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Electroencephalography (EEG)-based emotion classification during music listening has
gained increasing attention nowadays due to its promise of potential applications such
as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and
implicit multimedia tagging and triggering. However, music is an ecologically valid and
complex stimulus that conveys certain emotions to listeners through compositions of
musical elements. Using solely EEG signals to distinguish emotions remained challenging.
This study aimed to assess the applicability of a multimodal approach by leveraging
the EEG dynamics and acoustic characteristics of musical contents for the classification
of emotional valence and arousal. To this end, this study adopted machine-learning
methods to systematically elucidate the roles of the EEG and music modalities in the
emotion modeling. The empirical results suggested that when whole-head EEG signals
were available, the inclusion of musical contents did not improve the classification
performance. The obtained performance of 74∼76% using solely EEG modality was
statistically comparable to that using the multimodality approach. However, if EEG
dynamics were only available from a small set of electrodes (likely the case in real-life
applications), the music modality would play a complementary role and augment the
EEG results from around 61–67% in valence classification and from around 58–67% in
arousal classification. The musical timber appeared to replace less-discriminative EEG
features and led to improvements in both valence and arousal classification, whereas
musical loudness was contributed specifically to the arousal classification. The present
study not only provided principles for constructing an EEG-based multimodal approach, but
also revealed the fundamental insights into the interplay of the brain activity and musical
contents in emotion modeling.
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INTRODUCTION
Through monitoring ongoing electrical brain activity, electroen-
cephalography (EEG)-based brain-computer interfaces (BCIs)
allow users to voluntarily translate their intentions into com-
mands to communicate with or control external devices and
environments, instead of using conventional communication
channels, e.g., speech and muscles (Millan et al., 2010). Several
types of EEG signatures are theoretically defined and empiri-
cally proved to be robust in actively and reactively actuating
BCIs (Zander and Kothe, 2011), such as evoked potentials, event-
related potential (ERP), and sensorimotor rhythms (Wolpaw
et al., 2002). Nowadays, a new categorization called passive BCI
was introduced (Zander and Kothe, 2011). It enables users to
involuntarily interact with machines by means of implicit user
states, e.g., emotion. Researches are attempting to augment BCI’s
ability with emotional awareness and intelligence in response
to users’ emotional states, so called affective brain-computer
interfaces (ABCIs).

Emotion is a psycho-physiological process as well as a natural
communication channel of human beings. Music is considered
as an extraordinary mediator to evoke emotions and concur-
rently modulate underlying neurophysiological processes (Blood
et al., 1999). Upon profound findings in musical emotions, using
machine-learning methods to characterize spatio-spectral EEG
dynamics associated with emotions has gained increasing atten-
tions in the last decade, namely EEG-based emotion classification,
due to its promise of potential applications such as musical
ABCI (Makeig et al., 2011), neuromarketing (Lee et al., 2007),
music therapy (Thaut et al., 2009), implicit multimedia tagging
(Soleymani et al., 2012a; Koelstra and Patras, 2013) and triggering
(Wu et al., 2008). Given diverse EEG patterns, the major efforts in
the previous EEG-based emotion classification works (not limited
to music stimuli) were to seek an optimal emotion-aware model
by leveraging feature extraction, selection and classification meth-
ods (Ishino and Hagiwara, 2003; Takahashi, 2004; Chanel et al.,
2009; Frantzidis et al., 2010; Lin et al., 2010b; Petrantonakis
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and Hadjileontiadis, 2010; Koelstra et al., 2012; Soleymani et al.,
2012b). Despite many approaches and advances in EEG analysis
in the past decade, how to precisely categorize EEG signals into
distinct emotional states remains challenging.

Music is an ecologically valid and complex stimulus that
conveys emotions to listeners through compositions of musical
elements, such as mode, tempo and timber (Peretz et al., 1998;
Schmithorst, 2005; Gomez and Danuser, 2007; Zatorre et al.,
2007). Listeners would be able to more and less perceive and rec-
ognize the same emotions as the music expresses (Schmidt and
Trainor, 2001; Juslin and Laukka, 2003). Analogous to the EEG
domain, researchers in music signal processing field devoted to
map acoustic characteristics of musical contents into emotion
semantics labeled by human annotators, namely music emo-
tion recognition (Yang and Chen, 2011, 2012). Most of previous
works employed publicly available toolboxes, such as MIRToolbox
(Lartillot and Toiviainen, 2007), Marsyas (Tzanetakis and Cook,
2002), and PsySound (Cabrera, 1999), to extract a wide vari-
ety of musical features and then used machine-learning algo-
rithms to automatically learn the associations between extracted
features and emotions expressed in music (Yang et al., 2008a;
Aljanaki et al., 2013). The aforementioned evidence raises a
natural question whether or not the acoustic characteristics of
musical contents can further improve the EEG classification
results.

Using EEG features in conjunction with other information
sources recently shed light on this issue, for example peripheral
biosignals (Chanel et al., 2009; Koelstra et al., 2012; Soleymani
et al., 2012a), eye gaze (Soleymani et al., 2012a,b), musical
structures (Koelstra et al., 2012), and facial expression (Koelstra
and Patras, 2013) have been proposed. Particularly for the
music study, Koelstra et al. (2012) reported that a multimodal
approach, fusing decision outputs from EEG and music classi-
fiers, marginally improved the classification performance over
using solely EEG modality. It remained unclear whether or not the
acoustic characteristics of musical contents effectively contribute
to the emotion modeling.

