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As yet, no cure exists for upper-limb paralysis resulting from the damage to motor
pathways after spinal cord injury or stroke. Recently, neural activity from the motor cortex
of paralyzed individuals has been used to control the movements of a robot arm but
restoring function to patients’ actual limbs remains a considerable challenge. Previously
we have shown that electrical stimulation of the cervical spinal cord in anesthetized
monkeys can elicit functional upper-limb movements like reaching and grasping. Here we
show that stimulation can be controlled using cortical activity in awake animals to bypass
disruption of the corticospinal system, restoring their ability to perform a simple upper-limb
task. Monkeys were trained to grasp and pull a spring-loaded handle. After temporary
paralysis of the hand was induced by reversible inactivation of primary motor cortex
using muscimol, grasp-related single-unit activity from the ventral premotor cortex was
converted into stimulation patterns delivered in real-time to the cervical spinal gray matter.
During periods of closed-loop stimulation, task-modulated electromyogram, movement
amplitude, and task success rate were improved relative to interleaved control periods
without stimulation. In some sessions, single motor unit activity from weakly active
muscles was also used successfully to control stimulation. These results are the first
use of a neural prosthesis to improve the hand function of primates after motor cortex
disruption, and demonstrate the potential for closed-loop cortical control of spinal cord
stimulation to reanimate paralyzed limbs.
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INTRODUCTION
A long-standing ambition of neural prosthetics has been to recon-
nect artificially parts of the nervous system that have been discon-
nected as a result of injury (Craggs, 1975). One such application is
the treatment of paralysis after a spinal cord injury or stroke that
disrupts the pathway by which volitional motor intent encoded in
premotor areas is relayed via corticospinal projections from M1 to
motorneurons in the spinal cord (Lemon, 2008). In the absence
of descending input, electrical stimulation of spinal motor cir-
cuits can generate functional movements including walking in the
lower-limb (Mushahwar et al., 2000) and grasping in the upper-
limb (Moritz et al., 2007; Zimmermann et al., 2011). Epidural
stimulation of the spinal cord has recently been used to facilitate
standing and walking in a spinal cord injured patient (Harkema
et al., 2011), but thus far clinical applications have used pre-set
trains of stimuli delivered in an open-loop mode.

Brain-Machine Interface techniques developed first in mon-
keys (Wessberg et al., 2000; Serruya et al., 2002; Velliste et al.,
2008) and now translated to human patients use control signals
extracted from cortical spiking activity to operate assistive devices
including computer cursors (Hochberg et al., 2006), robotic
prostheses (Hochberg et al., 2012; Collinger et al., 2013), and
functional electrical stimulation of muscles (Moritz et al., 2008;
Pohlmeyer et al., 2009; Ethier et al., 2012). A case study in one

monkey with upper-limb paresis used cortical local field potential
activity to control intraspinal stimulation and restore the ability
to generate isometric torque with the wrist (Nishimura et al.,
2013a).

Here we tested whether a neural prosthesis could be used to
restore volitional grasping in two monkeys following reversible
inactivation of the primary motor cortex (M1) using musci-
mol. Spike activity recorded from ventral premotor cortex (PMv)
or residual electromyogram (EMG) activity was used to control
stimulation of the spinal cord.

MATERIALS AND METHODS
Experiments were approved by the local ethics committee at
Newcastle University and appropriate UK Home Office licenses
in accordance with the Animals (Scientific Procedures) Act 1986.

BEHAVIORAL TASK
Two female, purpose bred and food-restricted Rhesus macaque
monkeys (Macaca mulatta) were trained to perform a self-paced
reach-and-grasp task (Figure 1A). Different handles (squash ball,
horizontal bar) were attached to a spring-loaded lever (spring
1: initial force 1.6 N, spring constant: 120 N/m; spring 2: 0.8 N,
50 N/m; spring 3: 0.4 N, 20 N/m). Monkeys were required to pull
and hold the lever at a minimum target displacement (0.5–5 cm)
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FIGURE 1 | Brain control of spinal cord stimulation after reversible

