
METHODS ARTICLE
published: 14 May 2013

doi: 10.3389/fnins.2013.00073

Adaptive cluster analysis approach for functional
localization using magnetoencephalography
Hooman Alikhanian1,2*, J. Douglas Crawford 2,3, Joseph F. X. DeSouza2,3, Douglas O. Cheyne 4 and

Gunnar Blohm1,2

1 Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
2 Canadian Action and Perception Network, Toronto, ON, Canada
3 Centre for Vision Research, York University, Toronto, ON, Canada
4 Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada

Edited by:

Srikantan S. Nagarajan, University of
California, San Francisco, USA

Reviewed by:

Yaroslav O. Halchenko, Dartmouth
College, USA
Hamid Mohseni, University of
Oxford, UK

*Correspondence:

Hooman Alikhanian, Centre for
Neuroscience Studies, Queen’s
University, Botterell Hall, 18 Stuart
Street, Kingston, Ontario K7L 3N6,
Canada.
e-mail: hooman.alikhanian@
gmail.com

In this paper we propose an agglomerative hierarchical clustering Ward’s algorithm in
tandem with the Affinity Propagation algorithm to reliably localize active brain regions
from magnetoencephalography (MEG) brain signals. Reliable localization of brain areas

on adaptive clustering on reconstructed beamformer images to find locations that are
consistently active across different participants and experimental conditions with high
spatial resolution. Using data from a human reaching task, we show that the method
allows more accurate and reliable localization from MEG data alone without using
functional magnetic resonance imaging (fMRI) or any other imaging techniques.
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1. INTRODUCTION
A number of recent studies have been dedicated to find active
brain areas in human reaching/pointing tasks, and to unravel
the role of the corresponding regions (Picard and Strick, 2001;
Grosbras et al., 2005; Nickel and Seitz, 2005; Blangero et al.,
2009; Beurze et al., 2010; Nelson et al., 2010; Vesia et al., 2010).
Generally, many brain areas are involved in human reaching tasks.
However, to our knowledge, there is no consensus on the areas
involved and their role in human reaching tasks. There are some
discrepancies between findings from different imaging techniques
and/or tasks. This might in part be due to different sensitivi-
ties across imaging techniques. Therefore, we believe that it is
important to find alternative methods for functional localization
of brain regions using previously unexplored techniques, such as
MEG. In this study our aim is to propose a method that can reli-
ably be used to consistently find active brain areas from MEG
signals.

Recent developments in neuroimaging technologies such
as electroencephalography (EEG), magnetoencephalography
(MEG), positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI) have enabled researchers to
localize active brain areas in humans, and also to investigate the
role of the corresponding regions. In choosing a neuroimaging
method, there has always been a trade off involved between
time and spatial resolution. For instance, fMRI has a spatial
resolution of millimeters in localizing brain activation though its
time resolution is in the order of seconds. On the other hand,
MEG has a time resolution of less than milliseconds that enables
researchers to investigate brain activity in almost real time. Our
aim in this paper is to propose a post processing method on
reconstructed MEG spatial filtered signals that can localize brain

activity with acceptable spatial resolution, thereby avoiding a
duplicate fMRI experiment.

MEG measures magnetic activity in the brain using more than
a hundred super conducting sensors on the scalp. The advantage
of measuring magnetic signals over electric signals (in EEG for
example) is that they can pass the scalp and the tissues underneath
without being distorted much because the magnetic permeability
of these tissues is approximately the same (as opposed to largely
varying electric conductances). For source localization, this con-
stant magnetic permeability is advantageous because it does not
need to be measured (Lopes da Silve, 2010).

Although MEG has a high time resolution, localizing active
brain areas from the recorded magnetic signals poses a prob-
lem. This is by nature an ill-posed problem, and a large body
of research has been dedicated to propose solutions to this prob-
lem (Gross et al., 2001; Sekihara et al., 2001; Barbati et al., 2004;
Cheyne et al., 2006, 2007; Rong and Contreras-Vidal, 2006; Taulu
and Simola, 2006; Merrifield et al., 2007).

Adaptive beamforming methods have been proposed to offer
robust solutions to the localization problem in MEG studies (Veen
et al., 1997; Robinson and Vrba, 1999; Sekihara et al., 2001). The
solution is robust in the sense that it can image instantaneous,
evoked brain activity even in the presence of large amounts of
both environmental noise and intracranially generated artifacts
of non-cerebral origin such as from the cardiac muscle, skele-
tal muscles, and the eyeballs (Lopes da Silve, 2010). In addition,
adaptive beamforming does not require specifying the number of
interference sources or their forward solutions, making it ideal
for MEG data, where both the number and location of brain
and interference sources are unknown (Hillebrand and Barnes,
2005).
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Beamformer source images can be constructed volumetrically
throughout the brain over an arbitrary number of time points
for each individual subject and transformed to a common stereo-
taxic space. A big body of research has been dedicated to improve
the performance of the spatial filtering to reconstruct source
images (Barnes et al., 2004; Sekihara et al., 2004; Mattout et al.,
2007; Woolrich et al., 2011). For instance, in (Barnes et al., 2004)
it has been shown that if the sampling of the images is done
properly in spatial sampling, beamformer implementations can
achieve very high spatial resolution (1–2 mm).

The remaining problem is the post-processing after the source
reconstruction to take advantage of this high spatial resolution,
namely to determine what brain regions and/or subregions are
consistently activated across subjects and experimental condi-
tions (Litvak et al., 2007; Gilbert et al., 2012). In Gilbert et al.
(2012), a clustering method has been proposed in which K-means
clustering is implemented on a number of peaks that are ranked
according to their power for a given number of participants. The
goal is to achieve clusters in which peaks represent the same loca-
tion for different subjects. However, the K-means algorithm does
not provide any clue to achieve this goal. On the other hand, in
K-means clustering the number of clusters should be given to the
algorithm, and there is not any control over the size of the clusters
to which the algorithm converges.