This study attempted to examine the roles of EEG and music
modalities in the multidiscipline emotion classification problem
in music listening upon two posed hypotheses. The first hypoth-
esis was that the EEG modality reflecting spatio-spectral brain
activities of the whole brain about implicit emotion responses
should dominate the multimodal approach for emotion clas-
sification, as compared to the music modality, in which the
implicit emotions concerned the responses automatically induced
by the stimulus itself (Gyurak et al., 2011). This study adopted
machine-learning methods, i.e., feature extraction, selection,
and classification, to systematically assess a composite feature
space synchronizing EEG dynamics and musical characteristics
in accordance to time scale. The relative contributions from EEG
and music modalities then can be explored. Furthermore, one
can imagine that the use of a high-density EEG montage over
the whole head might be more difficult or impractical for real-life
ABCI applications. The applicability of whole-head EEG dynam-
ics (in the first hypothesis) might no longer hold if only few
electrodes are available over a certain region or regions (Lin
et al., 2010b). Thus, this study posed another hypothesis that

the musical contents might complement less informative EEG
dynamics for emotion classification and consequently improve
over the EEG modality result. This study explored the minimal
set of informative electrodes from multiple subjects for emo-
tion classification. Such few electrodes mostly populated over
the fronto-central regions were used to simulate the absence of
whole-brain EEG dynamics. Exploring the validity of these two
hypotheses might elucidate potential advantages and limitations
in fusing EEG dynamics and musical contents for the emotion
classification problem.

MATERIALS AND METHODS
EEG DATASET AND MUSIC EXCERPTS
This study adopted the Oscar movie soundtrack dataset (Lin et al.,
2010b) to test the feasibility of using a multimodal approach
for emotion classification. The EEG signals were collected from
26 healthy subjects who were undergraduate and graduate stu-
dents (16 males, 10 females; age 24.40 ± 2.53) mostly from
engineering-related colleges. The experiment protocol and EEG
recording were approved by the Human Research Protections
Program of National Taiwan University. The music-listening
experiment targeted four emotion classes (joy, anger, sadness,
and pleasure) in accordance to the two-dimensional circum-
plex emotion model composed of valence (positive-negative) and
arousal (high-low) axes (Russell, 1980). Sixteen music excerpts
from the soundtracks of Oscar winning movies were used to
induce the targeted emotions. Each subject underwent a 4-
block music experiment; each block contained four counterbal-
anced 30-s music trials corresponding to four targeted emotions.
After music listening, the subjects labeled their felt emotions
on a discrete scale, for example, joy (positive valence and high
arousal), anger (negative valence and high arousal), sadness (neg-
ative valence and low arousal), and pleasure (positive valence
and low arousal). In the experiment, a 32-channel Neuroscan
EEG module placed according to the International 10–20 sys-
tem (Figure 1) and referenced to the linked mastoids (algebraic
average of left and right) was adopted to acquire EEG signals
with a sampling rate of 500 Hz and a bandpass filter at 1–100 Hz.
Subjects were asked to keep their eyes closed, remain seated,
and minimize head/body movements. After the music experi-
ment, each subject’s data was consisted of 16 30-s EEG segments
labeled by self-reported emotional states (joy, anger, sadness, or
pleasure).

Referring to the recent works (Koelstra et al., 2012; Soleymani
et al., 2012a,b; Koelstra and Patras, 2013), most of EEG-based
classification tasks addressed and performed on the basis of emo-
tional valence and arousal, e.g., categorizing EEG signals into
positive or negative valence, instead of discrete emotion states.
To make a direct comparison with the latest reports, this study
addressed the binary emotion classification problem. The self-
reported emotion labels of the Oscar movie soundtrack dataset
were separately merged into the binary categories of valence and
arousal. The valence scale comprised positive (joy and pleasure)
and negative (anger and sadness) levels, whereas arousal scale
contained high (joy and anger) and low (pleasure and sadness)
levels. There were 16 pairs of 30-s EEG signals and music excerpts
for each of 26 subjects available for analysis and comparison.
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EEG FEATURE EXTRACTION
Previous neurophysiological studies documented EEG spec-
tral changes either in distinct regions or between hemispheres
(Davidson, 1992; Schmidt and Trainor, 2001; Aftanas et al., 2004;
Sarlo et al., 2005; Sammler et al., 2007). Such evidence might
in part facilitated the use of spectral dynamics within/between
channels for the EEG-based emotion classification, e.g., spectra
in individual channels and spectral asymmetry in left-right chan-
nel pairs (Lin et al., 2010b; Koelstra et al., 2012; Soleymani et al.,
2012a; Koelstra and Patras, 2013). In the literature, the patterns
of spectral differences along anterior and posterior brain regions
have also been explored (Schmidt and Trainor, 2001; Sarlo et al.,
2005). However, no study has attempted to address the feasibil-
ity of using spectral differences in fronto-posterior channel pairs
in this domain. Prior to construct a multimodality approach,
this study aimed to explore an optimal EEG features from dif-
ferent types, including the power spectral density in individual
channels and the power spectral asymmetry in the left-right and
fronto-posterior channels pairs.

For each of 16 30-s EEG trials, the short-time Fourier trans-
form with non-overlapping 1-s Hamming window was applied

FIGURE 1 | Electrode placements of 32 channels according to the

international 10–20 system.

to extract the power spectral density in five frequency bands,
including delta (δ: 1–3 Hz), theta (θ: 4–7 Hz), alpha (α: 8–13 Hz),
beta (β: 14–30 Hz), and gamma (γ: 31–50 Hz) over 30 channels
(two reference channels were excluded). The band-specific power
spectra of the individual channels formed a feature dimension of
150 (5 bands × 30 channels) and was labeled as PSD hereafter.
To characterize the spectral-band asymmetry in respect of later-
ality (in left-right direction) and caudality (in fronto-posterior
direction), this study defined two feature types namely DLAT
and DCAU to separately extract the differential spectral asymme-
try of 12 left-right and 12 fronto-posterior channel pairs from
30 individual channels, both forming a feature dimension of
60 (5 bands × 12 channel pairs). Furthermore, this study also
named a feature type MESH by merging PSD, DLAT and DCAU, a
dimension of 270, for comparison. Table 1 summarizes the afore-
mentioned four EEG feature types. It is noted that the feature
vectors of each type were separately normalized to the range from
0 to 1.