paralysis. (A) Schematic of the closed-loop stimulation protocol. Spiking
activity recorded from neurons in PMv was converted in real-time to
stimulation delivered to the spinal cord while monkeys performed a
grasp-and-pull task. (B) Hand and forearm muscles were temporarily
paralyzed by micro-injections of muscimol into hand area of M1, anterior to
the central sulcus (CS). Neural activity was recorded from PMv, in the
posterior bank of the arcuate sulcus (AS). (C) Cross-section of the spinal
stimulation implant used in monkey R. (D) Sample EMG responses elicited
by stimulation of different channels of the FMA (arranged in columns,
channels 1, 5, 9, and 17 of the array chosen to illustrate different response
properties; 3 biphasic pulses at 300 Hz, stimulation currents between 12
and 81 μA. 1DI, first dorsal interosseus; APB, abductor pollicis brevis; FDS,
flexor digitorum superficialis; FDP, flexor digitorum profundus; FCU, flexor
carpi ulnaris; ECR, extensor carpi radialis). (E) From neural spikes to
stimulation pulses (simulated data). Spikes (black dots) were used to
estimate instantaneous firing rate (black line) in real time. The firing rate
was transformed to yield a target force function (gray line, arbitrary units).
Whenever the estimated stimulation-induced force (red line, a. u.) was
below the target, a stimulus pulse (red dots) was delivered. Smoothed
stimulation rate (red broken line) and lever position (blue line) are shown for
comparison.

and for a set time (0.5–1 s) chosen to accommodate the monkeys’
level of paralysis and motivation. After successful trials, monkeys
were required to return the lever to the initial position and remain
there for 3 s. Different tones indicated when the lever entered
the target position, the end of the hold time, and the end of the
home waiting period. For every successful trial, monkeys were
rewarded with a small piece of fresh or dried fruit or a drop
of yoghurt. While the parameters varied between sessions, they
were kept constant within a session after an initial adjustment
period.

SURGICAL PROCEDURES
Three implant surgeries were performed per monkey, each sep-
arated by about 1 month. In the first surgery, six electromyo-
gram (EMG) patch electrodes were implanted over hand and
forearm muscles and tunneled subcutaneously to a connector
on the head (1DI, first dorsal interosseus; APB, abductor pollicis
brevis; FDS, flexor digitorum superficialis; FDP, flexor digitorum
profundus; FCU, flexor carpi ulnaris; ECR, extensor carpi radi-
alis). The wrist extensor ECR was chosen as a control to mon-
itor paralysis and stimulation effects. In addition, a recording
chamber was fixed over the right arcuate sulcus for intracor-
tical microstimulation (ICMS) mapping. The hand region of
PMv was identified from low threshold (<50 μA) responses
in hand muscles to ICMS trains (13 or 20 biphasic pulses,
200 μs per phase, at 300 Hz, delivered during mapping sessions
under ketamine/medetomidine sedation). In a second surgery, a
custom-made moveable microwire array (Jackson and Fetz, 2007;
12 microwires in monkey B, 15 microwires in monkey R) was
implanted at the PMv target location and a chamber was fixed
over M1. In the third surgery, a laminectomy of vertebrae C5-
C7 was performed. A percutaneous recording chamber was fixed
using dental acrylic and titanium screws inserted into the lateral
masses of vertebrae C4-T1 (Perlmutter et al., 1998). In monkey
B, we used a grid inserted into this chamber and a miniature
screw microdrive (MO-903B, Narishige, Japan) to insert elec-
trodes (Pt/Ir, 125 μm diameter, Microprobes Inc., Gaithersburg,
MD) acutely into the spinal cord during experimental sessions.
In monkey R, we made a midline dural incision and inserted
a custom Floating Microelectrode Array (Microprobes Inc.) for
chronic stimulation of motorneuron pools (17 electrodes, lengths
3–5 mm, 50 k� nominal impedance, Figure 1C). The dura was
then closed with sutures and sealed with 2-part silastic (Kwik-Sil,
WPI Inc., Sarasota, FL). The connector was mounted inside the
chamber with dental cement.

