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Brain networks are increasingly understood as one of a large class of information processing 
systems that share important organizational principles in common, including the property 
of a modular community structure. A module is topologically defined as a subset of highly 
inter-connected nodes which are relatively sparsely connected to nodes in other modules. In 
brain networks, topological modules are often made up of anatomically neighboring and/or 
functionally related cortical regions, and inter-modular connections tend to be relatively long 
distance. Moreover, brain networks and many other complex systems demonstrate the property 
of hierarchical modularity, or modularity on several topological scales: within each module 
there will be a set of sub-modules, and within each sub-module a set of sub-sub-modules, 
etc. There are several general advantages to modular and hierarchically modular network 
organization, including greater robustness, adaptivity, and evolvability of network function. In 
this context, we review some of the mathematical concepts available for quantitative analysis 
of (hierarchical) modularity in brain networks and we summarize some of the recent work 
investigating modularity of structural and functional brain networks derived from analysis of 
human neuroimaging data.
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IntroductIon
Many biological, social, and technological sys-
tems, comprised of multiple elements inter-
acting with each other, can be represented as 
networks. A network viewpoint emphasizes that 
the behavior of a complex system is shaped by the 
interactions among its constituents (Newman, 
2003) and offers the possibility to analyze sys-
tems of a very different nature within a unify-
ing mathematical framework. The identification 
of common topological properties across many 
superficially different systems corroborates the 
hypothesis that their evolution has been driven 
by universal selection criteria, such as high effi-
ciency of information transfer for low physical 

connection cost (Bullmore and Sporns, 2009; 
Sporns, 2010).

The brain can be seen as a network of inter-
connected components whose architecture sup-
ports the emergence of adaptive behavior and 
cognition.

The application of complex network tools 
to neuroscience and neuroimaging datasets has 
recently led to major advances in understanding 
the way the brain works at a system level. Several 
recent reviews (Bassett and Bullmore, 2006; 
Reijneveld et al., 2007; Bullmore and Sporns, 2009; 
He and Evans, 2010; Rubinov and Sporns, 2010; 
Wang et al., 2010; Bullmore and Bassett, 2010) 
have focused on the data analytic methods that 
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can be used to extract complex networks from 
structural and functional neuroimaging datasets 
and to quantify their topological organization.

Complex network theory provides a math-
ematical framework to identify generic organi-
zational principles behind the architecture of 
nervous systems. Several aspects of brain network 
organization are typical also of a wide range of 
non-neural or non-biological complex networks. 
For example, brains share several properties such 
as small-worldness, over-representation of hub 
nodes, and modularity, with many other complex 
networks (Stam, 2004; Achard et al., 2006; Achard 
and Bullmore, 2007; He et al., 2007; Bassett et al., 
2008). The small-world property is characterized 
by a relatively short minimum path length on 
average between all pairs of nodes in the network 
(sometimes also described as a short diameter of 
the network), together with a high clustering 
coefficient or transitivity (Watts and Strogatz, 
1998). Highly clustered physical networks thus 
have a regular, lattice-like organization which is 
dominated by short distance connections and 
is highly economical on wiring costs. The exist-
ence of a relatively few long-distance topological 
short-cuts reduces path length, and increases glo-
bal efficiency of information processing in brain 
networks, at the expense of more than minimal 
wiring costs (Kaiser and Hilgetag, 2006; Bassett 
et al., 2010).

Although small-worldness summarizes key 
properties of complex networks at global (diam-
eter) and local (triangle) levels of topological 
description, it does not provide any information 
about the intermediate scale of network organi-
zation, which is more completely described by 
the community structure or modularity of the 
network. The modules of a complex network, 
also called communities, are subsets of nodes 
that are densely connected to other nodes in the 
same module but sparsely connected to nodes in 
other modules. Because nodes within the same 
module are densely intra-connected, the number 
of triangular motifs in a modular network is larger 
than in a random graph of the same size and con-
nection density, while the existence of a few links 
between nodes in different modules plays the role 
of topological short-cuts in a small-world formu-
lation of network architecture. Modular systems 
thus naturally tend to be small-world networks, 
with high clustering and short path length (Pan 
and Sinha, 2009), although the converse is not 
always true: some small-world networks, such as 
the original Watts–Strogatz model, are not modu-
lar (Figure 1).