MUSIC FEATURE EXTRACTION
Emotion expression in music is usually associated with different
acoustic characteristics (Juslin, 2000; Gabrielsson and Lindström,
2010). This study employed commonly used music information
retrieval toolboxes, i.e., MIRtoolbox (Lartillot and Toiviainen,
2007) and PsySound (Cabrera, 1999), to extract the acoustic
features that represent various perceptual dimensions of music
listening, including pitch, dissonance, loudness, and timber. The
data samples of the musical features were aligned to the EEG fea-
tures with one sample per second. The music feature types are
summarized in Table 2 and depicted as followings.

Pitch is the auditory attribute of sounds which can be ordered
on a scale from low to high. The harmonic aspect of music
can be described in terms of the relationship between two
or more simultaneous pitches, whereas the melodic aspect is
related to the temporal succession of pitches (Muller et al.,
2011). This study used the MIRtoolbox to extract three major
elements describing the pitch properties in music, including
the key clarity, mode, and harmonic flux. The key clarity
refers to the similarity (or key strength) that best describes
one of the 24 musical keys, e.g., C major. Next, the musi-
cal mode represents the difference between the best major

Table 1 | A summary of EEG feature types.

Type # Electrodes # Features Extracted features

DLAT 24 60 Five differential spectral band power (δ, θ, α, β, and γ) for 12 left-right electrode pairs:
Fp1-Fp2, F7-F8, F3-F4, FT7-FT8, FC3-FC4, T7-T8, P7-P8, C3-C4, TP7-TP8, CP3-CP4, P3-P4, and O1-O2.

DCAU 24 60 Five differential spectral band power (δ, θ, α, β, and γ) for 12 fronto-posterior electrode pairs:
Fp1-O1, Fp2-O2, F7-P7, F3-P3, Fz-Pz, F4-P4, F8-P8, FT7-TP7, FC3-CP3, FCz-CPz, FC4-CP4, and FT8-TP8.

PSD 30 150 Five spectral band power (δ, θ, α, β, and γ) for 30 electrodes:
Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7,
P3, Pz, P4, P8, O1, Oz, and O2.

MESH 30 270 A combination of DLAT, DCAU, and PSD.
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Table 2 | A summary of music feature types.

Type # Features Extracted features

Pitch 3 Key clarity, Mode, Harmonic flux

Dissonance 4 Tonal dissonance (HK,S), Spectral
dissonance (HK, S)

Loudness 5 Loudness, Sharpness (Z, A), Timbral width,
Volume

MFCC 13 MFCC coefficients (13 features)

MUSIC 25 A combination of Pitch, Dissonance,
Loudness, and MFCC

key and the best minor key in key strength, which is often
related to the sensation of valence in music (Gabrielsson and
Lindström, 2010). The harmonic flux indicates a large difference
in harmonic content between consecutive frames, such as chord
changes, strong melody or bass line movement. This feature
may be relevant as some psychology studies have found that
large melodic intervals are perceived as more powerful (i.e.,
high-arousal) than small ones (Gabrielsson and Lindström,
2010).

Dissonance measures the harshness or roughness of the acous-
tic spectrum (Cabrera, 1999). The dissonance generally implies
a combination of notes that sound harsh or unpleasant to peo-
ple when played at the same time. Empirically, many musical
pieces involve a balanced combination of consonance and disso-
nance sounds, e.g., the release of harmonic tension might create
pleasure (Parncutt and Hair, 2011). Four elements describing the
dissonance were calculated by the PsySound, including tonal dis-
sonance (HK and S) and spectral dissonance (HK, S). The tonal
and spectral dissonance measures the dissonance among tonal
components and models the degree deviating from the noisiness
of the sound, respectively. Note that HK and S are two methods
forming the results in different scales.

Loudness is the perceptual intensity of sounds and depends
primarily on the physical intensity as well as frequency and dura-
tion. This study employed the PsySound to derive five features
depicting the human sensation of sound loudness across fre-
quency, including loudness, sharpness (Z, A), timbral width, and
volume. The loudness is an integral of the spectral distribution
of loudness sensation. In general, loud music tends to be associ-
ated with high arousal and potency, whereas soft music relates to
low arousal. Next, sharpness Z and A are two models distinctly
characterizing the sharpness of the sound sensation in a scale
from dull to sharp (Cabrera, 1999). The former model emphasizes
high frequencies, whereas the later one is sensitive to the posi-
tive influence of loudness toward sharpness. The timbral width
is defined as the flatness, i.e., width of the peak, of the loudness’
spectral distribution, whereas the volume is derived based on the
relative strength between total loudness and sharpness (Cabrera,
1999). The relationship between these two features and emotion
processing is relatively less understood.

Timber that reflects the acoustic spectro-temporal character-
istics is often considered as the quality of sound that makes a
particular musical sound different from another. To model the
timber, this study employed the MIRToolbox and computed the

Mel-frequency cepstral coefficients (MFCC). MFCC characterizes
the spectral shape of the sound by taking the coefficients of
the discrete cosine transform of log-power spectra expressed
on a non-linear perceptual-related Mel-frequency scale (Davis
and Mermelstein, 1980). Typically, only the 10–20 lowest coeffi-
cients were retained for analysis (Muller et al., 2011). Referring
to (Koelstra et al., 2012), this study only adopted the first 13
coefficients. The timber type was named as MFCC hereafter.