PHARMACOLOGICAL INACTIVATION
The hand area of M1 was identified by low threshold ICMS
(<20 μA, 13 pulses at 300 Hz) responses in hand muscles.
Muscimol (Sigma-Aldrich, M1523 dissolved in sterile saline to
0.5%) was injected into hand area of M1 (Figure 1B) under
ketamine/medetomidine sedation before stimulation experi-
ments using a 2.5 μl Hamilton syringe and a 31-gauge needle.
Injections were delivered at 3 depths per site (5, 3.5, and 2 mm
below dura), 0.5 μl per depth injected slowly over 30 s. In monkey
R, up to 3 injection sites and 4 depths were used. Once the injec-
tions were complete, the sedation was reversed using atipamezole
to ensure the monkeys were sufficiently alert (usually within
30 min) to perform the task while the muscimol inactivation was
still in effect.

INTRASPINAL MICROSTIMULATION PROTOCOL
At the beginning of each experimental session, we assessed the
stimulation thresholds of the intraspinal electrodes. We used
trains of 3 biphasic pulses (200 μs per phase, 300 Hz) and
increased the current up to 100 μA until we either observed
movements of arm or hand muscles or stimulus-evoked poten-
tials in any of the EMG recordings in at least 50 percent of the
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cases. For subsequent closed-loop stimulation, we generally chose
an electrode whose stimulation caused wrist or finger flexion
movements. In monkey R, where multiple electrodes were avail-
able simultaneously, the electrode evoking strongest movements
at low amplitudes (∼50 μA) was chosen.

We recorded action potentials of premotor neurons (1401,
CED, Cambridge, UK; 1–15 units discriminated in real-time
using a template-matching algorithm implemented in Spike2
software, CED). The neuron whose firing correlated best with
onset of movement in the previous, non-stimulation session was
chosen to drive ISMS. If that neuron was not available, the animal
was observed attempting the behavioral task and a task-related
neuron was chosen based on its evident activity pattern, i.e.,
consistent modulation of firing frequency during several con-
secutive trials. Discriminated spike events were transmitted in
real time to a computer that estimated the instantaneous firing
rate (Figure 1E). The firing rate was transformed (shifted, scaled,
delayed) and this transformed rate was used as a target force
function for stimulation (Zimmermann et al., 2011). This target
force was then used to estimate when stimulation pulses had to
be delivered in order to best match the force. We assumed that
each pulse results in a force response corresponding to a crit-
ically damped system (Milner-Brown et al., 1973) with a time
constant of 50 ms. Thus, muscle force was modulated by chang-
ing the stimulation frequency. Shift and scale of the neural firing
rate were chosen to maximize the dynamical range of spinal stim-
ulation frequency. Stimulation frequency was limited to 125 Hz
based on our previous finding that trains of up to 100–125 Hz
are sufficient to elicit tonic contractions of hand and arm muscles
(Zimmermann et al., 2011 and unpublished data). Usually, task-
related premotor neurons we recorded assumed their maximum
(or minimum) firing rate 100–250 ms before movement onset.
Therefore, a delay was chosen such that the maximum stimulation
frequency coincided with the monkey’s attempted movement.
Due to a constant processing delay due to online spike discrim-
ination and firing rate estimation the additional delay was in the
order of 100–200 ms. Stimulus pulses (biphasic, cathodic first,
200 μs per phase, 10–200 μA) were delivered to one intraspinal
electrode using Model 2100 stimulator (A-M Systems, Carlsborg,
WA). During stimulation sessions, random catch trials were inter-
spersed (probability 1/6), during which spinal stimulation was
turned off. Each period without stimulation lasted until a success-
ful trial was performed, or for 30 s, whichever occurred first. The
animal handler was not aware of when the task program injected
catch trials.

In some experimental sessions, residual motor unit potentials
were recorded from muscles mostly paralyzed due to the musci-
mol injection. In these cases, the action potential of a single motor
unit could be discriminated using the same template matching
technique as employed for cortical neurons.