In many systems it seems that modularity 
does not exist only at a single organizational 

scale, but rather that each module can be fur-
ther partitioned into a set of sub-modules, and 
within each sub-module there may be sub-sub-
modules, etc. In other words, many systems have 
the fractal property of hierarchical modularity, 
multi-scale modularity or “russian doll” modular-
ity (Figure 2). In biological systems like the brain, 
self-similarity is statistical rather than exact so the 
modular community structure brain networks 
is approximately (not perfectly) invariant over a 
finite number of hierarchical levels.

Here, we discuss different aspects of modu-
larity and hierarchical modularity in relation to 
brain networks generated from neuroscience and 
neuroimaging data. We first detail the advantages 
theoretically provided by a modular topology and 
review the recognized importance of modular-
ity in models of brain, mind, and information 
processing systems generally. We then focus on 
mathematical tools, drawn mainly from graph 
theory, that can be used to measure and visual-
ize the modular organization of complex systems, 
and review their recent application to functional 
and structural brain networks.

Why are braIn netWorks expected to 
be modular?
For many years, researchers have been fascinated by 
the ubiquity of modularity and hierarchical mod-
ularity across social, technological, and biological 
systems, and have searched for dynamic, adaptive, 
or economical constraints informing the evolution 
of networks toward a modular architecture. One 
of the earliest and most influential ideas was for-
mulated by Simon (1962, 1995) who argued that 
a “nearly decomposable” system built of multiple, 
sparsely inter-connected modules allows faster 
adaptation or evolution of the system in response 
to changing environmental conditions. Modular 
systems can evolve by change in one module at a 
time, or by duplication and mutation of modules, 
without risking loss of function in modules that 
are already well adapted. Well-adapted modules 
thus represent stable intermediate states such that 
further evolution of other modules does not jeop-
ardize function of the entire system. This robust-
ness represents a major advantage for any system 
evolving under changing or competitive selection 
criteria, and this may explain the widespread prev-
alence of modular architectures across a very wide 
range of information processing systems. In his 
original article, Simon illustrated his idea by an 
intuitive parable about two watchmakers, called 
Hora and Tempus:

“The watches the men made consisted of about 

1,000 parts each. Tempus had so constructed 

Modularity
A topologically modular or nearly-
decomposable network can be broken 
down into component modules, each of 
which comprises a number of nodes 
that are densely intra-connected to each 
other but sparsely inter-connected to 
nodes in other modules.

Path length
A path is a series of edges connecting 
two nodes in a graph. The path length is 
the number of edges in a path. Out of 
all possible paths between two nodes, 
the shortest path length corresponds to 
the path made up of the fewest edges. 
Path length is inversely related to the 
efficiency of information transfer in a 
network (Latora and Marchiori, 2001).

Clustering
A high clustering coefficient means that 
the nearest neighbors of a given node 
have a high probability to be connected 
with each other to form the topological 
motif of a triangle. Small-world 
networks have higher clustering, but 
approximately equivalent path length, 
compared to a random network.

Graph
A graph is a mathematical object, 
composed of a set of nodes, and a set of 
edges between pairs of the nodes. In a 
graphical model of a brain network, the 
nodes represent (sub)cortical regions or 
neurons, and the edges represent 
anatomical or functional connections. 
Edges can be weighted or unweighted, 
directed or undirected, and are often 
defined by thresholding a continuous 
measure of association between nodes.