FUSION OF EEG AND MUSICAL FEATURES
Through using multidisciplinary signals, a multimodal approach
can usually boost single modality results. Decision-level and
feature-level fusions are two commonly used schemes to obtain
the integration of multiple signal sources (Kittler et al., 1998;
Sargin et al., 2007). The feature-level fusion works by con-
catenating features of different modalities and then feeding the
composite feature vector to a classifier, whereas the decision-
level fusion allows single modalities to process independently and
then derive a final decision from multiple outputs. It is worth
noting that since this study attempted to evaluate the relative
contributions of EEG and music modalities, the feature-level
fusion that synchronizes the features of different modalities along
time more likely conforms to the objective. After applying a fea-
ture selection processing (described at the next section), this
study defined a term, namely percent composition, to reveal the
percentages of contributions of EEG and musical features to a
multimodal feature composition. Prior to classification, each of
the addressed EEG and musical features was independently nor-
malized between 0 and 1, making features equally weighted to a
classifier.

FEATURE SELECTION
Feature selection plays a chief role in solving classification prob-
lem. Given a plenty of raw features, the selection procedure is
capable of extracting only a subset of task-relevant features while
removing redundant/irrelevant ones. Feature reduction not only
leads to computational efficiency, but also reduces the num-
ber of electrodes required in real-life applications (Lin et al.,
2010b). This study employed an F-score index, a ratio of between-
and within-class variations (Chen and Lin, 2006), to pinpoint
the most emotion-relevant features/electrodes, which has been
proven effective for the EEG-based emotion classification prob-
lem (Lin et al., 2010b). The F-score index of the ith feature is
defined as following:

F (i) =
∑g

l = 1 (xl,i − xi)
2

1
nl

∑g
l = 1

∑nl
k = 1(xk,l,i − xl,i)

2

where xi and xl,i are the mean values of the ith feature for entire
dataset and for class l (l = 1 ∼ g, g = 2 for positive and negative
classes in valence or high and low classes in arousal), respectively;
xk,l,i is the kth sample value of the ith feature for class l, and nl

is the number of samples in class l. The larger F-score value indi-
cates higher discrimination power. It assumed that the features
with highest F-score values account for the most emotion-tagged
information and contribute more to emotion classification.
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To test the first hypothesis, the F-score based feature selection
was applied to each subject’s EEG dataset separately to generate
a subject-dependent EEG feature set. To test the second hypoth-
esis, this study simulated the consequences of unavailability of
whole-head EEG data. This study applied the F-score feature
selection to explore the commonality of the informative EEG
features from 26 subjects, i.e., subject-independent set. More
specifically, an objective index, namely the level of feature inde-
pendency (LFI), was defined as the number of subjects having
the same informative features. After sorting and accumulating the
F-score-sorted subject-dependent EEG features, the LFI-guided
subject-independent EEG feature sets were then explored. The
LFI value was empirically set and tested from 0.1 up to 0.6. Note
that no informative features were commonly observed over 18
subjects (LFI = 0.7). The subject-independent EEG feature set
with LFI = 0.6 was supposed to return a minimal set of electrodes
to test the second hypothesis. It is also important to explore the
common EEG patterns across subjects in emotion processing.

FEATURE CLASSIFICATION AND VALIDATION
Support vector machine (SVM) is a popular machine-learning
algorithm that projects input data onto a higher dimensional fea-
ture space via a transfer kernel function, in which classification
can be made more easily than in the original feature space. The
iterative learning processing of an SVM eventually converges into
optimal hyperplanes giving maximal margins between classes.
This study used LIBSVM software (Chang and Lin, 2011) to
build the SVM classifier and employed a radial basis function
(RBF) kernel to non-linearly map the original data onto a higher
dimensional space.

Regarding the classification validation, this study adopted
a leave-trial-out (LTO) validation method to each individual’s
dataset to obtain the emotion classification results. The LTO
validation provides a generalized performance by averaging clas-
sification results N times with each of N trials to be tested
(N = 16 in this study). In each repetition, the SVM model was
trained with 15 trials and then tested against the remaining
trial. It is noted that prior to the LTO validation a grid-search
procedure (Chang and Lin, 2011) was applied to the entire
dataset to decide an optimal parameter pair (γ, C) for the
size of the RBF kernel and the penalty of decision boundary
from various pairs (γ: 2−1 ∼ 23, C: 2−4 ∼ 21), which corre-
sponded to the best SVM training accuracy. The classification
accuracy was defined by the ratio of correctly classified num-
ber of samples and the total number of samples. The averaged
classification performance was obtained by averaging the classi-
fication results across 26 subjects. This study employed a paired
t-test to access the statistical significance in classification per-
formance between different feature types or modalities. As a
baseline, the majority-voting accuracy defined by the majority
class of the training data was also provided, i.e., random guessing.
For example, given a training set consisted of positive (63%) and
negative (37%) samples in the valence classification, the major-
ity accuracy was 63% for assigning a new sample as positive
valence. The significant difference of the obtained classification
accuracy versus majority voting was tested using a one-sample
t-test.

RESULTS
TESTING THE FIRST HYPOTHESIS: EEG DYNAMICS DOMINATED A
MULTIMODAL APPROACH IN EMOTION CLASSIFICATION COMPARED
TO MUSICAL CONTENTS
Figure 2 summarizes the valence and arousal classification results
of the subject-dependent EEG feature types (DLAT, DCAU, PSD,
and MESH). It is noted that the condition “without feature
selection” shows the results using all the features, while the con-
dition “with feature selection” shows the maximum accuracy
through the add-one-feature-in procedure and the number of
the features eventually used. In general, using different EEG
feature types without the feature selection tended to have com-
parable results that were notably worse than majority voting.
Using only informative features (with high F-score values), the
classification accuracies for all the feature types were markedly
improved (p < 0.01) upon the results without using feature selec-
tion, and were significantly better than the majority voting (p <

0.01). The MESH generated maximum accuracies of 76.08 ±
6.39% and 74.27 ± 4.82% for valence and arousal classifica-
tion, respectively, which significantly outperformed other feature
types (p < 0.01). The feature selection also considerably reduced
the feature dimensionality from 270 to below 30. This was very
likely attributed to the fact that the F-score feature selection
effectively pruned the less informative features from the whole
feature space, largely alleviating the interference caused by redun-
dant/irrelevant features. Thus, the MESH was used to merge with
musical contents to form a multimodal approach in the following
sections.