DATA ANALYSIS
Assessment of muscimol paralysis efficacy
Efficacy of muscimol paralysis was assessed first by visual inspec-
tion and testing the monkeys’ ability to grasp a piece of fruit.
We then also compared the average EMG responses during grasp
movements with and without paralysis.

Assessment of behavioral improvement
We measured maximum lever position during attempted trials
to compare task performance between stimulation and con-
trol epochs. Since the task was self-paced, attempted trials were
aligned by thresholding the firing rate of the neuron controlling
stimulation. Trial epochs were 4 s long (1 s pre- and 3 s post-
threshold crossing). The maximum lever position for each such
epoch was determined, and the difference of mean maximum
lever displacements between stimulation conditions was tested for
significance using a two-tailed randomization test (n = 10,000;
α = 0.05).

As well as lever displacement (which included successful and
unsuccessful trial attempts), we also measured the rate at which
animals performed successful trials (i.e., the lever was held at the
target displacement for the required time and received a reward).
We divided the number of successful trials completed during
stimulation and control periods by the total time of each period.
In order to determine the significance of differences in trial rates
between stimulation and control periods, we created surrogate
shuffled data by randomly allocating each trial into stimulation
or control periods. To determine the length of an individual trial,
we chose the time point half-way between two consecutive trial
completion events as the trial boundary. We then performed a
permutation test (n = 100,000; α = 0.05) on the shuffled trial
assignments, using the difference of trial rates as the test statistic.

RESULTS
DATASET
This study comprises six muscimol sessions with monkey B,
spread over 18 days, and 27 sessions with monkey R, spanning
104 days. Of the sessions with monkey R, 25 employed cortical
control of stimulation while one used motor unit potentials from
the muscles, and another one used both. On average, monkey B
performed 96 (SEM 27) trials per muscimol session and 112 (31)
trials per training session. Monkey R performed 122 (18) trials per
muscimol session and 260 (20) trials per training session during
the same period.

MUSCIMOL INDUCED PARALYSIS
After muscimol injections and while the monkeys recovered from
sedation, we assessed the monkey’s ability to perform reach and
grasp movements by presenting pieces of food. In monkey B,
hand and forearm muscles were reliably paralyzed by musci-
mol injections, leading to severely disabled grasps. In monkey R,
despite using more muscimol, the behavioral effects were less reli-
able and paralysis was often strongest on intrinsic hand muscles.
In both monkeys, the effects persisted throughout the duration of
the stimulation session up to several hours; stimulation sessions
usually lasted 1–2 h.

CORTICAL CONTROL OF SPINAL STIMULATION
To produce controlled and repeatable motor deficits in macaque
monkeys without requiring permanent injury, we inactivated the
hand representation of M1 with focal injections of the GABA-
agonist muscimol (Matsumura et al., 1991; Schieber and Poliakov,
1998; Schmidlin et al., 2008; Figure 1B). For several hours after
the injection, the monkeys were impaired at a trained task that
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involved grasping and pulling a handle against a resistive spring
load. Despite the animals’ inability to displace the handle suffi-
ciently to receive a reward, many grasp-related neurons in PMv
showed robust modulation of activity during attempted trials.
In each session, the firing rate of one such neuron provided a
real-time read-out of the intention to move that was transformed
into a control signal to modulate the rate of spinal cord stim-
ulation. Intraspinal microstimulation was delivered either with
acute electrodes inserted via a percutaneous chamber (monkey B)
or through a chronically implanted floating microelectrode array
(monkey R, Figure 1C). As observed previously in anesthetized
animals, neighboring stimulation electrodes tended to activate
different muscles of the hand and forearm (Moritz et al., 2007),
and stimulation of a single electrode close to motor threshold
often activated several muscles (Figure 1D) producing functional
movements such as whole-hand grasping (Zimmermann et al.,
2011).