To address this problem, we propose an adaptive approach
in which a hierarchical clustering algorithm is in tandem with
the Affinity Propagation clustering. We show that the pro-
posed method offers a powerful tool to localize brain activ-
ity reliably and with acceptable spatial resolution from MEG

signals. We use a human reaching/pointing task to localize
active brain areas. Note though that the proposed method can
be used in any event-related MEG experiment without loss of
generality.

2. METHODS
2.1. PARTICIPANTS
Ten healthy adult participants (eight males, two females) age
range 22–45 years with no history of neurological dysfunction or
injury participated in this study. This study was approved both by
the York University and Hospital for Sick Children Ethics Board.
All participants gave informed consent.

2.2. EXPERIMENTAL PARADIGM
Figure 1 shows the experiment setup. Participants were seated in
an electromagnetically shielded room with the head under the
dewar of an MEG machine while performing memory-guided
reaches. Subjects sat upright (Figure 1D), fixating a central white
cross. After 500 ms, a green or red dot was briefly presented
(200 ms, Figure 1A) randomly right or left of fixation either 5
or 10 cm from the fixation cross (Figure 1C). The color of the
dot (red or green, counterbalanced across subjects) indicated the
task, i.e., to point toward (pro) or to the mirror opposite loca-
tion (anti) of the target. Subjects waited for the fixation cross to
dim (1500 ms later) before making a wrist-only movement. We
used three different forearm/wrist postures, left and right hand
(in separate blocks of trials) for pointing (Figure 1B). Each point-
ing trial lasted approximately 3 s with a 500 ms inter-trial interval
(ITI). 100 trials for each condition-left hand versus right hand,

FIGURE 1 | The MEG experiment setup. (A) Time course of the
experiment. (B) Three postures of the hand were used in different recording
blocks. (C) The fixation cross in the middle with two possible target locations
in its left and right hand side. (D) Subjects sit upright under MEG machine

performing the pointing task with the wrist only. (E) Task: target (cue)
appears in either green or red to inform the subject of the pro or anti nature
of the pointing trials. Dimming of the central fixation cross was the
movement instruction for subjects.
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pro versus anti, and 3 hand postures-amounts to 1200 trials for
each subject.

To make sure that subjects remained fixated we recorded hor-
izontal electro-oculogram (EOG) using temporal electrodes (see
below), and we omitted trials where subjects broke fixation.

To measure movement onset for each subject we used bipo-
lar differential electromyography (EMG) with four sets of 3 cm
distant electrodes in locations: Exterior Carp: Radialis Longior,
Exterior Communis Digitorum, Exterior Carp: Ulnaris, and
Superior Longus. Ag/AgCl solid gel Neuroline (Ambu) electrodes
of type 715 12-U/C were used for EOG and EMG recordings.
EMG and EOG channels were part of the data acquisition system
of the CTF MEG system.

2.3. MEG DATA ACQUISITION
We used data acquisition and signal post-processing protocols
developed for pre-surgical functioning mapping at the Toronto
Hospital for Sick Children. The MEG data was acquired using
a 151-channel (axial gradiometers, 5 cm baseline) whole head
CTF MEG system (VSM Medtech, Coquitlam, Canada) installed
within a magnetically shielded room. Noise levels were below 10
fT/

√
Hz above 1.0 Hz. Prior to MEG data acquisition, each sub-

ject was fitted with coils placed at three fiducial landmarks (nasion
and pre-auricular points) that were localized by the MEG acqui-
sition hardware to establish the position of the subject’s head
relative to the MEG sensors.

Structural (T1-weighted, 3D-SPGR) MRI scans were obtained
for each subject using a 1.5 T Signa Advantage System (GE
Medical Systems, Milwaukee, WI). Co-registration of the MEG
head based coordinate system with the MRI was achieved by iden-
tifying the locations of the head localization coils on orthogonal
slices of each subject’s MRI. For each subject, the inner skull sur-
face was derived from T1-weighted MR data using the BrainSuite
software package (Shattuck and Leahy, 2002).

2.4. DATA PROCESSING
Data were collected at a rate of 600 samples per second with a
150 Hz low pass filter, using synthetic third-order gradiometer
noise cancelation. The data was manually inspected for artifacts in
addition to eye movements, blinks, premature hand movements
and corresponding trials removed from the analysis. On average
98 reaching trials per condition were retained for each subject for
subsequent processing.

We discretized the brain for each subject into 3 mm3 vox-
els, and for each voxel computed the source activity using an
event-related beamformer (Cheyne et al., 2006). The beamformer
estimates the power at each voxel from the sensor measurements
by rejecting the interfering activity from all the adjacent voxels.
Because the number of voxels is more than the number of sensor
measurements, constraints should be added to the optimization
problem to make it mathematically tractable. A typical biologi-
cally plausible constraint is to minimize the total variance. Using
this method the average or instantaneous power at each voxel can
be estimated. A diagram of the beamformer is shown in Figure 2.
As is shown in the figure, the event-related beamformer uses the
covariance matrix of the measured signal, noise estimate, and for-
ward solution at each voxel to compute the filter weight for the

corresponding source location. The covariance matrix is calcu-
lated using all the trials for each condition. A noise estimate is
provided for the beamformer either using singular value decom-
position (SVD) or a constant based on typical white noise levels
of the recording environment, thus scaling the output into units
of pseudo-Z estimages (Robinson and Vrba, 1999) in order to
remove a gain bias of the weights with distance from the sensor
array. Estimating signal activity in locations that are presumably
more than the number of the channels is an inverse problem
which is ill-posed by nature. Therefore, some additional con-
straints are required to make the problem tractable. Here, the
orientation of the dipole is adjusted to maximize power at each
voxel.

