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The basal ganglia (BG) are thought to be involved in the integration of multiple sources
of information, and their dysfunction can lead to disorders such as Parkinson’s disease
(PD). PD patients show motor and cognitive dysfunction with specific impairments in
the internal generation of motor actions and executive deficits, respectively. The role of
the BG, then, would be to integrate information from several sources in order to make
a decision on a resulting action adequate for the required task. Reanalyzing the data
set from our previous study (Martinu et al., 2012), we investigated this hypothesis by
applying a graph theory method to a series of fMRI data during the performance of
self-initiated (SI) finger movement tasks obtained in healthy volunteers (HV) and early
stage PD patients. Dorsally, connectivity strength between the medial prefrontal areas
(mPFC) and cortical regions including the primary motor area (M1), the extrastriate visual
cortex, and the associative cortex, was reduced in the PD patients. The connectivity
strengths were positively correlated to activity in the striatum in both groups. Ventrally,
all connectivity between the striatum, the thalamus, and the extrastriate visual cortex
decreased in strength in the PD, as did the connectivity between the striatum and
the ventrolateral PFC (VLPFC). Individual response time (RT) was negatively correlated
to connectivity strength between the dorsolateral PFC (DLPFC) and the striatum and
positively correlated to connectivity between the VLPFC and the striatum in the HV. These
results indicate that the BG, with the mPFC and thalamus, are involved in integrating
multiple sources of information from areas such as DLPFC, and VLPFC, connecting to
M1, thereby determining a network that leads to the adequate decision and performance
of the resulting action.
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INTRODUCTION
The basal ganglia (BG), mainly consisting of the striatum, the
globus pallidus, the substantia nigra, and the subhalamic nucleus,
are involved in a variety of functions. The striatum [caudate,
putamen, and ventral striatum (VS)] is the main input of the
BG, and the thalamus connects the BG to the cortex through
cortico-BG-thalamo-cortical loops and brainstem-thalamo-BG-
brainstem loops (Alexander et al., 1986; Albin et al., 1989;
McHaffie et al., 2005). The striatum receives extensive glutamater-
gic afferents from a wide variety of cortical regions (Parent and
Hazrati, 1995). The dopaminergic projections from the midbrain
to the striatum are a crucial modulator of striatal processing of
glutamatergic cortical and thalamic signals on the striatum prin-
cipal neurons (Surmeier et al., 2009). Patients with Parkinson’s

Abbreviations: BG, basal ganglia; PD, Parkinson’s disease; HV, healthy volun-
teers; SI, self-initiated; ET, externally triggered; CTL, control; pre-SMA, pre-
supplemental motor area; SMA, supplemental motor area; M1, primary motor
area; mPFC, medial prefrontal cortex; DLPFC, dorsolateral prefrontal cortex;
VLPFC, ventrolateral prefrontal cortex; IPL, intra parietal lobe; PMd, dorsal pre-
motor cortex; LG, lingual gyrus; FG, fusiform gyrus; RT, response time; ROI,
regions of interest.

disease (PD), characterized by motor and cognitive dysfunctions,
show significant reduction of the dopaminergic projections to
the striatum (Samii et al., 2004). Patients generally display diffi-
culties in performing internally generated movements (Georgiou
et al., 1993), and cognitive deficits often consist of decreases in
executive functions (Litvan et al., 1991). Internal generation of
movement and executive functions both require decision-making
processes in order to select an action among several alternative
possibilities for the task at hand. The BG, then, mostly modu-
lated by dopaminergic projections, seem to have an important
role in the mediation of cognitive and motor modules to generate
an appropriate decision on a resulting action for the task being
performed.