Figure 2A and Supplementary Movie 1 show a typical
sequence of trials incorporating periods of closed-loop stimula-
tion interspersed with control periods during which no stimu-
lation was delivered. Trials were aligned to the moment that the
PMv firing rate crossed a firing threshold to indicate the onset of
an attempted movement. Aligned in this way, firing rate profiles
for trials attempted during both periods were similar (Figure 2B).
However, during stimulation epochs, the monkey was able to
pull the lever further and hold it longer than during control
epochs (average maximum displacement of l permutation test).
Moreover, during stimulation epochs, the monkey performed
3.1 successful trials/minute compared with only 1.8 successful

trials/minute during control periods (mean trial lengths [SEM]
19.6 s [1.7 s] vs. 33.4 s [6.2 s], p = 0.03, permutation test). Trial-
averaged EMG plots revealed that stimulation restored task-
modulated activation profiles in muscles paralyzed by muscimol
injection (Figure 2). Spinal stimulation selectively activated wrist
and finger flexor muscles: little stimulation evoked activation was
observed in the wrist extensor (ECR) recorded here. Comparison
with data recorded during training sessions with no muscimol
injection showed that EMG profiles during stimulation epochs
were modulated with a time-course similar to that during natural
task performance (Figure 3). The peak of activity is wider dur-
ing paralysis sessions than during normal training sessions, which
can be attributed both to longer durations of trials as reflected by
the lever positions and variability in the control signal taken from
the premotor neuron. The wrist extensor ECR was not inhib-
ited by the muscimol block, however its activity pattern follows
the slower course of the trials during paralysis sessions. On other
muscles such as 1DI, the effect of spinal stimulation was rather
weak compared to the activation of that muscle during normal
training. Note that the baseline of APB seems elevated during
both stimulation and control periods of the paralysis session. This
is due to an elevated noise level affecting the channel during this
recording.

In individual sessions with both animals we were able to
demonstrate improvements in performance, measured both in
terms of movement amplitude and rate of successful trials. In
the best session with monkey R (Figure 2C), lever displacement
was significantly increased (average maximum lever displace-
ment [SEM] 14 mm [0.9 mm] vs. 6 mm [1.5 mm], p = 0.0001,

FIGURE 2 | Brain-controlled spinal stimulation improves task

performance and restores muscle activity. (A) Lever position, neural firing
rate, stimulation rate, and EMG recorded from FDS, FCU, and ECR recorded
during a brain-controlled stimulation session (monkey B). Consecutive
stimulation epochs (shaded) and control epochs with no stimulation (no
shading) are shown, incorporating several successful trials (indicated by
triangles, filled: stimulation, open: control). (B) Average data from stimulation

(124 trial attempts) and control (73 trial attempts) epochs aligned to attempt
onset (inferred from neural firing rate exceeding 90 spikes/s). Raster plots
show 20 stimulation and 20 control trial attempts. Shaded areas indicate
standard error of the mean (SEM). Monkey B, session B100711000. (C)

Similar to (B), monkey R. Trials aligned to PMv neuron firing rate exceeding
11 Hz. One hundred twenty-nine stimulation trials and 35 control trials over a
period of 29 min are shown. Shaded areas: SEM. Session Rv110719002.

Frontiers in Neuroscience | Neuroprosthetics May 2014 | Volume 8 | Article 87 | 4

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Zimmermann and Jackson Cortical control of intraspinal stimulation

FIGURE 3 | Comparison of paralysis+stimulation, paralysis, and

training trials. Averages of lever position, neural firing, and EMG of various
hand and forearm muscles are shown. Paralysis+stimulation (red, n = 124
trials) and paralysis (black, n = 73 trials) epochs are the same as in
Figure 2. Training epochs (blue, n = 163 trials) are from a session 3 days
before in which no muscimol was injected. Epochs are aligned to threshold
crossing of neural firing rate (90 Hz for paralysis session, 40 Hz for training
session, broken vertical line). Muscle activation due to spinal stimulation in
finger flexors FDS and FDP and wrist flexor FCU resembles normal
activation in shape and amplitude. Monkey B, sessions B100708001 and
B100711000. Shaded areas: SEM.

permutation test), and was associated with a significant increase
in trial completion rate during stimulation epochs (6.8 trials/min
vs. 4.0 trials/min, p = 0.02, permutation test; average trial length
[SEM] 8.9 s [0.6 s] vs. 15.0 s [3.3 s]). For comparison, the average
success rates during training sessions without muscimol injection
were 3.8 trials/min (monkey B) and 5.8 trials/min (monkey R).