Average power at each voxel is then computed using the beam-
former. At each voxel, we computed average power from 50 to
500 ms after the cue onset and from 200 ms before the movement
onset to 350 ms after that. In each case (around the cue onset and
movement onset), average power is computed for different fre-
quency bands: 7–15 Hz (alpha), 15–35 Hz (Beta), 35–55 Hz (low
gamma), and 55–120 Hz (high gamma).

Different frequency bands have different ranges of detected
signal power. Experimentally, lower frequency components typ-
ically result in higher power. Using the same threshold across all
frequency bands would thus bias results toward lower frequen-
cies. Therefore we used frequency-dependent pseudo-Z score
power cutoffs (alpha band: 2; beta-band: 1.5; low gamma: 1; high
gamma: 0.5) to extract local maximums from the z-scored aver-
age power that is normalized by the estimated SVD noise power.
Using this method an average number of 4166 ± 1288 activation
peaks across all subjects have been extracted.

In order to find active areas in the brain during reaching, we
merged all the peaks from all the conditions. This results in a 3D
image of all the peaks for each subject. The peak coordinates for
each subject are then registered from his/her corresponding CTF
coordinate to Talairach coordinates using an affine transforma-
tion (SPM2, http://www.fil.ion.ucl.ac.uk/spm/).

To find areas that are consistently active in all subjects from
the extracted peaks for each subject, we propose to use unsuper-
vised learning algorithms from the machine learning literature.
The idea here is to find areas of the brain in which the peaks con-
sistently form clusters. Because the peaks have been put together
from all the conditions, the denser they cluster together, the
higher would be the chance for the corresponding brain area to
become active.

2.5. UNSUPERVISED LEARNING
In unsupervised learning, a hidden structure or feature is
extracted from the data. This is an optimization problem in which
the extracted feature depends on a function to be optimized as
well as the set of constraints that are imposed on it. Cluster anal-
ysis is a method of unsupervised learning, and in this case the
hidden structure that is extracted consists of dividing the input
data into separate clusters in a way to optimize a distance mea-
sure or a measure of similarity. The choice of the clustering cost
function and the optimization algorithm employed to solve the
problem determines the resulting clusters (Puzicha et al., 2000;
Lashkari and Golland, 2008).
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FIGURE 2 | The diagram of the event related beamformer (Cheyne

et al., 2007). (A) Calculation of source activity over time: the data consists
of T trials each with M channels and N time samples. The covariance
matrix of the data are given to the beamformer as well as the forward

solution for each dipole location. (B) Imaging instantaneous source
amplitude: Average source activity is then estimated at each voxel, and
dipole orientation is adjusted accordingly to maximize power at the
corresponding voxel.

In this study, finding active brain areas can be formulated as an
unsupervised learning problem; because there is not any output
labeling or structure that we know a prior from the data. In fact
it is this structure that we seek to find. In this section we focus on
cluster analysis and go over some of the methods that we are using
in more detail.

The goal in cluster analysis is to put the objects in separate
groups in a way that objects that are in the same group are more
similar to each other than objects in other groups. The greater the
similarity within a group, and the greater the difference between
groups, the more distinct the clustering would become. There
are two types of clustering, namely hierarchical clustering, and
partitional clustering. While in partitional clustering all clusters
are determined at once, in hierarchical clustering, clustering is
done successively based on the clusters from the previous stage
of the algorithm. Hierarchical clustering can be either bottom–up
(agglomerative) or top–down (divisive).

In this paper we solve the clustering problem by proposing the
application of the Affinity Propagation algorithm which is a parti-
tional clustering method that unlike the k-means algorithm does
not need to know the number of clusters in advance, and con-
verges faster than the k-means algorithm (Frey and Dueck, 2007).
As we show in this paper, the Affinity Propagation algorithm can

result in clusters that are large for regions with high spatial activity
peak density.

We solve this problem by using the Affinity Propagation algo-
rithm as a pre-processing step for an agglomerative hierarchical
clustering algorithm. The hierarchical clustering algorithm cre-
ates a cluster tree from the data which provides a hierarchy of
a similarity measure, i.e., closeness in the Euclidean distance,
among data points (average power peaks). Depending on the
number of desired clusters and/or the desired cluster size, the tree
can be cut at a particular node. Using the Affinity Propagation
algorithm as a pre-processing step for the hierarchical clustering
has two advantages. First, it reduces the complexity of cluster trees
which makes searching in trees for finding a desired node faster.
Second, for a computationally efficient clustering, the acceptable
size of a cluster should depend on the spatial peak density of a
region which itself depends on a particular experiment. Using
hierarchical clustering adds a degree of freedom in the clustering
process, and can use the spatial density of a region to adaptively
determine the coarseness of clustering in the region. The spatial
density of the activity peaks can be provided to the hierarchical
clustering algorithm by the proposed mesh analysis which dis-
cretizes the brain into voxels and computes the normal spatial
density in each voxel. Notice that although it is possible to add
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FIGURE 3 | The flow chart of the proposed method. The beamformer
computes the average power at each voxel. Local maxima of average
power is then computed using a frequency-dependent power threshold,
and the peaks are extracted. The Affinity Propagation algorithm is used
on the resulted peaks to cluster them. A cluster tree is then built by

Hierarchical clustering algorithm using Ward’s measure as a distance
between clusters. The cluster tree is then cut in order to get local
smaller clusters of radius 1 cm for regions with normalized spatial
density >20%. The normalized spatial density is computed in the mesh
analysis block.

some constraints on the k-means algorithm like the size of the
clusters, the attempt to create clusters with small radii for the
large number of activation peaks would cause the algorithm to
converge impractically slowly or to not converge at all. Even in
the case of convergence, it might end up with many superficial
empty clusters that need to be taken care of separately (Pakhira,
2009). Moreover, one might not need to do fine clustering in low
spatial density regions. The proposed adaptive computationally
more efficient approach addresses these drawbacks by doing finer
clustering only on high spatial density clusters.

