible.

Scanning Parameters
T2∗-weighted functional images were acquired on a 3T Siemens
Magnetom Prisma scanner using a partial-volume echo-planar
imaging (EPI) sequence with the following parameters: repetition
time (TR) = 1500 ms, echo time (TE) = 30 ms, slice
thickness = 2 mm, in-plane-resolution = 2 × 2 mm, number
of slices = 24, field of view = 216 mm, flip angle = 80◦, slice
acquisition order = interleaved.

For manual delineation of the entorhinal cortex, a
high-resolution T2-weighted structural image was acquired
using a turbo-spin-echo (TSE) sequence with the following
parameters: TR = 6000 ms, TE = 71 ms, slice thickness = 2 mm,
in-plane-resolution = 0.5 × 0.5 mm, number of slices = 64,
field of view = 224 mm, flip angle = 120◦, slice acquisition
order = interleaved.

Analysis Pipeline
Prior to analyses using the GridCAT, the functional images
for the two runs were realigned and smoothed (5 mm
FWHM) using SPM12. Anatomical masks of the right and
left entorhinal cortices were traced manually (following Ding
et al., 2016) on the participant’s T2-weighted image using
ITK-SNAP2, and co-registered to the EPI data. These two

2http://www.itksnap.org/
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FIGURE 4 | Example trial during fMRI scanning. Prior to scanning, the participant learned the locations of three target-objects in a virtual environment. Left: during
scanning, one of the target-objects was cued (e.g., a football) and the participant was asked to navigate to its location. Right: after the participant pressed a button
to confirm their choice of location, the target-object appeared at its correct location and a smiley-face provided feedback as to the accuracy of the response.

FIGURE 5 | GridCAT polar histogram plots showing coherence of the grid orientation between voxels in right and left entorhinal cortex ROIs. The length of each bar
indicates the number of voxels that share a similar grid orientation, and the blue numbers indicate the number of voxels represented by each ring of the polar plot.
The GridCAT also allows the user to calculate and visualize the mean grid orientation (red arrow) for each plot (which is used in GLM2 to model grid events with
respect to their deviation from the mean grid orientation). Depending on the user’s choice of model, the mean grid orientation can be calculated separately for run 1
(left column) and run 2 (middle column), or alternatively, the mean grid orientation over multiple runs (right column) can be calculated by averaging the parameter
estimates. Furthermore, users can choose to carry out Rayleigh’s test for non-uniformity of circular data. Rayleigh’s test indicated that voxels in both the right (top
row) and left (bottom row) entorhinal cortex showed significant clustering (i.e., coherence) in their orientations (all p < 0.00001).

anatomical masks were used as separate ROIs for all following
analyses.

As detailed in the previous sections, there are a number of
different ways grid codes can be examined in fMRI data, which
are available to the GridCAT user. It is beyond the scope of
this article to demonstrate all possible combinations of modeling

options; therefore, we chose a subset of parameters for the grid
code analysis detailed here. The first parameter relates to the
way in which the mean grid orientation is calculated. In GLM1,
the GridCAT generates an image containing voxel-wise grid
orientations, which can then be used to determine the mean
grid orientation for a given ROI. The mean grid orientation
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can be calculated by averaging over voxels in the ROI either
within individual scanning runs, or across multiple runs. For
example, if one predicts that the grid orientation will change
over runs, perhaps due to an experimental manipulation that
could induce grid cell remapping (Fyhn et al., 2007), it would
be sensible to estimate the grid orientation within individual
runs, rather than averaging across them. Although we did not
predict that there would be any changes in grid orientation
over the two runs in our paradigm, we demonstrate the effect
of estimating the mean grid orientation within vs. across
runs.