CONTROL OF SPINAL STIMULATION USING RESIDUAL MUSCLE
ACTIVITY
An increasing proportion of spinal cord injuries are motor incom-
plete (DeVivo, 2012) meaning patients retain some residual vol-
untary muscle control which could in principle be used to control
spinal cord stimulation. Therefore, in sessions with an incom-
plete motor block we discriminated single motor unit activity
from EMG and used this to control ISMS. In the session shown
in Figure 4, the firing rate of a motor unit in the first dorsal
interosseus muscle was used for online control of ISMS. Care was
taken in this case to ensure that the motor unit was discrimi-
nated cleanly and that stimulation responses did not influence
the control signal (Figures 4C–E). Again, average maximum lever
displacement was higher with stimulation than without (20 mm
[SEM 0.6 mm] vs. 12 mm [1.6 mm], p = 0.0001, permutation
test) and trial rates were higher (6.3 trials/min vs. 3.3 trials/min,
p = 0.007, permutation test; average trial length [SEM] 9.5 s
[0.6 s] vs. 18.3 s [4.4 s]).

COMBINED ANALYSIS OF ALL SESSIONS
The behavioral effects of muscimol injections were variable across
sessions, ranging from complete paralysis of the hand to relatively
minor deficits. In addition, the stimulation effects in monkey B
were quite variable due to the use of acutely inserted electrodes.

FIGURE 4 | Task performance is restored by spinal stimulation

controlled by residual muscle activity. (A) Lever position, motor unit
firing rate, stimulation rate, and EMG recorded from APB, 1DI, FDS, FDP,
FCU, and ECR, during a session in which residual motor unit activity from
FDP was used to control stimulation (monkey R). (B) Average data from
stimulation (178 trial attempts) and control (43 trial attempts) epochs
aligned to attempt onset (inferred from motor unit firing rate exceeding
20 Hz). Shaded areas: SEM. Session Rv110714003. (C) Peri-Stimulus Time
Histogram showing discriminated motor unit action potentials used to
control stimulation relative to occurrence of stimulus pulses (0 ms). The
absence of a peak following the stimulus indicates that the discriminator
was neither triggered by a stimulus artifact nor by a stimulus-evoked motor
response (which could lead to a positive feed-back loop). (D) Sample raw
discriminated FDP motor unit potentials (n = 100). (E) Raw FDP EMG
traces aligned to stimulation events at vertical bar (n = 100).

As a result we did not expect to obtain significant performance
improvements in every session. Nevertheless, we performed a
combined analysis of all sessions in which closed-loop spinal
stimulation was attempted, by calculating the overall rate at which
successful trials were completed when stimulation was on com-
pared with during catch trials with no stimulation. Combining
over all six recording sessions, monkey B performed a total of
476 trials in 297.3 min with stimulation, and 93 trials in 49.6 min
without stimulation. This corresponds to an average rate of trial
completion of 1.6 trials per minute with stimulation, and 1.9
trials per minute without stimulation. This difference that was
not significant (p = 0.2, permutation test as before). Across 27
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FIGURE 5 | Development of motor thresholds over time. Dots show
measured stimulation thresholds for individual electrodes of monkey R’s
array implant over the course of the experiment. Dots are color-coded for
length of the electrode. The solid red line shows the average thresholds for
each session (shaded area, SEM). Dashed lines represent linear fits for the
three lengths of electrodes (gray), and all electrodes (red). The cartoon
(right) shows the distribution of electrode lengths over the array and its
position within the cord.

sessions, Monkey R performed 4671 trials in 1039.6 min with
stimulation and 823 trials in 249.8 min without stimulation. This
corresponded to trial completion rates of 4.5 vs. 3.3 trials per
minute respectively, demonstrating a significant (p < 0.01) per-
formance improvement due to stimulation across the combined
sessions. That we were unable to demonstrate significance with
the pooled analysis in monkey B may reflect our use in this
animal of acutely positioned spinal electrodes which were less
effective at producing robust, stable stimulation effects through-
out every session. Nevertheless, the fact that we can demonstrate
a significant benefit of spinal stimulation within individual ses-
sions (e.g., Figures 2A,B) suggests that when electrodes were
appropriately positioned, closed-loop control of spinal stimu-
lation was effective at restoring grasp function following M1
inactivation.