Figure 3 summarizes the classification results using the
subject-dependent EEG features (i.e., MESH), musical features
(i.e., MUSIC), and subject-dependent multimodal approach.
Note that the multimodal features were obtained by applying
the F-score feature selection to the composite features of the
MESH and MUSIC features. The multimodal approach obtained
the maximum accuracies of 76.97 ± 6.18% and 76.25 ± 4.88%
for valence and arousal classification, respectively. The results
using musical features alone were around 65% and only signifi-
cantly outperformed the majority voting for arousal classification
but not for valence classification, which were all significantly
worse than EEG and multimodality approaches (p < 0.01). The
subject-dependent EEG features did not notably benefit from
the inclusion of musical features. The classification performance
using the multimodal features compared favorably (p > 0.1) to
those using the EEG features.

Figure 4 further shows the percent composition of contri-
butions of EEG and musical features to the subject-dependent
multimodal approach. The composition was derived based on
how many informative features led to the maximum classifica-
tion accuracy. This result indicated that the EEG feature types,
especially DLAT and DCAU, dominated the composition of mul-
timodal features for valence and arousal classifications, while
the musical features barely contributed. This might explain the
marginal improvement using the multimodal approach versus the
EEG-only modality.

In sum, the feature type MESH, consisted of the two-
directional power asymmetry and individual power spectra across
the whole scalp and frequency bands, better characterizing the
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FIGURE 2 | The valence and arousal classification results using the

subject-dependent EEG feature sets with/without the F-score based

feature selection. The numbers above the bars represent the mean
values of the results, whereas the numbers in bold indicate the

accuracies significantly better (p < 0.01) than the majority voting accuracy
(valence: ∼63%, arousal: ∼61%). †Indicates that the accuracy with
feature selection significantly outperformed that without feature selection
(p < 0.01).

FIGURE 3 | The valence and arousal classification results using the

subject-dependent multimodal approach with/without feature

selection. The results of the subject-dependent EEG modality (feature
type: MESH) and the music modality (feature type: MUSIC) are also
provided for comparison. The numbers above the bars represent the

mean values of the results, whereas the numbers in bold indicate the
accuracies significantly better (p < 0.01) than the majority voting accuracy
(valence: ∼63%, arousal: ∼61%). †Indicates that the accuracy with
feature selection significantly outperformed that without feature selection
(p < 0.01).
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FIGURE 4 | The percent composition of contributions of EEG (DLAT, DCAU, and PSD) and musical (Pitch, Dissonance, Loudness, and MFCC) features

to the subject-dependent multimodality. The composition of the subject-dependent EEG modality is also provided for comparison.

EEG dynamics about emotional responses than the musical fea-
tures. The above empirical results proved the first hypothesis
that the EEG modality that accessed spatio-spectral brain activ-
ity of the whole brain dominated the classification of emotional
responses in the multimodal approach.

TESTING THE SECOND HYPOTHESIS: MUSICAL CONTENTS CAN
COMPLEMENT EEG DYNAMICS UNAVAILABLE IN WHOLE-HEAD EEG
RECORDINGS
To test the second hypothesis that musical contents can comple-
ment EEG dynamics unavailable in whole-head EEG recordings,
this study simulated the circumstance of classifying emotion
states based on fewer informative EEG features/electrodes. The
LFI index (0.1∼0.6) was defined to systematically reduce the
whole-brain electrode montage (30) to different subsets of elec-
trodes located at certain regions. Under such constrain, the rela-
tionship between the EEG dynamics and musical contents can be
evaluated.

Figure 5 presents the valence and arousal classification results
using the LFI-sorted subject-independent EEG features (i.e.,
MESH) with/without feature selection. Overall, the number of
features can be seen to progressively reduce as the LFI value
increased from 0.1 to 0.6. The number of electrodes required for
the feature sets in turn was reduced. These feature sets, however,
gave very limited estimations in emotional responses against the
majority voting. The reason was attributed to the fact that the
discriminative power of the subject-independent features with

a compromise of a subject population might not be guaran-
teed to each of subjects. At LFI = 0.6, the required electrodes
were dramatically reduced from the whole-scalp montage (30)
to ten and seven electrodes for valence and arousal classifica-
tion, respectively. As shown in Figure 6, most of the informative
EEG features (listed in Table 3) were extracted from the fronto-
central electrodes versus others. It is worth noting that the DLAT,
extracted from left-right electrode pairs, dominated the composi-
tion of the EEG features, compared to others (DCAU and PSD).
According to these results, the subject-independent EEG feature
set (LFI = 0.6), which involved a low-density fronto-central mon-
tage, was adopted for emotion classification in the rest of the
study.

Figure 7 shows the classification results using the subject-
independent EEG features (i.e., MESH given LFI = 0.6), musi-
cal features (i.e., MUSIC), and subject-independent multimodal
approach. Note that the sorted multimodal features were derived
by applying the F-score feature selection to the composite fea-
ture vector of the MESH and MUSIC features. The multimodal
approach resulted in the maximum accuracies of 66.93 ± 7.10%
and 67.04 ± 5.78% for valence and arousal classification, respec-
tively, following by the musical features and the EEG features.
Most importantly, the multimodal approach outperformed the
EEG-only features by around 6% for valence (p < 0.05) and 9%
for arousal (p < 0.01) classification. There was no significant
difference between the multimodal approach and the musical
features (p > 0.3).
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FIGURE 5 | The valence and arousal classification results of the

subject-independent EEG features (type: MESH) in term of the average

number of features, electrodes, and accuracies using with/without

feature selection under the LFI criteria (0.1 ∼ 0.6). The numbers near to

the nodes represent the mean values of the results. †Indicates that the
accuracy with feature selection significantly outperformed that without
feature selection (p < 0.01), yet were comparable (p > 0.1) to majority voting
accuracies (valence: ∼63%, arousal: ∼61%).