We examined also two different ways in which the
grid events (i.e., translational movements within the virtual
environment) can be modeled in GLM2. In one model, grid
events were modeled using a single parametric modulator
regressor (e.g., Doeller et al., 2010). In an alternate model,
replicating the analysis of Kunz et al. (2015), grid events were
separated into two regressors — aligned or misaligned with
the mean grid orientation — and contrasted with one another
(‘‘aligned > misaligned’’). The approach used by Constantinescu
et al. (2016) in which grid events are separated into 12 different
regressors comprising 30◦ bins was not used here because our
paradigm allowed for free exploration of the environment and
therefore it is possible that not all directions were sampled
equally. In all GLMs, we included as regressors of no interest the
feedback phase in the paradigm, head motion parameters (x, y, z,
yaw, pitch and roll) derived from realignment in SPM, and the
unused grid events (i.e., the grid events for GLM2 when fitting
GLM1, and vice-versa).

Finally, we show how different symmetrical models (four-,
five-, six-, seven- and eight-fold) affect the model fit, with the
prediction that the six-fold symmetrical model should provide
the highest parameter estimates, given that this reflects grid cell
firing symmetry.

Results
Consistent with the analysis strategy of Doeller et al. (2010),
in GLM1 we found that the orientations of grid codes
in voxels of both right and left entorhinal cortex showed
significant non-uniformity, or clustering (see Figure 5). The
GridCAT produces polar histogram plots, which indicate the
different orientations derived from voxels in a given ROI,
and the number of voxels sharing similar orientations. In
these interactive plots, the mean grid orientation of all voxels
within the ROI can also be calculated and plotted by the
GridCAT. Moreover, Rayleigh’s test for non-uniformity of
circular data can be carried out (applying code from the
open-source toolbox CircStat2012a; Berens, 2009), in order
to test whether the orientations of the grid code in voxels
within an ROI show greater clustering than would be expected
by chance. The example data suggest, therefore, that there
is stability in grid orientation between voxels within the
entorhinal cortex. As can be seen in Figure 5, the voxel-wise
orientations estimated in the two separate runs were similar
to one another, suggesting that the mean grid orientation
could be calculated across both runs and used to categorize

grid events in GLM2. If, however, these plots had indicated
that the mean grid orientations changed over runs, the user
might consider estimating and testing grid orientations within
individual runs so that the categorization of grid events in GLM2,
according to their alignment with the mean grid orientation,
was more accurate. Furthermore, the GridCAT allows for
the export of voxel-wise orientation values within an ROI,
in order for additional analyses and/or statistical tests to be
conducted on these data, depending on the user’s specific
research question.

The GridCAT can test also the within-voxel stability of
the grid orientation across different scanning runs and/or
conditions. When the user inputs two different voxel-wise
orientation images derived from GLM1, and an ROI, the toolbox
generates a plot comprising two polar plot rings (see Figure 6).
For the analysis presented here, each ring represents a different
scanning run, and circle markers denote the grid orientation of
individual voxels; straight lines connect grid orientations of the
same voxel across different runs. By default, the orientation of
the grid code in a voxel is considered stable if the two values
are within ±15◦ of one another (i.e., the same threshold used
in Kunz et al., 2015), and the GridCAT outputs the proportion
of voxels within an ROI surviving this threshold. The stability of
individual voxels is also displayed via the color of the connecting
line; here, the GridCAT has displayed stable voxels in green
and unstable voxels in red. Consistent with Kunz et al. (2015),
the grid orientation for the example participant was consistent
across the two runs, such that 75% of voxels in the right
entorhinal cortex, and 60% of voxels in the left entorhinal cortex,
maintained a stable orientation. The GridCAT provides the user
with several other options in an interactive plot, including the
ability to change the threshold value for stability (i.e., ±15◦) if
the researcher wishes to be more conservative or liberal with
this estimate. Moreover, the user can specify several aesthetics
of the plot, such as the colors and styles of the lines and
markers.