Figure 3 summarizes the proposed method. The beamformer
computes average power at each brain voxel separately for differ-
ent frequency bands (alpha, beta, low gamma, high gamma) and
different conditions. The combination of right-hand/left-hand,
wrist posture (pronation, upright, down) with pro/anti move-
ment is considered as one condition. For each condition and
frequency band peak maxima are then calculated according to the
frequency dependent power thresholds. The peaks from all the
conditions and frequency bands are then put together to create
data input for the Affinity Propagation clustering and mesh anal-
ysis blocks. The resulting clusters (from the Affinity Propagation
algorithm) as well as normalized spatial density of the peaks
(from the mesh analysis) are given to the hierarchical clustering
algorithm as inputs.

Cluster trees (dendrograms) are then generated using Ward’s
linkage for clusters with normalized spatial density greater than
20%. This threshold can be adjusted based on individual data sets.
The goal in this analysis is to use the proposed method to find
areas that are consistently active among all the conditions for each
subject as well as among all subjects. we found that for densities
less than 20%, peaks were not consistent among different exper-
imental conditions. Therefore, 20% threshold is a good trade-off
between reliability and detail for this reaching experiment.

The trees are then cut to find clusters with 1 cm radius. If the
standard deviation of peak distances from their corresponding
centroids at each cluster location is less than 1 cm among all sub-
jects, we call the corresponding brain area active. The standard

deviations are reported for the areas that we found active in
Tables 2, 3. Notice that the choice of 1 cm which can be adapted to
individual experiments puts an upper bound on the localization
precision while the lower bound is identified by the beamformer
discretization level.

Algorithm 2.1 is the pseudo code for the proposed method
in which the proposed method is explained with suggestions
on the functions that can be used to implement it. Notice in
the algorithm that activation peaks are extracted for each fre-
quency band separately (using the CTF SAM toolbox, MEG
International Services Ltd., Coquitlam, BC, Canada), with sep-
arate thresholds (more detail on the thresholds is the section 2.2).
The extracted peaks are then put together to be clustered by
the Affinity Propagation algorithm. Mesh analysis calculates the
normalized spatial density of the peaks which is given to the hier-
archical clustering in order for that to perform finer clustering
in areas with normalized spatial density of greater than a given
threshold, e.g., >20%.

2.5.1. Affinity propagation algorithm
The Affinity Propagation algorithm (Frey and Dueck, 2007) is an
unsupervised learning method based on message passing between
data objects. The objective of the message passing is to identify a
subset of representative examples from the data that minimize a
total similarity objective function. These representative examples
are called exemplars (or cluster centers).

The algorithm uses a similarity matrix as input that captures
the similarity between any two pairs of objects that are to be clus-
tered. Depending on the application, different measures can be
chosen as similarity criteria, and there is no unique choice for
that. In the case of our study we are using negative Euclidean dis-
tance as a similarity measure. Thus, the closer the peaks are to one
another, the more similar they are.

The Affinity Propagation algorithm does not need to know
the number of clusters a priori, and indeed this is one of the
advantages of this technique. Instead, one only needs to specify
the diagonal elements of the similarity matrix (similarity of each
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for each Subject

do

for each Frequency Band

do

Perform spatial source reconstruction.
comment: e.g. beamformer; Cheyne, et al., 2006

Normalize data to Talairach or MNI template.
comment: e.g. SPM spm normalise.m function

Extract activity peaks.
comment: e.g. CTF SAM toolbox:

comment: find peakvoxel spm.m function

Carry out the Affinity Propagation clustering of peaks
comment: e.g. apcluster.m; Frey and Dueck, 2007

comment: Mesh Analysis:

Spatial averaging of activity peak locations.
Count the number of peaks in each voxel
and normalize with respect to the global maximum
Apply threshold (e.g. 20%)
comment: Hierarchical Clustering:

Compute distance matrix.
comment: e.g. pdist.m in Matlab

Perform clustering
comment: e.g. linkage.m in Matlab

Cut dendrogram at desired cluster size
comment: e.g. cluster.m in Matlab

comment: Finer clustering is done on clusters

comment: with higher spatial resolution, e.g. > 20%

Algorithm 2.1 | Adaptive Clustering()

peak to itself), and by specifying the greater diagonal number for
a peak, the higher priority is given to that peak to become an
exemplar. To provide the same chance for all the extracted peaks
to become exemplars, all diagonal elements are given the same
quantities. In our study, we choose the median of similarities as
diagonal elements to make sure that diagonal entries of the simi-
larity matrix are in the same range as the rest of the entries (Frey
and Dueck, 2007).

Two kinds of messages are exchanged in this algorithm namely,
responsibility and availability. The responsibility message r(i, k)
sent from peak i to the exemplar candidate peak k reflects the
accumulated evidence for how well-suited peak k is to serve as
exemplar for peak i, taking into account other potential exemplars
for peak i (Frey and Dueck, 2007). The availability a(i, k) sent
from peak k to peak i, as the name suggests, shows the amount
of availability of peak k to be chosen as an exemplar by peak i,
taking into account the support from other peaks for which the
peak k should be an exemplar (Frey and Dueck, 2007).