Fractal
A fractal object shows approximately 
the same organization over multiple 
scales of measurement, so-called scale 
invariance or self-similarity. For 
biological fractals like the brain, 
self-similarity between scales is 
statistical or approximate rather than 
exactly perfect as it can be for 
mathematical fractals like the Sierpinski 
triangle (Bullmore et al., 2009). 
Hierarchical modularity (modules-
within-modules) is fractal or 
statistically self-similar in the sense that 
roughly the same kind of community 
structure is expressed repeatedly at 
different hierarchical levels or 
topological scales of the network.
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Watts-Strogatz Modular HierarchicalA B C

Figure 1 | Modular systems are small-world but not all small-world 
systems are modular. Many complex systems can be represented as graphs 
where the nodes correspond to the constitutive elements (people, websites, 
neurons, etc), and the links or edges to some type of interaction between nodes 
(friendships, hyper-links, synapses, etc.). The use of networks across disciplines 
allows for the formulation of generic organization principles, such as the 

small-world property. The small-world property is defined as the combination of 
high clustering and short path length and has originally been illustrated by the 
Watts–Strogatz model (A). Complex networks also have a tendency to exhibit a 
modular topology, where links are concentrated within modules (B). Another key 
type of organization is hierarchical or multi-scale modularity (C), where modules 
themselves are modular, thus leading to a nested or fractal topological hierarchy.
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Figure 2 | Many information processing networks have a fractal 
community structure of modules-within-modules. Dendrograms displaying 
significant modular and sub-modular structure for (A) a very large-scale 
integrated circuit, (B) Caenorhabditis elegans, (C) the human anatomical 
network estimated using MRI data on 259 normal volunteers, and (D) the 

human cortical network estimated using diffusion spectrum imaging (DSI) data 
on an independent sample of five volunteers. The modularity, m, at each level 
was estimated using the method of Blondel et al. (2008). The insets 
demonstrate hierarchical modularity in terms of the co-classification matrix of 
each system. Reproduced with permission from Bassett et al. (2010).
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his that if he had one partly assembled and had 

to put it down – to answer the phone say – it 

 immediately fell to pieces and had to be reassem-

bled from the elements. The better the custom-

ers liked his watches, the more they phoned him, 

and the more difficult it became for him to find 

enough uninterrupted time to finish a watch. The 

watches that Hora made were no less complex 

than those of Tempus. But he had designed them 

so that he could put together subassemblies of 

about ten elements each. Ten of these subassem-

blies, again, could be put together into a larger 

subassembly; and a system of ten of the latter sub-

assemblies constituted the whole watch. Hence, 

when Hora had to put down a partly assembled 

watch in order to answer the phone, he lost only 

a small part of his work, and he assembled his 

watches in only a fraction of the man-hours it 

took Tempus.” (Simon, 1962, p. 470)

The implication is that a system with a hierar-
chically modular design will be more rapidly 
and robustly assembled. This idea has since been 
developed more rigorously to identify several evo-
lutionary and computational mechanisms which 
are likely to favor the emergence of modularity in 
information processing systems:

•	 Modular	networks	have	the	property	of	small-
worldness which is advantageous for nervous 
system design because the high clustering 
of connections between nodes in the same 
module will favor locally segregated processing 
(with low wiring cost) of specialized functions 
such as visual motion detection, while the 
short path length will support globally integra-
ted processing of more generic functions such 
as working memory (Sporns et al., 2004).

•	 Modular	network	topology	is	associated	with	
a rich non-linear dynamical behavior that 
has been described in various ways. Modular 
networks tend to produce time-scale sepa-
ration, i.e., fast intra-modular processes 
and slow inter-modular processes (Pan and 
Sinha, 2009), or high dynamical complexity 
(Sporns et al., 2000) due to the coexistence 
of both segregated and integrated activity 
(Shanahan, 2008; Pan et al., 2010), or tran-
sient “chimera” states (Shanahan, 2010) 
where synchronization and de-synchroniza-
tion coexist across the network. The presence 
of modules allows some neuronal activity to 
remain locally encapsulated and to main-
tain dynamical balance (Kaiser et al., 2007; 
Kaiser and Hilgetag, 2010), i.e., dynamical 
activity is maintained between the extremes 
of rapidly dying out and invading the whole 
network. Hierarchical modularity specifically 

also enhances dynamical reconnectability 
(Robinson et al., 2009), as marginally stable 
networks can be combined or divided while 
preserving stability. Other benefits of a hie-
rarchically modular organization include an 
enhanced stability of echo state networks 
(Jarvis et al., 2010), and dynamical re-con-
nectivity between different transient dyna-
mic behaviors (Müller-Linow et al., 2008; 
Hütt and Lesne, 2009).