STABILITY OF STIMULATION THRESHOLDS OVER TIME
Stability of stimulation responses is a key requirement for a
successful spinal implant. In monkey R we tested stimulation
thresholds of all 17 electrodes on the FMA over a period from 3
to 112 days after implantation (Figure 5). Shortly after implan-
tation, stimulation thresholds were on average around 20 μA.
After 3.5 months, stimulation thresholds increased to ∼40 μA on
average. Individual electrodes showed considerable variation of
thresholds over the duration of the experiment, and 6 of 17 elec-
trodes had a lower threshold at the end of the experiment than
just after implantation. On any given day, only a small proportion
(none to 4) of the electrodes failed to respond at all to pulses of
100 μA, however even on the last day thresholds were determined,
movements were evoked by stimulating each single electrode at
100 μA or below.

Grouping the electrodes by their length shows that the shorter,
more lateral electrodes showed lower thresholds on average,

FIGURE 6 | Development of mean firing rate of the neuron used to

control spinal stimulation over the course of the experiment in

monkey B. We used the same neuron to control spinal stimulation over the
course of 18 days. Mean firing rate was higher during stimulation sessions
(solid symbols) than in training sessions (open symbols), and increased over
time (see Table 1 for linear regression statistics).

Table 1 | Multiple linear regression of mean firing rate of brain control

neuron.

Variable Coefficient t-Statistic p

Paralysis session (coded as
1—paralysis, 0—training)

9.6 3.37 0.003

Days since first experiment 1.7 5.92 1.3 × 10−5

Length of session −0.001 −0.46 0.65

Overall model statistics: F = 20.0, p = 6 × 10−6, R2 = 0.77

Independent variables were session type (paralysis or training), days since first

experiment, and session length.

but a larger increase in threshold over time, whereas average
stimulation thresholds of longer electrodes decreased over time.

CHANGE OF CORTICAL SIGNALS DURING BRAIN CONTROLLED ISMS
In monkey B we were able to follow the activity of one task-
related PMv neuron over multiple sessions (Figure 6). During
paralysis sessions this neuron was also used to control ISMS. This
neuron showed a higher average firing rate during stimulation
sessions compared to control sessions, which may reflect a greater
volitional effort required to compensate for the motor deficits
(Table 1). In addition, there was a general trend for an increase in
firing rate throughout the recording period. Session length, was
not found to affect the mean firing rate, however.

DISCUSSION
These results are to our knowledge the first demonstration of suc-
cessful control of a neural prosthesis in primates after disruption
of primary motor cortex. Although premotor areas such as PMv
have direct projections to the spinal cord (Dum and Strick, 1991),
their motor outputs are likely mediated predominantly via M1
(Schmidlin et al., 2008) consistent with the profound suppres-
sion of many muscles seen in our control epochs. In individual
sessions with both animals, closed-loop control of spinal cord
stimulation was successful at increasing movement amplitude
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and success rate. In monkey R, stable stimulation effects were
facilitated by using a chronic spinal array, and a combined anal-
ysis of all sessions also revealed a significant increase in trial
success rate during stimulation. Therefore, even though some
residual control of muscles may have survived M1 inactivation
and could have contributed to task performance, this was never-
theless assisted by the closed-loop spinal stimulation protocol we
implemented. Due to reciprocal connectivity between motor and
premotor cortices (Dum and Strick, 2005), inactivation of M1
might be expected to disrupt task-modulated neural activity in
PMv. In fact, when we followed the same cell across multiple ses-
sions, firing rates in PMv were higher during muscimol sessions,
compared with interspersed training sessions, perhaps reflecting
the increased volitional effort required to overcome the effects of
M1 inactivation.