In this study, we chose the damping factor λ of the algorithm
to be 0.5. The choice for this parameter is not unique. However,
it should not be chosen too large (close to one) preventing the
algorithm from converging or too small (close to zero) slowing

down the convergence speed. We stopped the algorithm when the
amount of change in the messages falls below 1%.

For the implementation, we used the m-file “apcluster.m” that
is provided by Dr. B.J. Frey and D. Dueck in their website: http://
www.psi.toronto.edu/affinitypropagation/software/apcluster.m.

2.5.2. Hierarchical clustering
In agglomerative clustering the first stage starts with the assump-
tion that each of the objects forms a cluster just by themselves.
So the number of clusters is equal to the number of objects.
Then at each stage two of the clusters that are most similar to
one another merge and form a new bigger cluster. This proce-
dure continues to the stage where all the objects form one cluster
together. The solution to the problem in hierarchical cluster-
ing is a tree called dendrogram with objects as its nodes, and
edges as representations of the objects that are merged together
at each step. The advantage of this type of clustering is that the
number of the clusters needs not to be known in advance. The
tree can be cut at any stage to get the clusters, and depend-
ing on the stage of the cut, different numbers of clusters would
emerge.

In hierarchical clustering, it is crucial to define a similar-
ity function between any two clusters, and depending on this
definition a variety of hierarchical clustering techniques can be
defined.

In this paper we use Ward’s (Ward, 1963) method as a mea-
sure of distance between clusters (Matlab linkage.m function is
used, The MathWorks, Natick, MA, USA). Ward’s method uses
the increase in the total within-cluster sum of squares as a result
of joining clusters a and b. The within-cluster sum of squares is
defined as the sum of the squares of the distances between all
objects in the cluster and the centroid of the cluster.

The advantage of using Ward’s criterion is that because of its
incremental design in the definition of distance, it produces a
cluster tree that is monotonic. A cluster tree is not monotonic
when sections of the dendrogram change direction. This occurs
when the distance from the union of two clusters a and b to a
third cluster c is less than the distance from either the distance
from a to c or the distance from b to c, i.e., the triangle inequal-
ity is not satisfied. This non-monotonic cluster tree can occur
when, for instance, the distance between clusters is defined as
a distance between their centroids. Moreover, Ward’s linkage is
biased toward producing compact clusters with approximately the
same number of observations rather than the complete linkage
that produces clusters with approximately equal diameters which
might not be as compact (Milligan, 1980). Clusters with the same
number of observations make the cross-validation of the resulting
clusters easier among subjects. It has also been shown (Milligan,
1980) that variance based methods (like Ward’s) perform better
than the complete linkage.

When two clusters are equidistant from a third cluster non-
uniqueness in dendrogram cuts results in the ties-in-proximity
problem. In this study, we are not dealing with integer valued
or binary data for which there is a greater chance of running
into this problem (Fernandez and Gomez, 2008). In addition,
Ward’s linkage is less susceptible to this problem than simple
or complete linkages (Fernandez and Gomez, 2008). Finally, for
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each implementation of the hierarchical clustering, rather than
implementing the clustering on the whole brain, we reduce data
set size by focusing on a cluster with high spatial density. This
reduction in the data set size not only reduces the complexity of
the resulting dendrograms, but also reduces the chance of run-
ning into the ties-in-proximity problem (Fernandez and Gomez,
2008).

Hierarchical clustering yields clustering algorithms that avoid
the difficulty of trying to solve a hard combinatorial optimiza-
tion problem, i.e., it cannot be viewed as globally optimizing an
objective function. Because of this fact, these algorithms do not
have problems with local minima or difficulties in choosing ini-
tial points. These algorithms tend to make good local decisions
about combining two clusters since they have the entire proximity
matrix available. However, once a decision is made to merge clus-
ters, the scheme does not allow for that decision to be changed.
This prevents a local optimization criterion from becoming a
global optimization one (Tan et al., 2005).

2.6. MESH ANALYSIS
To compute the spatial density of the clusters, we discritized the
brain into 1 mm cubes, counted the number of peaks in each
cube, and normalized the numbers with respect to the cube with
the largest number of peaks to come up with a normalized spa-
tial density of the peaks in the brain for each subject individually.
To get a smooth spatial density image and to reduce the depen-
dence of the spatial density to the discritization level, the cube
size should be chosen as small as possible, but not too small to
make the processing computationally slow. We found that 1 mm
cube-size meets this trade off fairly well. In the rest of the paper,
we refer to this method as mesh analysis.

3. RESULTS
As mentioned, for the K-means algorithm the number of clusters
should be known in advance. Because we do not know the num-
ber of clusters, we use the Affinity Propagation algorithm instead.
Figure 4 shows the result of the Affinity Propagation clustering
for subject 1. In the Affinity Propagation algorithm we used the
negative square of the Euclidean distance as a similarity measure.
For self similarity, i.e., the elements on the diagonal of the sim-
ilarity matrix, we used the median of similarities. Thus, we gave
all the peaks the same chance to become exemplars. We chose the
damping factor λ = 0.5.

On average 58 ± 12 clusters have been found across all sub-
jects by the algorithm. In the figure the clusters are color coded
depending on their number of peaks from blue for the smallest
to red for the biggest. In Figure 4 not all the clusters are shown
for the subject. In subject 1 the size of the biggest cluster is 397,
and this cluster is shown with the red color. Only the clusters
with more than 28.5% of the size of the biggest cluster are shown
for this subject. Choosing this number for the figure was merely
for illustration purpose. A smaller number renders the figure too
crowded to be illustrative. We choose a small enough percentage
to show a significant number of clusters without overcharging the
figure. The histogram of the number of clusters versus the nor-
malized cluster sizes for this subject is shown at the bottom of the
figure.