•	 Plausible	 mechanisms	 for	 brain	 network	
development are associated with the forma-
tion of modules. This is the case in dyna-
mical systems where network structure and 
function coevolve (Gross and Blasius, 2008). 
Models with adaptive rewiring, such as cou-
pled maps with variable coupling strength 
(Rubinov et al., 2009), typically incorporate 
a reinforcement of links between synchro-
nized units and a pruning of links between 
asynchronized ones. This feedback between 
structure and dynamics, similar to synaptic 
plasticity in neuronal dynamics, naturally 
drives the emergence of inhomogeneities and 
modules in networks.

•	 Another	 possible	 explanation	 for	 the	 origin	
of modular networks is their optimality at 
performing tasks in a changing environment 
(Kashtan and Alon, 2005). In situations where 
different goals share basic sub-problems, evo-
lutionary pressure produces networks where 
modules specialize in these sub-problems 
and where rapid adaptation to each of the 
different goals is enhanced. This mechanism 
intuitively describes the natural selection of 
organisms evolving in a environment where 
a certain set of basic functions are required 
and where a combination of these “building 
functions” is needed to solve complex tasks.

In addition to these general arguments in favor of 
a modular topology for any economical, adaptive, 
dynamic system there are also a number of other 
more specifically neuroscientific reasons to expect 
brain networks to be topologically modular. For 
example, in the developmental formation of the 
nervous system, regular, sometimes metameric, 
patterns of genetic co-expression can be used to 
identify modules of spatially localized cells that 
will share the same developmental fate, maturing 
to adulthood as a specialized ensemble of cells 
relatively sparsely connected to cells derived 
from different histogenetic modules (Redies and 
Puelles, 2001).

There is massive evidence for anatomical 
localization of some specialized functions in adult 
brain. Early studies of anatomical connectivity 
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are more abundant within communities than 
would be expected on the basis of chance, but 
other quality functions have also been proposed, 
such as the information-theoretic map equation 
of Rosvall and Bergstrom (2008). Once a qual-
ity function has been specified, the network is 
partitioned heuristically to maximize the chosen 
quality function. Modularity can be optimized 
without the need to specify a priori either the 
number or size of the modules.

As most of the algorithms used for modular-
ity analysis will produce a modular decomposi-
tion on random networks (Guimerà et al., 2004), 
it is always necessary to compare the results 
obtained from analysis of a brain network with 
the modularity of appropriate “null model” net-
works, such as classical Erdös–Renyí graphs, or 
randomly rewired versions of the observed brain 
networks (Bullmore and Bassett, 2010). Statistical 
approaches for handling modularity measure-
ments on several different individual networks 
(Meunier et al., 2009a), or for comparing modu-
larity between two or more groups of networks 
(Alexander-Bloch et al., 2010), have been intro-
duced. Alternative and related approaches have 
been developed for modular decomposition, such 
as the concept of stability which is based on the 
persistence of information flows within modules 
over time (Delvenne et al., 2010). However, there is 
much active methodological development ongo-
ing for analysis of modular brain networks and 
this area is likely to advance further in future. In 
particular, we expect that there will be increasing 
interest in how the modularity of brain networks 
– a topological property – relates to their physical 
instantiation or embedding in space – a geometri-
cal property. In such systems, spatial constraints 
are known to have a strong effect on connectivity, 
mainly because of the greater cost associated with 
longer-distance links. Preponderance of short-
ranged interactions has significant consequences 
for the modular organization of the brain as 
topological modules tend to be spatially compact 
and to correspond to anatomically neighboring 
regions. A better understanding of the principles 
shaping neuronal organization thus requires 
future research on the effect of spatial constraints 
on brain connectivity and the development of 
appropriately weighted network metrics to fully 
explore the trade-offs between connection cost 
and topological efficiency that have been selected 
in formation of brain networks.

the communIty role of netWork nodes
Once an optimally modular partition has been 
found, it is possible to assign roles to the indi-
vidual nodes which characterize their significance 

between major cortical and subcortical regions 
identified clustering of anatomically and/or func-
tionally related brain regions (Sporns, 2010). 
Several multivariate methods based on hierar-
chical clustering, principal component analysis 
(PCA) or independent component analysis (ICA) 
have confirmed that functional neuroimaging 
data, recorded “at rest” or during performance of 
an experimentally controlled task, can generally 
be decomposed into sub-systems of functionally 
connected brain regions (Salvador et al., 2005; 
Calhoun et al., 2008; Van den Heuvel et al., 2008; 
Smith et al., 2009).