In the context of brain networks, it is not clear how
BG neuro-modulation affects decision making, and how it is
impaired by dopaminergic dysfunction. Previous studies indi-
cate that executive deficits in PD are associated with dysfunc-
tion of the caudate nucleus in PD patients without dementia
(Lewis et al., 2003; Monchi et al., 2004, 2007). This suggests
that dopamine is involved in the transfer of information first
processed in cognitive brain networks, toward motor-related
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networks, sequentially. Furthermore, PD patients with mild cog-
nitive impairment (MCI), compared with non-MCI patients,
showed dysfunction of the caudate nucleus, along with a stronger
reduction of activity in the motor cortex, but without any dif-
ferences in motor-ability (Nagano-Saito et al., 2013). As of now,
however, it is not clear how the BG are organized in order to
effectively combine cognitive and motor modules to conduct a
series of tasks. While performing the Wisconsin Card Sorting
Task (WCST), we observed increases in functional connectivity
between the frontal regions [including the dorsolateral prefrontal
cortex (DLPFC), the ventrolateral prefrontal cortex (VLPFC), and
the pre-supplementary motor area (pre-SMA)], and the puta-
men in healthy volunteers (HV). This effect was diminished
with transient dopamine depletion (Nagano-Saito et al., 2008).
Moreover, the strength of the connectivity between the DLPFC
and the striatum could estimate individual response times (RT)
(Nagano-Saito et al., 2008). Another study with self-initiated (SI)
movements showed increased functional connectivity between
cortical areas (pre-SMA and the primary motor area) and the
putamen in HV; this was diminished in PD patients (Wu et al.,
2011). Since the DLPFC and the pre-SMA are components of
the cognitive network (Alexander et al., 1986; Albin et al., 1989;
Picard and Strick, 2001), the resulting fMRI functional connectiv-
ity may reflect the combination of both the cognitive and motor
modules.

SI finger movements are simple, but require a certain level
of decision-making, such as selecting one action among sev-
eral alternative possibilities. SI movements have been shown
to recruit a larger number of brain activations, including the
DLPFC, VLPFC, medial prefrontal cortex (mPFC), striatum,
and thalamus, compared with single-button presses (Francois-
Brosseau et al., 2009; Martinu et al., 2012). These activations were
decreased in PD patients (Martinu et al., 2012). PD patients are
impaired in the internal generation of movement (Georgiou et al.,
1993; Kiesel et al., 2010), plausibly linking the impairment of
movement prediction for task preparation (Werheid et al., 2007).
The motor dysfunction in PD patients may be related with the
impairment in decision-making processes, like predicting pos-
sible actions. Based on animal single cell recordings, decision
making properties seem to be expressed by the same cells as
sensorimotor processes, joining what should be undertaken by
cognitive processes with movement execution, rather than show-
ing localization within particular higher cognitive centers in the
brain (Cisek and Kalaska, 2010). In humans, even simple per-
ceptual decisions emerge from recurrent and flexible interactions
between widely distributed regions of the cerebral cortex, show-
ing an oscillatory interaction between the regions (Siegel et al.,
2011). Considering these finding, the oscillation of interaction
(e.g., between the cognitive and motor modules) during decision-
making processes required for the SI task could be operated by the
BG system.

The application of graph theory methods to brain imag-
ing data is a simple and powerful mathematical framework for
the characterization of topological features of brain networks
(Bullmore and Sporns, 2009; He and Evans, 2010). The methods
enable us to investigate the structural features in the brain, includ-
ing both the local-, and global-level connectivity. In graph theory,

a network consists of nodes and edges (connections between any
two nodes). The network wiring cost is defined as the ratio of
actual connections to the maximum number of possible connec-
tions, and the topological features of networks, such as global,
local, and cost efficiencies, are known to change as the function
of wiring costs change (Latora and Marchiori, 2001; Bullmore
and Sporns, 2009; He and Evans, 2010). The global efficiency is
an index of inverse path length, defined by an average minimum
number of connections that link any two nodes of the network,
and indicates the efficiency of information transfer among dif-
ferent brain regions (Achard et al., 2006; He and Evans, 2010).
The local efficiency is defined as an average of the clustering coef-
ficients over all nodes in the network, and a measure of local
clustering and fault tolerance (Achard et al., 2006; He and Evans,
2010). Functional MRI and MEG resting-state and task-based
studies with this method have shown that the human brain has
small-world network properties with a certain range of network
wiring cost (Achard et al., 2006; Bassett and Bullmore, 2006;
Achard and Bullmore, 2007; Bassett et al., 2011; Kitzbichler et al.,
2011; Carbonell et al., 2014). This method also unveiled that
PD patients decreased local connectivity function in the mPFC,
prefrontal cortex and striatum, and globally measured network
efficiency indicated lowered information flow in the brain (Wu
et al., 2009; Cao et al., 2011; Skidmore et al., 2011; Baradaran
et al., 2013; Gottlich et al., 2013).