As is evident from the figure, we found that many areas mainly
from occipital and parietal regions are involved in the human
reaching task. In almost all the subjects the biggest cluster is asso-
ciated with pre-motor and primary motor areas followed by visual
areas and a large network of parietal regions. Some clusters have
also been found in frontal areas. Clusters in this region are bigger
in physical size and more sparse with less active peaks. For this
reason they are not included in Figure 4.

More specifically, we look at distinguishably different pari-
etal regions. Figure 5A shows the centers of all the clusters for
subject 1. Figure 5B shows all of the parietal clusters in both
hemispheres for this subject. As is evident from this figure, some
of the clusters that have been found by the Affinity Propagation
algorithm are so physically big that they can not be attributed
to only one brain area. In meta analysis literature the standard
deviation of a region is in the order of millimeters for each dimen-
sion (Nickel and Seitz, 2005; Mayka et al., 2006; Blangero et al.,
2009; Vesia et al., 2010). This order of standard deviation makes
the volume of the cluster associated with a corresponding region
in the order of cm3 at most.

To see the problem more specifically, Figure 6A highlights
the biggest cluster-in terms of the number of the constituent
peaks-in the parietal area of subject 1. The region has a phys-
ical volume of approximately 8000 (mm)3. On the other hand,
such a big volume of active peaks can not be seen in other sub-
jects. Thus, this big cluster might have emerged by merging more
than one active clusters, and can not be attributed to one parietal
region.

To solve this problem of the Affinity Propagation algorithm,
i.e., to find active areas with higher spatial accuracy and more
consistency among the subjects, we propose the use of hierar-
chical clustering in tandem with the Affinity Propagation. As
it was mentioned in the section 2, hierarchical clustering pro-
vides us with a clustering tree called dendrogram with the end
leafs and the top node corresponding to the peaks as individ-
ual clusters and all the peaks as one cluster, respectively. The
advantage of this clustering method is that the tree can be
cut at different stages to provide us with clusters of desirable
sizes.

On the other hand, using hierarchical clustering alone for large
data sets is not computationally efficient. The large total number
of peaks for each subject makes implementing hierarchical clus-
tering result in a huge tree. Searching in the tree in order to find a
cutting point that results in clusters with acceptable physical size
requires huge amount of trial and error, and is not computation-
ally efficient. In general, hierarchical clustering algorithms are not
computationally efficient when the number of objects to be clus-
tered is big (the order of 1000) like the case we are dealing with
here.

To tackle this problem, we propose to use Affinity Propagation
for clustering in the first step. Then, hierarchical clustering can
be done on the clusters that have been found by the Affinity
Propagation algorithm. These clusters are considerably smaller in
their number of points than all of the active peaks, and the loca-
tion of the clusters are known. So, we are dealing with smaller
cluster trees and we also know in what particular region we are
doing hierarchical clustering. Depending on the desired spatial
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FIGURE 4 | Clusters emerged from the Affinity Propagation

algorithm for subject 1. Only the clusters with the number of peaks
greater than 28.5% of the biggest cluster (397 peaks) are shown.
Clusters are color coded according to their number of peaks with

respect to the biggest cluster. (A) Transverse view in Talairach
coordinates. (B) Sagittal view in Talairach coordinates. (C) Coronal view
in Talairach coordinates. The histogram of the cluster sizes is shown
at the bottom.

resolution in a particular region, the corresponding tree can be
cut. For each of the clusters that is found using the Affinity
Propagation algorithm, we used hierarchical clustering, and we
cut the trees in a way to find sub-clusters of radius less than 1 cm.
The resulting clusters with this radius and more than one peak are
considered as active clusters when the standard deviation of the

distances from the peaks to their corresponding centroids across
all subjects is less than 1 cm as well.

Other partitional clustering algorithms like the k-means can
be used as the first step as well. However, the number of clusters
should be given to the algorithm, and finding such a num-
ber would require some trial and error and is a computational
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FIGURE 5 | (A) Cluster centers (red dots) resulted from the Affinity
Propagation algorithm for subject 1. All the peaks have been given the same
chance to become exemplars. White dots are the regions with spatial peak

density >10%. (B) Parietal clusters in both hemispheres. Some clusters in
parietal region are so big in their physical size that they can not be attributed
to only one brain region.

FIGURE 6 | An example of the proposed method. (A) A cluster in parietal area resulted from affinity propagation algorithm (radius: 22 mm). (B) The effect of cutting
the cluster tree that leads to two clusters (maximum radius: 11 mm). (C) The effect of cutting the cluster tree that leads to seven clusters (maximum radius: 4 mm).

burden. Our analysis for this data set reveals that 40–50 clusters is
a good estimate to be given to the k-means algorithm depending
on the subject.

Figures 6B,C show the effect of hierarchical clustering on the
cluster in Figure 6A. In these figures the tree is cut in a way
that leads to two and seven smaller clusters, respectively. Figure 7
shows the dendrogram of Figure 6A with the cuts that lead to
Figures 6B,C clusters.

Figure 8 shows the calculated density (mesh analysis) for sub-
ject 1. In the figure, areas with density from 10 to 20%, 20 to 30%,
and greater than 30% are shown in white, green, and red, respec-
tively. The aim of this analysis was to study cluster densities in
different brain regions. In addition, normalized spatial density is
given to the hierarchical clustering algorithm as the second input,
providing the algorithm with the information to find the appro-
priate tree cut. All the active areas that are found using cluster

analysis for this subject are shown in the figure. The highest den-
sity of activation is located in occipital and pre-frontal areas with
highest spatial density in pre-motor, motor, sensorimotor, and
visual cortical areas V1 and V3 that are shown in red. A big
network of parietal areas is also shown with fairly high spatial
density in green including superior parietal lobule (SPL), infe-
rior parietal lobule (IPL), and ventral intra-parietal area (VIP).
Frontal eye field (FEF) is also active in all subjects in the left
hemisphere.