FIGURE 6 | The topographic mapping of informative EEG features

consistently appeared in multiple subjects. The rightmost topography
color-codes the importance of electrodes according to how frequent the
electrodes were used to derive the corresponding features.

Figure 8 shows the percent composition of contributions of
EEG and musical features to the subject-independent multimodal
features. As a baseline, the composition of the subject-
independent EEG features is also provided. The comparative
result showed the EEG and musical features performed com-
plementarily in the multimodal approach. The musical features

Table 3 | The informative EEG features that consistently appeared

across multiple subjects.

Rank Valence Arousal

1 DLAT: FT7-FT8 (Theta) DCAU: FC3-CP3 (Delta)

2 DLAT: FC3-FC4 (Alpha) DLAT: C3-C4 (Alpha)

3 DLAT: F3-F4 (Delta) DLAT: F7-F8 (Theta)

4 DLAT: FT7-FT8 (Delta) DLAT: FC3-FC4 (Theta)

5 DLAT: TP7-TP8 (Delta)

6 DCAU: F3-P3 (Beta)

7 PSD: T7 (Gamma)

competed to the EEG features and replaced the ones with rela-
tively low discriminative power, especially for arousal scale. This
evidently explains the reason that the subject-independent mul-
timodal approach leading to significant improvements upon the
subject-independent EEG results. Table 4 lists these informative
musical features, which consistently appeared in above half of the
subjects.

In sum, the EEG features extracted from a subset of brain
regions was unable to effectively encompass the complex brain
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FIGURE 7 | The valence and arousal classification results using the

subject-independent multimodal approach (LFI = 0.6) with/without

feature selection. The results of the subject-independent EEG modality
(feature type: MESH) and the music modality (feature type: MUSIC) are
also provided for comparison. The numbers above the bars represent the

mean values of the results, whereas the numbers in bold indicate the
accuracies significantly better (p < 0.02) than the majority voting accuracy
(valence: ∼63%, arousal: ∼61%). † indicates that the accuracy with
feature selection significantly outperformed that without feature selection
(p < 0.01).

FIGURE 8 | The percent composition of contributions of EEG (DLAT, DCAU, and PSD) and musical (Pitch, Dissonance, Loudness, and MFCC) features

to the subject-independent multimodality. The composition of the subject-independent EEG modality is also provided for comparison.
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Table 4 | The informative musical features in the subject-independent

multimodal approach.

Rank Valence Arousal

1 Dissonance: Spectral dissonance (S) Loudness: Sharpness (Z)

2 Pitch: Mode MFCC: 8th

3 Loudness: Sharpness (A)

4 Pitch: Harmonic flux

dynamics about emotions. The corresponding EEG features sim-
ply retuned the classification accuracy equivalent to random
guessing. Under this circumstance, the EEG modality could ben-
efit from the inclusion of the acoustic characteristics of musical
contents. The aforementioned simulation result proved the sec-
ond hypothesis that the musical contents can compensate for EEG
dynamics unavailable in whole-head EEG recordings to improve
the classification performance to some extent.

DISCUSSION
Music is an ecologically valid and complex stimulus that con-
veys emotions to listeners through musical composition. Using
only EEG signals to classify music-induced emotional responses
remained challenging. By exploiting the complementary nature
of multidisciplinary modalities, the fusion of EEG and musi-
cal dynamics has been recently reported (Koelstra et al., 2012).
However, it remains unclear when acoustic characteristics of
musical contents effectively contribute to the modeling of emo-
tional responses. To this end, this study adopted machine-
learning methods, including feature extraction, selection and
classification, to systematically assess a composite feature space by
aligning EEG and musical features in time. The empirical results
suggested that when EEG signals from the whole head were avail-
able, the inclusion of musical contents contributed little to the
emotion classification model. On the contrary, if EEG dynam-
ics only available from a small set of electrodes (likely the case
in real-life BCI applications), the music modality tended to play a
complementary role to enhance the EEG-based classification per-
formance. To the best of our knowledge, no study has attempted
to elucidate the roles of the EEG and music modalities in the emo-
tion classification problem. The present study not only provided
principles for building an EEG-based multimodal approach, but
also revealed the fundamental insights into the interplay of the
brain activity and musical contents in emotion modeling.

INDIVIDUAL VARIABILITY AND COMMONALITY OF THE EEG
DYNAMICS FOR EMOTION CLASSIFICATION
Individual variability has been reported in emotion regulations
(Gross and John, 2003). Such variability may introduce the dis-
parity of informative EEG patterns across individuals or sub-
groups (Lin et al., 2010a, 2011). To estimate the emotional states,
it is plausible to expect a subject-specific classification model that
well learned from an individual would have an optimal classifica-
tion accuracy (Lin et al., 2010b). In the present study, the compar-
ison in valence and arousal classification using subject-dependent
and -independent features addressed this issue. The classification
performance using the LFI-guided subject-independent EEG

features (c.f. Figure 5) was notably worse than that using the
subject-dependent EEG set (c.f. Figure 2). The commonality of
the valence- and arousal-specific EEG features/electrodes from
multiple subjects was rather small. There were only seven and
four informative EEG features consistently appeared in over 15
of 26 subjects for valence and arousal classification, respectively
(c.f. Table 3). These results suggested that the individual vari-
ability substantially affected emotion classification, especially for
arousal scale, and thereby posed a great challenge to learning a
subject-independent emotion model using only the EEG signals.