A small-world network consists of nodes that are not nec-
essarily neighbors, but can be reached by a small number of
steps, displaying an enhanced signal-propagation speed (Watts
and Strogatz, 1998). The networks with small-world network
properties show greater local efficiency than a random network,
and less global efficiency than a random network but still greater
than a regular lattice network (Achard et al., 2006; Achard and
Bullmore, 2007; Skidmore et al., 2011; Carbonell et al., 2014). The
small-world network property is considered as the outcome of
a selection by competitive criteria: minimization of wiring cost
vs. maximization of efficiency of information transfer (Bassett
and Bullmore, 2006; Kitzbichler et al., 2011). Cost efficiency is
defined as “global efficiency – cost,” and it is assumed that the
brain operates optimally with the maximum cost efficiency, max-
imizing information transfer (Sporns et al., 2000; Achard et al.,
2006; Achard and Bullmore, 2007; Bassett et al., 2009).

Intrinsic patterns of functional connectivity of the human
brain have been shown in the visual, auditory, motor, task-
control, and default mode networks (Biswal et al., 1995; Greicius
et al., 2003; Fox et al., 2005; Power et al., 2011), corresponding
to relatively high local efficiency (Kitzbichler et al., 2011). The
small-world network property hypothesis suggests rapid cross-
network synchronization, which plays a crucial role in informa-
tion processing (Lago-Fernandez et al., 2000; Masuda and Aihara,
2004; Bassett et al., 2011). Patterns of the brain network are
rapidly modulated by task complexity, showing cross-network
synchronization during more complex tasks, possibly supported
by relatively high global efficiency of the brain (Kitzbichler et al.,
2011). Thus, considering small-world network properties while
applying graph theory methods during a task would enable us
to study a condition of the global brain connectivity, crucial for
the performance of a given task. The graph theory approach also
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helps in investigating the local connectivity one by one, such as
between nodes belonging to the cognitive and motor networks,
and between nodes belonging to the cortical and subcortical areas.

In the present study, we wanted to explore the hypothesis that
the BG play an important role in the integration of cognitive and
motor networks in order to proactively perform tasks. We used
a previous fMRI data set from HV and PD patients performing
SI finger movements (Martinu et al., 2012). More specifically, we
first investigated economical connectivity considering the maxi-
mum cost efficiency with a feature of small-world network during
the SI finger movement task in the HV by applying the graph
theory methods with a cost-threshold approach. Here, the indi-
vidual networks were structured with fixed costs, rather than
with fixed correlation threshold (the minimal correlation ratio).
The cost-threshold approach was applied in order to consider the
maximum cost efficiency, and because this approach is more rel-
evant in the analysis of connectivity “patterns” between different
populations (HV vs. PD). We then compared this pattern with
PD patients’ connectivity. In addition, we investigated whether
the activity of the striatum in relation to cortico-cortical and
cortico-striatal connectivity could estimate individual behavior.

MATERIALS AND METHODS
PARTICIPANTS
Fourteen right-handed HV (mean age 61.74 ± 6.62 years, six
males) and 12 right-handed patients at the early and moderate
stages of idiopathic non-demented PD (mean age 62.89 ± 6.70
years, six males) were recruited (for detailed patient information,
see Martinu et al., 2012). All patients were diagnosed by a move-
ment disorders neurologist and met the United Kingdom Brain
Bank criteria for idiopathic PD (Hughes et al., 1992). All patients
were in Hoehn-Yahr stage I or II (Hoehn and Yahr, 1967). At the
time of fMRI scanning, patients were asked to withdraw from all
antiparkinsonian medications at least 12 h prior to the appoint-
ment. All subjects gave written informed consent to the protocol
which was reviewed and approved by the research ethics commit-
tee of the Regroupement Neuroimagerie Quebec (CMER-RNQ)
at the Institut Universitaire de Gériatrie de Montréal, following
the guidelines of the Tri-Council Policy Statement of Canada, the
civil code of Quebec, the Declaration of Helsinki, and the code
of Nuremberg. All the participants who declined to participate
or did not participate were not disadvantaged in any other way
by not participating in the study. None of the participants had a
compromised ability to consent on their own.