For the test data in GLM2, the GridCAT allows users to
model grid events either with a parametric modulator regressor
(e.g., Doeller et al., 2010), or by separating grid events into
trials aligned vs. misaligned with the mean grid orientation
and contrasting these values (‘‘aligned > misaligned’’). The two
methods resulted in comparable parameter estimates in the
right entorhinal cortex ROI, with the ‘‘aligned > misaligned’’
contrast method associated with slightly higher parameter
estimates relative to the parametric modulator (see Figure 7).
In the left entorhinal cortex, there were less obvious differences
between methods, however the ‘‘aligned > misaligned’’ contrast
again yielded the highest parameter estimate, but only when
the mean average grid orientation was calculated using the
data from both runs in GLM1. That the grid code metrics
appear generally stronger in the right hemisphere, in terms of
between-voxel and within-voxel grid orientation coherence, and
model fit in GLM2, supports previous findings (Doeller et al.,
2010). It is unclear from a theoretical viewpoint, however, why
this should be the case, and requires more extensive comparisons
within individual subjects to determine the consistency of this
effect.
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The control analysis tests for the fit of different symmetrical
models, to examine whether the six-fold symmetry explains
best the data. Consistent with the other results reported here,
in right entorhinal cortex the six-fold symmetrical model
resulted in the numerically highest parameter estimates relative
to all other models. In the left entorhinal cortex, the six-,
seven- and eight-fold models all appear to fit the data equally
well (Figure 7). It should be noted, however, that other
articles reporting a better fit of the six-fold symmetrical model
show effects at the group-level, rather than within individual
subjects. Accordingly, there may be substantial variability in
these estimates both inter-subject, as well as intra-subject, as
demonstrated here by the difference between right and left
hemispheres.

DISCUSSION

The GridCAT is an open-source toolbox allowing researchers
to examine the putative firing of grid cells (i.e., the grid
code) in human fMRI data. The GridCAT provides a simple
and user-friendly GUI, and accompanying open-source code,
for the analysis of fMRI data, so that the user can conduct
the entire grid code analysis pipeline. In order to learn
and understand the functionality of the GridCAT, a detailed

manual is provided to guide the user through all analysis
steps, and the user can also follow the instructions to analyze
an example dataset and reproduce the results presented here.
Furthermore, example scripts are provided for those who
do not want to use the GUI, but rather use and modify
the existing open-source code of the GridCAT. The Support
section of NITRC also provides a platform for discussion of
issues relating to the toolbox, as well as the opportunity for
users to submit any requests or report errors regarding the
GridCAT.

Despite the great deal of research into grid cells using
non-human animal species (for an overview see Rowland et al.,
2016), there remain very few studies examining grid codes
in human fMRI. Given that this cellular mechanism is now
purported to support more than just pure spatial navigation
behavior both in humans (Constantinescu et al., 2016) and rats
(Aronov et al., 2017), researchers now face the exciting challenge
of elucidating exactly what role this cell type may play in other
cognitive domains.

In humans, the architecture of grid cells is unknown,
and it remains unclear whether there are multiple different
grid codes (derived from the fMRI signal) that represent
different types of information across the brain. For example,
in terms of spatial navigation, in rodents there is evidence

FIGURE 6 | GridCAT polar plots showing coherence of the grid orientation within voxels, across runs 1 and 2, in right and left entorhinal cortex ROIs. In both the right
and left entorhinal cortex, the majority of voxels maintained the same grid orientation (±15◦) across the two runs; the proportion of voxels maintaining the same
orientation across runs is calculated automatically for the user. The two black rings in each plot represent the two different runs (inner ring: run 1, outer ring: run 2),
and the orientation of the grid code for each voxel is indicated with a circular marker; a line connects the orientations of each voxel. Green solid lines indicate voxels
with stable orientations, whereas red dotted lines indicate voxels with unstable orientations. The GridCAT allows the user also to customize the plots, including the
color schemes, line styles, as well as adapting the threshold for classifying a voxel as stable.
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FIGURE 7 | Parameter estimates from GLM2 associated with grid events using different model designs and grid code symmetries. In the right entorhinal cortex, the
six-fold symmetrical model provided the best model fit, both for the “aligned > misaligned” contrast and for the single parametric modulation regressor. Calculating
the mean grid orientation over two runs, vs. using separate mean grid orientations for each run, made little difference to the parameter estimates. In the left entorhinal
cortex, the effect of generating the mean grid orientation over multiple runs vs. separate single runs was more variable and other symmetrical models provided
equally good model fits for this hemisphere. All bars show the mean parameter estimate averaged over all voxels within right and left entorhinal cortex, respectively.