However, it is worth noting that exploring a consensus set
of emotion-relevant EEG activity from multiple subjects is of
great important to normative emotion research. In this study, the
electrodes placed over the fronto-central region were relatively
discriminative for most of subjects (c.f. Figure 6), which was in
line with the previous studies (Altenmuller et al., 2002; Lin et al.,
2010a). Over the brain region, the lateralized power asymmetry
(in the left-right direction) well characterized the changes of emo-
tional states, which may be supported by the role of the frontal
cortical lateralization in emotion processing (Altenmuller et al.,
2002; Allen et al., 2004). Specifically, the frontal theta asymmetry
(FT7-FT8) and the fronto-central alpha asymmetry (FC3-FC4)
associated with the valence scale was in line with other stud-
ies (Davidson, 1992; Aftanas et al., 2001; Schmidt and Trainor,
2001), whereas the fronto-central theta asymmetry (F7-F8 and
FC3-FC4) related to the arousal scale was supported by Aftanas
et al. (2004). Furthermore, several informative spectral asymme-
tries in the delta band for both emotional valence and arousal
partially conformed to the previous works (Lin et al., 2010a,b).
Accordingly, the index of rhythmic lateralization presumably bet-
ter differentiated the brain activity into emotional states and
acted consistently for multiple subjects, compared to the cau-
dality (power asymmetry in the fronto-posterior direction) and
individual spectra.

THE ROLE OF EEG AND MUSIC MODALITIES IN EMOTION
CLASSIFICATION
The empirical results of this study evidently suggested that the
inclusion of the acoustic characteristics of musical contents did
not guarantee to complement EEG dynamics in the emotion clas-
sification problem. One key factor is that whether or not the
EEG signals can be extracted from the whole brain and across
entire frequency bands to encompass the full emotion-modulated
spatio-spectral dynamics.

The optimized subject-dependent results showed that the EEG
modality with and without the inclusion of the music modality
were comparable in the performance (c.f. Figure 3) and tended
to dominate the feature composition in the multimodality model
(c.f. Figure 4). This indicated that the musical content brought
very limited or redundant discriminative power to the classifi-
cation of emotional responses. The aforementioned individual
variability might explain such results. The music modality that
lacks of correlates of internal psychophysiological reactions might
more and less introduce conflicts with the brain signals, i.e.,
EEG modality, in reflecting the felt emotional responses. It is
true that the listeners might not actually perceive and experience
the same emotion as music tried to express (Gabrielsson, 2002).
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Accordingly, it is reasonable to conclude that if the informative
EEG features can be obtained from the whole brain and entire
frequency bands, the inclusion of musical contents barely con-
tributed to the classification model. The multimodal approach
might not be necessary.

However, in practical ABCI applications, an EEG cap with the
whole-brain coverage might be impractical and unavailable in
consumer-level headsets, e.g., the MindWave headset (NeuroSky,
Inc.) and the Emotiv EPOC headset (Emotiv systems, Inc.). In
this case, the EEG features measured by the electrodes sparsely
placed at a certain brain region(s). The suboptimal EEG features
returned very poor emotion classification performance (even
lower than the random guessing, c.f. Figure 7). The music modal-
ity under this circumstance provided complementary informa-
tion and replaced a set of EEG features with less discrimination
power with the musical characteristics of timber and loudness
(c.f. Figure 8). The musical dynamics tended to dominate the
multimodal feature composition in the arousal scale as compared
to valence. This phenomenon might be attributed to the fact that
the music modality met a great challenge in modeling emotional
valence (Macdorman et al., 2007; Yang et al., 2008b). This might
also explain why the improvement in the classification perfor-
mance was much noticeable in the arousal classification. Thus,
the music modality was assumed to boost the EEG-based emotion
classification performance if the EEG dynamics were substantially
limited in certain brain regions.

INFORMATIVE MUSICAL CHARACTERISTIC FOR EMOTION
CLASSIFICATION
By manipulating musical structures, conveying emotions in
music is intuitively plausible (Peretz et al., 1998; Schmithorst,
2005; Gomez and Danuser, 2007; Zatorre et al., 2007). Several
neurophysiological studies that devoted to the brain correlates
in musical perception and emotion perception reported that
some music-modulated brain activity were known to intervene
in emotion processing (Blood et al., 1999; Tsang et al., 2001;
Khalfa et al., 2005). It is reasonable to expect that there is
a considerable amount of EEG rhythmicity that is not only
engaged in emotion processing but also modulated by music per-
ception. Thus, the acoustic characteristics of musical contents
and EEG dynamics could somehow perform complementarily.
As shown in Table 4, previous neurophysiological and music
signal processing studies supported our findings. Several neu-
rophysiological studies found that mode and consonance were
relevant to the distinction of emotion valence (Tsang et al.,
2001; Sammler et al., 2007), whereas the harmonics processing
was very closely associated with emotional affect and inten-
sity (Schmithorst, 2005). From musical signal processing aspect,
Yang et al. (2008b) reported that the valence scale was bet-
ter characterized by the dissonance and pitch-related features,
whereas the arousal scale was better modeled by timber fea-
tures. This was in line to the findings of spectral dissonance
and mode for valence scale and a timber element (8th MFCC)
for arousal scale. Aljanaki et al. (2013) recently also docu-
mented that the most important feature in the distinction of
the arousal scale was the loudness, which supported our find-
ings in arousal scale. It is encouraging that the consistent findings

of the musical structures were conducted with different musical
datasets.