It should be noted that the reversible inactivation of M1 used
in this study does not model the long-term effects of cortical or
spinal cord injury, including plastic changes leading to reorga-
nization of cortical function, up-regulation of spinal reflexes or
spasticity. The success of BMI demonstrations in human patients
(Hochberg et al., 2006, 2012; Collinger et al., 2013) suggests that
activity related to intended movement can be decoded from the
cortex long after the onset of paralysis. The efficacy of intraspinal
stimulation for generating useful hand movements in human
patients has yet to be similarly established. However, evidence
from rats (Sunshine et al., 2013) suggests that the effects of cer-
vical intraspinal stimulation after chronic spinal cord injury are
comparable to those seen in uninjured animals. One potential
advantage of relaying cortical signals directly to the spinal cord
may be to reduce the maladaptive plasticity (hyperreflexia, spas-
ticity) that occurs in a spinal cord deprived of cortical inputs,
although this hypothesis is highly speculative at the current
time.

Closed-loop functional electrical stimulation of muscles has
previously been shown to improve performance on wrist (Moritz
et al., 2008; Pohlmeyer et al., 2009) and hand tasks (Ethier
et al., 2012). In addition, closed-loop local field potential con-
trol of intraspinal stimulation has been used to improve wrist
function after an inadvertent injury to the spinal cord of
one monkey (Nishimura et al., 2013a). Our results are the
first use of cortically-controlled stimulation of the spinal cord
to improve grasping function. An advantage of spinal cord
stimulation is the naturalistic recruitment of multiple mus-
cles through activation of surviving spinal circuitry (Bamford
et al., 2005). In this study we were able to produce func-
tional, whole hand grasping from stimulation at a single
site, and we have previously shown that just two electrodes
are required for independent control of reaching and grasp-
ing (Zimmermann et al., 2011). Extending stimulation to
many electrodes should thus broaden the movement reper-
toire to include several grasp types. On the other hand, here
we only used a simple control algorithm depending on the
activity of one neuron, selected solely on the basis of task-
related modulation. Grip type can be readily decoded in
monkeys (Vargas-Irwin et al., 2010; Bansal et al., 2012) and
humans (Pistohl et al., 2012) using intracortical arrays and
electrocorticography. By combining multi-electrode stimulation

with sophisticated decoding algorithms, it should therefore
be possible to restore control over a range of upper-limb
behaviors.

Robust responses to stimulation were observed in one animal
over a 112-day period, but stimulation thresholds, particularly
those of the shorter electrodes in our array, did increase slowly
over the course of the experiment. This may be explained by scar
tissue forming between the array and the surface of the spinal
cord gradually pushing the electrodes upwards. Since spinal cord
injured patients can live for many decades, the stability of elec-
trode implants remains a major challenge for clinical applications
of intraspinal microstimulation. It is possible that epidural stimu-
lation of either the dorsal or ventral spinal cord may provide a less
invasive and more stable approach for reanimating the paralyzed
limb (Sharpe and Jackson, 2014).

Although we only implemented closed-loop stimulation dur-
ing experimental sessions, emerging evidence suggests long-term,
continuous use of neural prostheses may have further applica-
tions in neurorehabilitation by driving activity-dependent plastic
changes (Jackson and Zimmermann, 2012). Jackson et al. (2006)
demonstrated in healthy monkeys that closed-loop cortical stim-
ulation could strengthen cortical connectivity by a Hebbian
process. Recently, Guggenmos et al. (2013) have extended this
idea to a rodent model of focal brain injury, demonstrating
enhanced functional connectivity and lasting improvements to
grasp function using a neural prosthesis that connected premo-
tor and somatosensory cortex. Finally, Nishimura et al. (2013b)
have demonstrated that similar Hebbian mechanisms may also act
at corticospinal connections. We can therefore speculate that the
causal correlations between cortical and spinal activity introduced
by long-term closed-loop stimulation may have further benefits
for patients with incomplete injuries by strengthening surviving
descending pathways.
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