BEHAVIORAL TASKS
Using both their right and left hands separately, participants per-
formed a SI random movement condition, an externally-triggered
(ET) follow condition, and a single-button repeat condition as
a control (CTL). Five blue squares were displayed, each square
corresponding to a button on the response box; all fingers were
used except for the little finger, as it was considered too diffi-
cult for patients. For the SI condition, all four squares would
turn green, and the subject had to form his/her own sequence of
button-presses. As a feedback, the buttons pressed made the green
squares turn yellow immediately, after which the next button was
ready to be selected. Pressing the same button twice in a row

was considered to be an error, indicated by the equivalent square
turning red. We also asked the participants to refrain from using
common sequences, such as 1-2-3-4 and 4-3-2-1, or repeating
sequences, such as 4-2-3-1-4-2-3-1. . . Participants’ performance
was monitored to insure they kept their movement sequences as
random as possible. During the ET condition, the subject had
to follow the sequence as the blue squares alternately turned
green. During the control condition, one square switched from
blue to green, indicating that the corresponding button should
be pressed. All the conditions with left and right hands were per-
formed in every run of the fMRI scans, and the task included a
total of 20 button presses per condition. For detailed task infor-
mation, see (Francois-Brosseau et al., 2009; Martinu et al., 2012).
The data during SI were used for this study.

BEHAVIOR MEASUREMENT
Individual averages of the RT during each task (SI, ET, and CTL)
were calculated. The RT was defined as the time between the
beginning of a button press to the beginning of the following
button press. Data for the left and right hands were combined
for the purpose of the present study. The averaged RT during SI
movements was used as an index of performance level of subjects’
behavior.

fMRI SCANNING
Subjects were scanned at the Unité de Neuroimagerie
Fonctionnelle (UNF) of the Center de Recherche de l’Institut
Universitaire de Gériatrie de Montréal (CRIUGM) using a 3T
TIM Siemens Magnetom MRI scanner. Each scanning session
began with a high- resolution, T1-weighted, three-dimensional
volume acquisition for anatomical localization (1 mm3 voxel
size), followed by four sets of echoplanar T2∗-weighted image
acquisitions with blood oxygenation level-dependent (BOLD)
contrast (echo time, 30 ms; flip angle, 90◦). Each run consisted of
146 frames of 43 slices (matrix size, 128 × 128 pixels; voxel size,
3.34 × 3.34 × 3 mm3, TR: 3.5 s). The number of total volume for
each subject was 584.

fMRI PREPROCESSING
We applied the NIAK preprocessing pipeline on fMRI data sets
(Bellec et al., 2012). First, slice timing correction was performed
with spline interpolation. After motion correction, slow time drift
was removed from the BOLD time series with a high-pass filter of
0.015 Hz. Images were then transformed into ICBM 152 space,
and spatially blurred with a 4 mm full width half-maximum
isotropic Gaussian kernel.

REGIONS OF INTEREST (ROI) AND TIME SERIES EXTRACTION
We generated task-related networks on specific tasks by selecting
62 regions of interest (ROI) as nodes. Fifty-eight ROIs were taken
from the activation maps acquired by comparison between events
(Martinu et al., 2012) in the HV with a threshold of t = 3.5. They
included 44 ROIs generated from the SI minus CTL contrast for
left and right-hand movements combined, and 14 ROIs generated
from the comparison between the right and left hands in the CTL
condition. These ROIs included three of the putamen and three
of the thalamus. We also added four ROIs, which were located
in the caudate nucleus and the VS, bilaterally. All the ROIs are
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shown in the Table 1, with additional information for activation
pattern. In graph theory, these ROIs are considered as nodes of the
brain network, and the connections between every two ROIs are
considered as edges. The ROIs consisted of small cubes (total of
27 voxels) centered on each peak in ICBM 152 space. Time series
for the entire task duration (34 min, 584 volumes) were extracted
for each ROI for each subject and session.

NORMALIZING AND DIVIDING TIME SERIES
Each time series of single runs from the 62 ROIs were globally
normalized using the average and standard deviation of all the
extracted BOLD intensities (146 volumes × 62 ROIs). The nor-
malized time series were then divided into three, according to the
task period (SI, ET, and CTL). Because of the hemodynamic delay
inherent in BOLD signal after stimuli (Buxton and Frank, 1997),
the first 10 s of each task period were removed. Finally, all the
processed time series of the 4 runs during the SI were combined,
individually, on which the network analysis was conducted.