COMPARING THE EMOTION CLASSIFICATION RESULTS WITH
PREVIOUS WORKS
Recent works that adopted the EEG-based multimodal approach
are described here. Koelstra et al. (2012) proposed to use a
decision-level fusion scheme to construct a multimodal pipeline
(EEG, peripheral biosignals, music) for emotional valence,
arousal and liking classification while watching music videos. The
classification performance using the EEG signals were marginally
worse than that using musical features for valence (EEG: 58%,
biosignals: 63%, music: 62%, majority: 59%) and arousal (EEG:
62%, biosignals: 57%, music: 65%, majority: 64%) classifica-
tion. The fusion of EEG and musical features resulted in an
optimal classification accuracy around 63% marginally outper-
formed EEG modality only for arousal classification. In the same
year, Soleymani et al. (2012a) also adopted the decision-level
approach and explored an optimal fusion pair among EEG sig-
nals, peripheral biosignals and eye gaze for affective recognition
during video appreciation. The classification performance using
the EEG-Gaze fusion was better than single modality results for
valence (biosignals: 46%, EEG: 57%, gaze: 69%, fusion: 76%,
random: 34%) and arousal (biosignals: 46%, EEG: 52%, gaze:
64%, fusion: 68%, random: 36%) classification. The authors later
performed a following-up study (Soleymani et al., 2012b) to com-
pare the schemes for fusing EEG and gaze modalities at feature
and decision levels. The authors reported that the decision-
level fusion returned better classification results compared to
single modalities for valence (EEG: 50%, eye: 67%, decision:
69%, random: 33%) and arousal (EEG: 62%, eye: 71%, decision:
76%, random: 33%) classification, where the feature-level fusion
(valence: 58%, arousal: 66%) just outperformed the EEG modal-
ity. A year later, Koelstra and Patras (2013) similarly assessed
the feasibility of using the feature- and decision-based multi-
modality (EEG dynamics and facial expression characteristics).
The authors documented that the feature-level fusion in general
marginally improved the performance against single modalities
for valence (EEG: 72%, face: 65%, fusion: 73%, majority: 62%)
and arousal (EEG: 68%, face: 68%, fusion: 69%, majority: 62%)
classification, whereas the fusion-level approach using an optimal
weighting scheme led to more convincing improvement (valence:
74%, arousal: 72%). In the present study, the feature-level mul-
timodal approach (EEG and musical features) was adopted to
validate its feasibility of emotion classification in music listening.
The empirical result showed that the subject-dependent multi-
modal approach marginally outperformed the single modalities
for valence (EEG: 76%, music: 65%, fusion: 77%, majority: 63%)
and arousal (EEG: 74%, music: 66%, fusion: 76%, majority:
61%) classification, whereas the subject-independent multimodal
approach provided more convincing improvement for valence
(EEG: 61%, fusion: 67%) and arousal (EEG: 58%, fusion: 67%)
classifications.

It is worth mentioning that the comparison only based on
classification accuracy might not be fair as a variety of factors
might affect the classification results, such as but not limited
to experimental conditions, stimulus types, multimodal sources,
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and signal processing steps. Thus, for a fair comparison in
multimodality, this study summarized the differences between
this and another related work (Koelstra et al., 2012) that also
focused on the multimodality of EEG and musical dynamics.
The obtained subject-dependent results of this study were evi-
dently higher than theirs by at least 10%, whereas the subject-
independent results of this study were marginally higher by
around 3%, yet with fewer EEG features and electrodes. Despite
the disparity in the selected musical features, the music modal-
ity results for emotional valence and arousal were comparable.
Furthermore, compared to the studies using solely EEG modal-
ity (Koelstra et al., 2012; Soleymani et al., 2012a,b; Koelstra
and Patras, 2013), the proposed subject-dependent EEG fea-
tures (MESH) should be comparable to or even better than
previous reports. Instead, the classification performance using
the proposed subject-independent EEG set might only compare
favorably to the study (Koelstra et al., 2012).

OUTPERFORMED EEG PATTERNS FOR EMOTION CLASSIFICATION
The MESH features in conjunction with the F-score feature
selection produced a compact set of informative features and
consequently optimized the classification performance, compared
to others (DLAT, DCAU, and PSD) (c.f. Figure 2). The perfor-
mance improvement might be attributed to the fact that emotion
processing might accompany the EEG dynamics that varied dis-
tinctly within and between brain regions (Schmidt and Trainor,
2001; Aftanas et al., 2004; Sarlo et al., 2005; Sammler et al.,
2007; Lin et al., 2010b). The MESH features that composed of
two-directional power asymmetry (laterality and caudality) and
individual spectra over the scalp allow seeking an optimal set
for constructing a classification model for each individual. As
referring to its feature composition (c.f. Figure 4), both DLAT
and DCAU apparently dominated the EEG composition against
the PSD. Specifically, the DLAT consistently appeared in mul-
tiple subjects (c.f. Table 3). These results suggested that the
features depicting the directional spectral differences between
brain regions might be of importance in the EEG-based emotion
modeling.

THE CHOICE OF EEG ELECTRODE REFERENCE
The EEG signals analyzed in this study were recorded with the
reference to the linked mastoids. The recorded potentials over
the mastoids were conventionally believed to be neutral to the
measured neural activities of interest, which were also adopted
in previous music studies (Koelsch et al., 2007; Sammler et al.,
2007). However, few reports demonstrated that the linked mas-
toids reference might introduce non-neutrality to the recorded
EEG signals and distort the EEG spectra (Yao, 2001; Marzetti
et al., 2007; Qin et al., 2010). Comparing the effects of differ-
ent reference strategies on emotion classification is an important
issue, but it is beyond the scope of this study. Interested readers
can refer to the studies on reference techniques by Yao (2001),
Marzetti et al. (2007), Qin et al. (2010).

FUTURE DIRECTION
Future efforts can be devoted to augment the multimodal classi-
fication performance as follows. First, data-driven approach, e.g.,

principal component analysis (Lin et al., 2009) and independent
component analysis (Lin et al., 2010a), might be feasible to fur-
ther elaborate the EEG spatio-spectral dynamics associated with
implicit emotional responses. Second, advanced music signal pro-
cessing techniques can be incorporated to extract other musical
characteristics, e.g., rhythm. Lastly, the decision-level multimodal
fusion has been reported to obtain convincing classification per-
formance improvements over the feature-level fusion (Soleymani
et al., 2012b; Koelstra and Patras, 2013). Following the explored
EEG and musical features of this study, the fusion at the decision
level can be further explored and compared.
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