In the psychological literature, the central 
principle of phrenology or faculty psychology 
has been that mental function can be some-
how sub-divided into part-functions or mental 
modules (Fodor, 1983). Modular processes, like 
color vision, have been described as automatic, 
effortless, informationally encapsulated, and ana-
tomically localized (Zeki and Bartels, 1998). More 
consciously effortful tasks, like working memory, 
have been proposed to demand access to a more 
globally integrated processing system – a work-
space of synchronized neurons oscillating coher-
ently over large physical distances across the whole 
brain (Varela et al., 2001; Buzsáki and Draguhn, 
2004). The emergence of workspace architectures 
due to conscious effort is therefore expected to 
“break modularity” of neurocognitive systems 
(Dehaene et al., 1998). In short, there are strong 
prior reasons to believe that brain networks are 
formed and function as modular systems.

measurIng modularIty
The last few years have witnessed a major interdis-
ciplinary effort to develop community detection 
methods, namely methods for uncovering in an 
automated way the modules and sub-modules 
that may be present in networks, and for quan-
tifying how modular the network is. Literally 
hundreds of methods have been proposed (Porter 
et al., 2009; Fortunato, 2010), differing in their 
time complexity and their notion of what a com-
munity is. For instance, certain methods aim at 
uncovering non-overlapping communities while 
others allow for overlaps, such that nodes have 
the possibility to belong to several communities 
(Palla et al., 2005). Partitioning is a popular class 
of community detection methods which involves 
finding an optimum partition of the nodes into 
communities, i.e. each node is assigned to one 
and only one community. At the core of parti-
tioning methods, there is a mathematical quantity 
defining what is thought to be a good partition. 
The widely used modularity metric defined by 
Newman and Girvan (2004) measures if links 

Heuristics
Finding the optimally modular 
community structure in a network, 
according to some quantitative 
definition of modularity, cannot be 
solved exactly for large networks. 
Heuristics or heuristic algorithms thus 
have to be used to find approximate 
solutions in non-prohibitive computing 
times.
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vincial, connector and kinless hubs. Connector 
nodes are naturally of special importance for 
communication between modules.

hIerarchIcal modularIty
Modularity optimization has been shown to pro-
duce useful and relevant partitions in a number 
of systems (Newman, 2006). Unfortunately, it has 
also been shown to suffer from several limitations, 
partly because it produces one single partition, 
which is not satisfactory when dealing with multi-
scale systems. Different methods have been pro-
posed to go beyond modularity optimization 
(Lambiotte, 2010). A first set of methods searches 
for local maxima of the modularity landscape in 
order to uncover partitions at different resolutions 
(Sales-Pardo et al., 2007; Blondel et al., 2008). 
Another class of methods introduces multi-scale 
quality functions, where a resolution parameter 
is incorporated to tune the characteristic size of 
the modules and thus to uncover modules at the 
intrinsic scale of  organization of the system, i.e., 

for intra- and inter-modular transfer of informa-
tion (Guimerà and Amaral, 2005). The node roles 
are defined by two parameters. The participation 
coefficient of a given node is the proportion of 
edges linking it to nodes in other modules. If a 
node has zero or only a few inter-modular con-
nections, it is classified as a provincial (or periph-
eral) node; if its participation coefficient is high, 
indicating a substantial proportion of inter-
modular edges, it is classified as a connector node 
(Figure 3). The second parameter is a measure 
of the intra- modular connectivity of the node, 
namely a Z-score of its intra-modular degree 
when compared to the degrees of other nodes in 
the same module. If the degree of a node is higher 
than that of other nodes in the same module, it is 
called a hub; otherwise, a non-hub. In the origi-
nal definition, Guimerà and Amaral (2005) define 
seven different node roles, depending on specific 
cut-off values of the participation coefficient and 
intra-modular degree: ultra-peripheral, periph-
eral, connector and kinless non-hubs, and pro-
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Figure 3 | Age-related effects on modularity and topological roles of cortical 
regions in brain functional networks. Upper panel: intra-modular degree versus 
participation coefficient for each of the regional nodes in major posterior, central, 
and frontal modules of fMRI networks in younger (A) and older (B) participants. 