AVERAGED BOLD SIGNALS THROUGH TIME SERIES, AND ACTIVATION
OF SI-CTL IN SUBCORTICAL REGIONS
The normalized time series of 10 subcortical ROIs (caudate, puta-
men, VS, and the thalamus) during the SI were averaged for each
subject. This measurement was considered as an index of regional
activity during the tasks. For the PD group, from the activation
maps acquired by comparison of SI – CTL (Martinu et al., 2012),
individual t-values of brain activity was calculated. In the previ-
ous study, activation in the striatum and thalamus was reduced
in the PD patients (Martinu et al., 2012). Therefore, the individ-
ual t-value in the subcortical ROIs was considered as an index
of capacity/incapacity of the dopaminergic function in the PD
patients.

NETWORK ANALYSIS
Small-world property
Using each individual data set of the normalized BOLD sig-
nal time course, Pearson’s correlation coefficients was calculated
between each pair the 62 ROIs, resulting in a symmetric 62 × 62
correlation matrix. Applying the cost-threshold approach on the
62 × 62 correlation matrix, we first checked the cost, which indi-
cated small-world network property, showing global efficiency is
less than random network but greater than a regular lattice net-
work, and local efficiency is more than random network (Achard
et al., 2006; Achard and Bullmore, 2007; Skidmore et al., 2011;
Carbonell et al., 2014), in the HV and PD patients, respectively.
Cost efficiency (global efficiency – cost) was calculated to see the
economical cost, while maximizing the cost efficiency during the
task, the HV and PD patients, respectively.

Network structure—pattern of brain network in HV and PD
The change of the connectivity based on cost was investi-
gated by visual inspection. Based on the results of small-world
property, cost efficiency, and visual inspection, we selected the
cost of 0.28 to determine the individual networks for the SI
task, in the HV and PD, respectively. The edges included in
more than half for each group were considered for the further
analysis.

Table 1 | Regions of interest in the brain (in ICBM 152 space).

ROI x y z

SI > ET, SI > CON

SMA1 −4 −2 68

PreSMA1 6 16 46

VLPFC1 −50 4 4

VLPFC2 44 14 2

VLPFC3 56 14 0

DLPFC1 34 40 36

APFC 40 46 2

INS1 −32 18 4

INS2 30 20 6

Thal1 −14 −18 6

Thal2 14 −16 8

LOA1 50 −54 −6

SI > ET, SI > CON, ET > CON

PMd1 −20 −2 62

PMd2 24 −4 58

IPL1 36 −44 50

Put1 −24 2 4

Put2 24 4 8

SI > CON, ET > CON

PreSMA2 −6 6 48

PreSMA3 6 4 52

PMd3 −32 −12 56

PMd4 38 −10 62

IPL2 −48 −42 54

IPL3 −32 −50 52

IPL4 46 −34 40

DLPFC2 −56 4 36

DLPFC3 52 6 36

IPL5 −28 −60 58

IPL6 18 −66 58

IPL7 −16 −72 56

SOG1 30 −68 32

SOG2 −26 −74 24

SOG3 32 −74 26

SOG4 −28 −82 22

MOG1 −32 −86 12

MOG2 32 −80 6

MOG3 40 −74 4

LG1 −16 −86 4

LG2 18 −90 2

LG3 −10 −84 −10

LG4 14 −84 −12

FG1 −24 −76 −14

FG2 22 −76 −14

LOA2 −48 −68 −8

Cereb1 6 −70 −20

MTR LEFT VS. RIGHT

M1-1 −40 −20 52

Cereb2 −26 −62 −24

Cereb3 28 −58 −24

Cereb4 −28 −66 −52

(Continued)
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Table 1 | Continued

ROI x y z

Cereb5 28 −66 −52

M1-2 40 −22 54

SMA2 −6 −20 50

SMA3 8 −24 50

InsPost1 −36 −32 22

InsPost2 42 −22 20

Cereb6 −18 −58 −20

Cereb7 20 −52 −20

Thal3 16 −20 2

PutPost 32 −12 2

ETC

Caudate1 −14 12 12

Caudate2 14 12 12

VS1 −10 14 −6

VS2 10 14 −6

Abbreviations: SMA, supplemental motor area; PreSMA, pre-supplemental

motor area; VLPFC, ventrolateral prefrontal cortex; APFC, anterior prefrontal

cortex; INS, insula; Thal, thalamus; LOA, lateral occipital area; PMd, dorsal pre-

motor cortex; IPL, intreaparietal lobe; DLPFC, dorsolateral prefrontal cortex;

SOG, superior occipital gyrus; MOG, middle occipital gyrus; LG, lingual gyrus;

FG, fusiform gyrus; M1, primary motor area; Cereb, cerebellum; Put, puta-

men; PutPost, posterior putamen; InsPost, posterior part of Insula; VS, ventral

striatum.