Table 1 summarizes the areas that we have found consistently
active in all subjects. The areas that have spatial density of more
than 30% using the mesh analysis are highlighted in gray. Active
and non-active areas are shown in black and red dots for each
subject, respectively. When the standard deviation of distances
across all subjects (for which clusters of radius <1 cm could be
found) in a region is less than 1 cm (the amount that was chosen
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FIGURE 7 | Cluster tree for the cluster in Figure 6A. (A) The cut that leads to Figure 6B. (B) The cut that leads to Figure 6C.

for tree cuts), we called the corresponding region active and we
included that in the table as black dots for the corresponding sub-
jects. In some subjects, however, no cluster of radius <1 cm could
be found in some regions which are shown as red dots in the table.

Tables 2, 3 show the mean locations and standard deviations
of the areas that we found active in the left and right hemisphere,
respectively. For comparison, Table 4 summarizes the mean
locations of the same regions that are reported by the fMRI
literature. Comparing the locations that are reported in the
fMRI literature (Table 4) with the mean locations that we have
found (Tables 2, 3) shows that the locations of the areas that we
found active in this MEG study are in close agreement with fMRI
literature.

In addition, spatial resolution that is revealed by the stan-
dard deviations of the order of millimeter (except for right S1
z-coordinate: Table 3) is comparable with the high spatial resolu-
tion of fMRI. This high spatial resolution that is achievable using
the proposed method on MEG signals confirms that the method
can be reliably used to localize brain areas in MEG experiments
without the need to do a duplicate fMRI experiment.

4. DISCUSSION
In this study we proposed adaptive clustering approach to localize
brain activity using MEG accurately and reliably to address MEG
localization difficulties due to large variations in signal strength,
and the spatial extend of the reconstructed activity. With the pro-
posed method it is possible to take advantage of the high time
resolution in MEG after finding the active areas. The limitations
that are imposed by the MRI machine on the experiments are
avoided as well.

The method takes advantage of the recent spatial filtering
advances to solve the inverse problem of finding activation peaks
in a discretized brain from MEG measurements (Cheyne et al.,
2007). To include different ranges of detected signal power in dif-
ferent frequency bands, a frequency-dependent power threshold
is proposed to extract local power maxima. In a second step the
Affinity Propagation algorithm is proposed to cluster the resulted
peaks. Third, we suggest using a top–down hierarchical cluster-
ing method based on Ward’s measure in tandem with partitional

clustering to localize brain regions with higher spatial resolution.
Depending on the spatial resolution needed, hierarchical cluster
trees can be cut to obtain the desirable standard deviation.

MEG resolution is paradigm/brain area/frequency dependent.
As a result, desired cluster sizes should be adapted accordingly.
Putting hierarchical clustering that is provided with normalized
spatial density of extracted peaks in tandem with the Affinity
Propagation algorithm creates this adaptability by enabling finer
clustering in areas with higher spatial density.

The analysis is based on clustering power peak locations that
are measured across different conditions/repetitions. We have
shown that this leads to very reliable localization of specific brain
areas with sub-centimeter resolution for all our subjects indepen-
dently. Notice that this does not mean that signal power in the
brain is localized with high spatial resolution; it simply means
that one can get reliable estimates of the peak location of a
certain brain area regardless of the spatial extent of raw beam-
former results. This is due to the presence of many independently
extracted peak locations (across different conditions/trials) that
appear to be quite reliably localizable.

The areas that have been found using our proposed method
in the human reaching task are in agreement with meta analysis
literature (Paus, 1996; Bremmer et al., 2001; Grosbras et al., 2005;
Nickel and Seitz, 2005; Mayka et al., 2006; Blangero et al., 2009;
Vesia et al., 2010). On the other hand, to our knowledge this is the
first study that is looking at all the areas involved in the human
reaching task using MEG data.

In this study we are extracting the activation peaks merged
for all the conditions in the experiment. We have not focused
on a particular frequency band or time moment either. The goal
here was to investigate all the areas that are involved in a human
reaching task no matter in which condition. This is the reason
why extracted peaks from all conditions are merged together
before cluster analysis. Therefore, some regions might be selec-
tively active during certain conditions, but analyzing these details
is beyond the scope of this study.

The average power within different frequency bands and in a
500 ms window was used to extract the peaks to capture the main
activations during the pointing task. However, technically it is
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FIGURE 8 | Mesh analysis method is used to find normalized

spatial density. Areas with spatial density from 10 to 20%, 20 to
30%, and greater than 30% are shown in white, green, and red,

respectively. (A) Transverse view in Talairach coordinates. (B) Sagittal
view in Talairach coordinates. (C) Coronal view in Talairach
coordinates.

possible to extract the instantaneous power, and find local max-
ima with the same procedure. Performing the proposed cluster
analysis on the resulted peaks would lead to instantaneous acti-
vation patterns. Because of the MEG millisecond time resolution,
active brain areas can be found at exact time points with spatial
resolution comparable to fMRI. In addition, if the beamformer
power estimates are band-pass filtered before doing the cluster
analysis, activation areas can be found for different frequency
bands. Therefore, the proposed method is also useful in extract-
ing active areas for a particular condition or frequency band. To
that end, frequency/time limitations should be imposed on the
beamformer solution for the corresponding condition. Once the
inverse problem is solved by the beamformer and local peaks are
extracted, the proposed method can be used to extract the active
areas as well.

It has been shown in (Barnes et al., 2004) that if sampling is
done with large enough rate, beamformers can achieve high spa-
tial resolution in the order of millimeters. Because the proposed
method is based on cluster analysis on the reconstructed source
data, theoretically it can not achieve better spatial resolution than
the beamformer.