that grid cells are arranged in different modules, with neurons
within a module sharing a similar firing amplitude, preferred
orientation and spatial scale (Stensola et al., 2012). Although
we can only study changes in signal at the macroscopic-
level using fMRI, analysis of higher resolution imaging data,
which would be supported also by the GridCAT, may reveal
heterogeneity of the grid code within a single ROI (reflecting
these different properties of grid cell modules). Furthermore,
voxels showing a sinusoidal pattern in the BOLD signal
have been identified across the brain in human fMRI studies
(e.g., Constantinescu et al., 2016). It is unclear whether this
activity in different brain regions reflects the same underlying
process, or different types of information. Future studies in
humans using different experimental paradigms and different
imaging resolutions will help to elucidate whether the grid
code is homogenous across the brain, or shows functional
specialization.

Reproducing the grid code analyses from previous studies
is a time-consuming and non-trivial endeavor that involves
advanced computer programming and mathematical skills. The
GridCAT, therefore, opens up this cutting-edge research area
to researchers less comfortable with programming by allowing
users to analyze data using a GUI. Because the open-source code
for the GridCAT is available in the download, it can be adapted
and extended as desired by the user. To do this, the user would
need to be competent in Matlab programming skills (either in
Matlab’s proprietary programming language, or in other Matlab-
compatible programming languages such as C or Fortran), have a

Matlab license, and download the freely available SPM12 toolbox.
Extensively commented example scripts are delivered with the
GridCAT’s open-source code that show how functions and
algorithms are programmatically called in the course of the grid
code analysis pipeline. Furthermore, they also demonstrate how
new functions and algorithms can be added to the GridCAT.

Relative to other standard fMRI analysis software packages,
the unique contribution of the GridCAT is that it provides
the algorithms necessary to detect the grid code in the BOLD
signal, and that it synthesizes analysis pipelines that have been
used previously. Specifically, these include different ways in
which the data can be partitioned for GLM1 and GLM2, using
either the GridCAT’s automated, or a user-defined partitioning
scheme. The GridCAT then automatically estimates voxel-wise
orientations of the grid code from the BOLD signal. Using
these orientation values, the magnitude of grid code response
can be calculated, as well as grid code metrics such as
within- and between-voxel orientation coherence. Results can
be visualized by using specific plotting tools offered by the
GridCAT. Furthermore, it offers the option to statistically test for
non-uniformity or clustering of voxel-wise grid orientation data,
which has been used in previous grid code publications but is
not commonly included in standard statistical software packages.
Moreover, all data generated by the GridCAT can be exported
using its data export tools, providing flexibility in terms of further
statistical testing, comparisons and visualization, depending
on the individual research questions and the researcher’s
needs.
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As noted above, although it is beyond the scope of this
article to compare the results of all different model selection
parameters, we believe that this is an important goal for the field
so that researchers will have a better idea as to the factors that
aid detection of these signals in fMRI data. By making all of
these options available to the user, and the wider neuroscience
community, the GridCAT has provided the first step in achieving
this goal and has the potential to accelerate grid code research in
humans.

LICENSE STATEMENT

The GridCAT is openly available at the Neuroimaging
Informatics Tools and Resources Clearinghouse (NITRC) and
can be downloaded from: http://www.nitrc.org/projects/gridcat.

The GridCAT is free software and can be redistributed
and/or modified under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later
version. A copy of the GNU General Public License is
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http://www.gnu.org/licenses/.
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