Connector nodes have large participation coefficients. Lower panel: topological 
representation of the average young (C) and older (D) brain networks with 
connector nodes located in a central ring to highlight their key role in inter-modular 
connectivity. Reproduced with permission from Meunier et al. (2009b).

Connector nodes
In a modular system, some nodes may 
have a special role to play in mediating 
the relatively sparse connections 
between different modules. In brain 
networks, cortical regions (e.g., 
precuneus) with greater inter-modular 
connectivity are called connector nodes 
in contrast to other regions (e.g., 
calcarine cortex) which are called 
provincial nodes because they may have 
high connectivity but almost exclusively 
with other nodes in the same module.
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anatomical network was constructed and parti-
tioned. The results show a community structure 
reproducing some functionally localized areas, 
such as visual, auditory/language, central (soma-
tosensorimotor), and superior parietal modules. 
Hagmann et al. (2008) used DTI to uncover a 
structural core of human anatomical networks. 
The modules in this network included unilaterally 
localized areas, such as posterior and frontal lat-
eralized modules, as well as bilateral medial pari-
etal areas and bilateral occipital areas. They define 
the “structural core of the network” as regions 
mostly localized in the medial part of the brain, 
and involving cingulate cortex and precuneus.

modularIty In functIonal braIn 
netWorks
The modular organization of the brain functional 
network in rats was analyzed on the basis of fMRI 
data, and the influence of pharmacological chal-
lenge on the modular structure of functional 
resting-state networks was investigated (Schwarz 
et al., 2009), using techniques introduced by 
Guimerà and Amaral (2005).

Three different studies used very similar 
methodologies to study the modular partitions 
of resting-state fMRI networks in humans (Fair 
et al., 2009; He et al., 2009; Meunier et al., 2009b) 
(Figure 3). Two of these studies investigated the 
influence of normal aging on the modular struc-
ture: Meunier et al. (2009b) focused on the adult 
period (healthy controls from 25- to 65-years 
old); whereas Fair et al. (2009) focused on ado-
lescence and early adulthood (healthy controls 
from 7- to 31-years old). He et al. (2009) stud-
ied a population of healthy young adults (21- to 
25-years old).

Two of the studies (He et al., 2009; Meunier 
et al., 2009b) used similar algorithms and cortical 
parcellation templates to study modular decom-
position, and showed consistent results for the 
young adult age range (20–25 years) included in 
both samples. Both studies reported posterior 
(occipital) and central (sensorimotor) modules, 
as well as a default-mode module comprising pre-
cuneus, cingulate, and medial prefrontal cortex. 
Valencia et al. (2009) looked at modular organiza-
tion in human resting-state networks, this time at 
the voxel level. They showed a similar organization 
at a finer grain, including visual, central-auditory, 
default-mode, and subcortical modules.

In keeping with this degree of consistency 
between studies, there is evidence for reliability 
of modular decomposition across a range of net-
works – from sparsely to more densely connected 
graphs – obtained from the same neuroimaging 
data by applying different thresholds to define 

not at a scale imposed by the method. The most 
popular multi-scale quality function is the spin-
glass modularity (Reichardt and Bornholdt, 2004) 
whose optimization reveals modules of different 
characteristic sizes when its resolution parameter 
is adjusted.