Head movement is a potential cause of error in the analy-
sis. In this study, head position was measured at the beginning
and end of each block of trials and data with head move-
ments >5 mm have been removed. Moreover, we did not merge
the extracted activity peaks across subjects to do the clustering.
This was done precisely to avoid inter-subject differences and dis-
tortions induced by spatial transformations. Rather, we carried
out the clustering for each subject separately to make such errors
independent from each other.
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Table 2 | Mean location and standard variation of the regions across

all 10 subjects for the left hemisphere.

Area Mean location (mm) Standard

(Talairach coordinates) deviation (mm)

x y z x y z

Left hemisphere

STS −45.2 −57.1 14.7 4.2 2.6 3.7

PMV −49.6 4.8 21.3 3.0 3.0 3.8

IPL −42.5 −35.3 49.2 3.9 4.9 3.4

VIP −37.1 −40.2 44.4 2.4 3.5 2.3

FEF −28.4 −1.2 43.4 4.4 4.2 3.6

SPL −23.2 −54.3 46.0 3.8 3.8 6.7

mIPS −22.0 −61.3 39.5 2.0 3.5 4.6

M1 −35.1 −23.4 53.8 4.4 4.4 3.8

S1 −39.5 −24.5 48.0 3.7 2.9 3.5

AG −35.3 −60.8 35.4 4.9 7.5 4.0

SMA −4.4 −9.2 51.8 4.6 6.5 2.9

SPOC −9.0 −71.0 36.7 6.7 4.8 5.8

PMd −30.0 −1.4 47.0 8.3 5.4 8.2

Table 3 | Mean location and standard variation of the regions across

all 10 subjects for the right hemisphere.

Area Mean location (mm) Standard

(Talairach coordinates) deviation (mm)

x y z x y z

Right hemisphere

STS 48.5 −40.5 11.7 2.9 4.9 4.6

PMV 48.9 8.4 21.2 4.2 3.8 3.3

IPL 40.9 −40.6 39.3 3.7 4.6 4.6

VIP 37.0 −44.0 47.3 3.9 2.6 5.1

FEF 31.2 −2.2 44.7 5.1 5.3 6.6

SPL 26.9 −55.1 49.3 4.8 2.2 2.3

mIPS 23.3 −61.8 40.4 4.1 4.5 5.6

M1 36.7 −23.0 52.4 3.3 5.0 4.2

S1 39.2 −25.9 40.2 3.8 4.7 25.3

AG 32.2 −69.5 34.7 4.2 4.7 2.6

SMA 2.7 −7.0 48.9 3.3 4.9 3.6

SPOC 9.6 −77.0 34.4 8.1 3.1 4.8

PMd 28.6 −5.3 49.9 3.9 8.0 6.2

Because the proposed cluster analysis is done on MEG mea-
surements, it inevitably carries MEG measurement limitations. In
a spherical conductor fields generated by impressed currents and
volume currents cancel each other out but only for radially ori-
ented currents. Thus, the activity in gyri is hard to detect while
sulci activity is relatively easier to detect.

On the other hand, the generated magnetic field is perpen-
dicular to the corresponding electric field. Thus, for the regions
for which magnetic signals are hard to detect, electrical activity
can be measured easier and more exactly (Babiloni et al., 2004).
Therefore, for finding brain areas more accurately it would be
better if EEG was measured simultaneously with MEG. Indeed,
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Table 4 | Mean locations in Talairach coordinates that are reported in the literature.

Area Mean location (mm) References Distance (mm)

(Talairach coordinates)

x y z

STS 50 −40 12 Grosbras et al., 2005 1.61

PMV −50 5 22 Mayka et al., 2006 0.83

IPL −32 −40 52 Blangero et al., 2009 11.84

VIP 38 −44 46 Bremmer et al., 2001 1.64

FEF 31 −2 47 Paus, 1996 2.32

SPL 23 −64 44 Nickel and Seitz, 2005 11.07

mIPS 18 −60 54 Blangero et al., 2009 14.71

M1 −37 −21 58 Mayka et al., 2006 5.20

S1 −40 −24 50 Mayka et al., 2006 2.12

AG 36.3 −70.5 42.6 Vesia et al., 2010 8.97

SMA −2 −7 55 Mayka et al., 2006 4.57

SPOC 9.5 −80.6 44.2 Vesia et al., 2010 10.44

PMd −30 −4 58 Mayka et al., 2006 11.30

The last column shows the distances from the corresponding mean locations that are found from the MEG analysis.

because EEG and MEG are complimentary it might even be
of interest to combine activity peaks measured from both
techniques.

The number of extracted activation peaks is also important.
Technically the proposed method can be implemented on any
number of peaks. But care should be taken in interpreting the
results if the number of peaks is small. To make sure that the num-
ber of peaks is large enough, in this study we computed source
activity for voxels with volumes as small as 3(mm)3. In addition,
we used a conservative frequency-dependent power threshold to
extract local power maxima. This led to 2500 peaks on average for
each subject.

While choosing a small number of peaks leads to a coarse
spatial resolution, choosing a large data set makes the problem
computationally difficult to solve. To address this trade off more
wisely, it would be possible to choose the number of peaks differ-
ently for different brain regions based on a pre-knowledge of the
brain activity for a specific experiment. For instance, our mesh
analysis results show that for reaching/pointing tasks the spatial
peak density is higher for occipital and parietal areas and much
lower in frontal areas. Therefore, it is possible to choose a large
number of peaks (or smaller voxel volumes) for occipital and
parietal regions and relatively smaller number for frontal regions
in reaching/pointing experiments.
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