The detection of hierarchies in networks is 
an active field of research where a broad range 
of techniques is currently being developed. In 
addition to generalizations of modularity, let 
us also mention methods aiming at uncovering 
hierarchies made of overlapping communities 
by partitioning the links of the network (Evans 
and Lambiotte, 2009; Ahn et al., 2010), as well as 
methods based on the likelihood of hierarchical 
random graphs to have generated the system in 
question (Clauset et al., 2008).

modularIty of anatomIcal braIn 
netWorks
Several articles studying modular organization 
at the anatomical level are based on publically 
available databases of cat or macaque whole brain 
anatomical connectivity, obtained by fiber trac-
ing and described by Hilgetag et al. (2000). Using 
these data on brain anatomical networks, Hilgetag 
et al. (2000) applied an algorithm looking at par-
titions, with a quality function aiming at maxi-
mizing the number of intra-modular edges and 
minimizing the number of inter-modular edges. 
They obtained a partition consisting of four sub-
networks, that were classified as visual, auditory, 
somatosensorimotor, and frontolimbic. Zhou 
et al. (2006) used a modularity metric (Newman 
and Girvan, 2004) to quantify the optimality of 
this partition. By simulating dynamics using the 
anatomical networks, they showed that different 
dynamics correspond to a hierarchy of modular 
organization, and provided new insight about the 
relation between structure and function in brain 
networks. Sporns et al. (2007) were interested in 
finding the nodes playing the roles of hub regions 
in these mammalian anatomical networks. Hubs 
were defined using several of the many possible 
criteria, including node roles. Based on the same 
dataset, Zamora-Lopez et al. (2010) showed the 
existence of a hierarchy between the different 
modules: using the notion of betweenness cen-
trality (Freeman, 1979), they showed that the 
most central nodes of each module constitute a 
“super-module,” hierarchically on top of the low-
level modules.

Modularity in human anatomical networks 
has been established by Chen et al. (2008). Using 
correlations across subjects between thickness of 
gray matter in different cortical regions defined 
by a previously parcellated template image, an 
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reported that resting state fMRI datasets can be 
decomposed into a hierarchy of modular com-
munities of functionally related brain regions.

Bassett et al. (2010) measured hierarchical 
modularity of the cellular connectome of the 
nematode Caenorhabditis elegans and compared 
this nervous system to whole brain anatomical 
networks in human MRI and DTI data. They 
showed that human and nematode networks 
both demonstrated clear evidence of hierarchi-
cal modularity. This organization was also found 
in the wiring diagram of a high-performance 
computer chip (or very large-scale integrated 
circuit). It was argued that hierarchical modu-
larity is expressed consistently across such dif-
ferent information processing systems because 
it represents an economical wiring diagram for 
embedding topologically complex systems in a 
relatively low-dimensional physical space.

future questIons
One important general problem for the future will 
be to understand more directly how the topological 
modularity of large-scale brain networks is related 
to other aspects of modularity, namely the physi-
cal, developmental, pathological, or psychological 
aspects of the modularity of nervous systems.

The physical geometry of the brain’s modu-
larity remains to be elucidated completely. Brain 
regions belonging to the same topological module 
are also often neighbors in anatomical space; or, 
to put it another way, the constituent nodes of 
topological modules are often anatomically co-lo-
calized in the brain (Figure 4). This arrangement 
seems likely to be advantageous in terms of mini-
mizing the connection distance or wiring cost of 
intra-modular edges. It also implies that inter-
modular connections are likely to be relatively 
long distance and expensive in terms of wiring 
cost. There is some evidence that (hierarchical) 
modular networks represent an economical way 
of embedding topologically complex systems in 
relatively low-dimensional physical space (Bassett 
et al., 2010). However, further work is needed to 
understand the modularity of brain systems in 
relation to their anatomical embedding as spatial 
networks (Barthélemy, 2010).

A related issue concerns the growth of a modu-
lar adult brain network: is this developmentally 
determined in some way by histogenetic modules 
of the embryonic brain? This could be regarded 
as further characterization of genetically driven 
developmental changes in modularity – so-
called modularization – that have already been 
 suggested by early studies of normal human 
brain network maturation and aging (Fair et al., 
2009; Meunier et al., 2009b). Moreover, normal 

binary graphs from a continuous association 
matrix (Bullmore and Bassett, 2010). Meunier 
et al. (2009a) used a stability analysis to assess 
the reproducibility of the results when apply-
ing different thresholds to compute adjacency 
matrices. They showed that as long as the result-
ing networks were sparse, the similarity between 
modular decompositions obtained for different 
thresholds was very high. He et al. (2009) showed 
the results of modular decomposition for differ-
ent thresholds, and once again, for a range of 
thresholds leading to sparse networks, the modu-
lar decompositions were almost the same.

In several of these articles, node roles have 
been defined to characterize the different func-
tions played by nodes with respect to a given 
modular partition. Even if using somewhat ad 
hoc definitions for the different node roles, all the 
different studies, both in structural and functional 
neuroimaging (Chen et al., 2008; Meunier et al., 
2009a,b; He et al., 2009; Valencia et al., 2009) 
are quite consistent. It appears that most of the 
connector nodes (i.e., nodes joining modules 
together) are located at the junctions between 
anatomically segregated cortices (occipito-pa-
rietal, occipito-temporal, parieto-central, and 
fronto-central junctions), and are often in regions 
of multimodal association cortex; whereas the 
provincial hubs (i.e., nodes mostly linked with 
nodes of the same modules) are located within 
functionally specialized areas of cortex (primary 
or unimodal association areas).

Human brain functional networks obtained 
from EEG/MEG sensor recordings have also been 
shown to have small-world and modular proper-
ties. Chavez et al. (2010) have shown that EEG 
networks show differences in modular organi-
zation between healthy controls and epileptic 
patients.

hIerarchIcal modularIty In braIn 
netWorks
Meunier et al. (2009a) studied the hierarchical 
organization of human fMRI networks using the 
greedy method of Blondel et al. (2008) (Figure 4). 
At the highest level of the hierarchy, where there 
were fewer and larger modules, occipital, central 
and default-mode modules were again indenti-
fied. However, at lower levels of the hierarchy, 
each of these major modules was decomposed 
into a set of sub-modules (or sub-sub-modules). 
For example, the central module was decomposed 
into lateral and medial sub-modules. The pos-
terior module could only be decomposed into 
a few sub-modules, whereas a fronto-temporal 
module could be decomposed into several small 
sub-modules. Ferrarini et al. (2009) have also 
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important to explore how topological modular-
ity of large-scale brain networks might be related 
to concepts of psychological modularity. For 
example, Fodor (1983) built on prior ideas from 
phrenology and faculty psychology to argue that 
some, relatively low-level, cognitive, or perceptual 
processes – such as visual perception of motion 
– can be described as psychologically modular 
because they are domain-specific, informationally 
encapsulated, fast, automatic, and anatomically 
localized. Whereas relatively high-level, inte-
grated, effortful, and conscious cognitive proc-
esses have often been linked to an anatomically 

 processes of modularization might be disrupted 
in the pathogenesis of neuropsychiatric disor-
ders such as autism or schizophrenia, supporting 
abnormal modularity of brain network organiza-
tion as a diagnostic biomarker. In support of this 
expectation, some evidence for dysmodularity, 
or abnormal modular organization, has already 
been reported in the brain functional networks 
of patients with childhood-onset schizophrenia 
(Alexander-Bloch et al., 2010).

Since one of the fundamental drivers of 
human cognitive neuroscience is to understand 
the brain basis for mental functions, it will also be 

Central module Medial occipital moduleParieto−frontal module

Fronto−temporal moduleLateral occipital module

A

C

B

Figure 4 | Hierarchical modularity of a human brain functional network. 
(A) Cortical surface mapping of the community structure of the network at the 
highest level of modularity; (B) anatomical representation of the connectivity 
between nodes in color-coded modules. The brain is viewed from the left side 
with the frontal cortex on the left of the panel and occipital cortex on the right. 

Intra-modular edges are colored differently for each module; inter-modular edges 
are drawn in black; (C) sub-modular decomposition of the five largest modules 
(shown centrally) illustrates, for example, that the medial occipital module has 
no major sub-modules whereas the fronto-temporal module has many 
sub-modules. Reproduced with permission from Meunier et al. (2009a).
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