Group comparison between HV and PD
To investigate group differences in overall connectivity, strength
of the connectivity of all linkages (edges) during the SI was
compared between groups. For this, Fischer’s Z transformation
was applied to each individual correlation matrix. Then, inter-
group comparisons with t-test between the HV and PD groups
were performed. Significance was set at p < 0.05 (uncorrected).
Combined with the results of the correlation analysis mentioned
below, we explored the edges affected by the disease.

Correlation analysis between correlation ratio of edges and
activation of subcortical regions in HV and PD
We performed a correlation analysis between the correlation ratio
after Fisher’s transformation of the edges above, and the activity
in the subcortical regions, with SI condition. This analysis was
done, in the HV and PD, respectively. The average BOLD signal
through time series were used for the index of subcortical activ-
ity. In PD, t-activation calculated by SI – CTL conditions was also
used for the analysis, as well as the index of incapacity of the
dopaminergic function in PD patients. We reported the results
with the significant threshold set at p < 0.05 (uncorrected).

Relationship between correlation ratio with subcortical
connections and task performance in HV and PD
Based on our previous study (Nagano-Saito et al., 2008), we
assumed that stronger connectivity between the DLPFC and
the striatum would correspond with the faster RT. We were
also interested in whether any other correlation between other
nodes and the subcortical regions, and weakened in PD, could

explain the RT. We therefore calculated individual correlation
ratio between these 32 regions and the striatum and the tha-
lamus, then performed a correlation between the correlation
ratio after Fisher’s transformation and the RT(SI) in the HV
and PD patients, respectively. The significant threshold was set
at p < 0.05 (uncorrected, for DLPFC, and FDR-corrected for
others).

Difference of path length from the primary motor area between
groups
The path length is the number of edges that the path uses. We
assumed that the path length from primary motor area (M1)
to the striatum, mPFC, and associative cortex is longer in PD
patients compared with HV. To confirm this, we calculated the
shortest path length from the left and right primary motor area
to the other nodes, individually, and compared HV and PD.
Wilcoxon rank sum test was used. We reported the results with
the significant threshold set at p < 0.05 (uncorrected).

RESULTS
BEHAVIOR
RT for the SI, ET, and CTL were 790.6 ± 208.3, 1045.5 ±
172.8, 826.6 ± 174.4 ms respectively in HV, and 888.67 ± 161.4,
1152.6 ± 208.7, 733.2 ± 112.3 ms respectively in PD patients.
A mixed-design repeated measures ANOVA (task × group)
showed a significant main effect of the task (F = 44.956; p <

0.001), but not group (F = 0.108; p = 0.745). There was also a
significant interaction of task × group (F = 5.178; p = 0.016),
showing that the RT for SI was shorter than for CTL in HV, and
RT for CTL was shorter than SI in PD patients.

NETWORK ANALYSIS
Small-world network property
All the networks in the HV and PD showed small-world net-
work property in the range of the cost of [0.045–0.460], and
of [0.080–0.485], respectively, with less global efficiency and
more local efficiency, compared to random networks, and more
global efficiency compared to lattice networks (Figure 1). After
smoothing the group averaged data using matlab toolbox (pre-
serving the shape option), we obtained the peaks of the cost
efficiency at the cost of 0.271 and 0.284, for the HV and PD
groups, respectively, and we selected the cost of 0.28 for further
analyses.

Network structure—pattern of brain network in HV and PD
Cost-dependent patterns of brain network during SI are shown in
the Figure 2. In both groups, connectivity in the dorsal and ven-
tral regions of the brain was observed above the cost of 0.20. With
the individual cost of 0.28, the mean correlation threshold (the
minimal correlation ratio) was 0.261 ± 0.0064 in HV and 0.245
± 0.0582 in PD group, and the total connectivity with our criteria
was 12.6% in HV, and 10.9% in the PD group. The connectiv-
ity with striatum and the thalamus (excluding inter-connections)
were confined to the extrastriate visual cortex and the VLPFC and
insula. All the connectivities in the HV and PD, respectively, with
our criteria are shown in the Complementary Data (C-Table 1).
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FIGURE 1 | Group average of global efficiency, local efficiency, and cost efficiency in HV and PD. The X axis indicates the wiring cost.

FIGURE 2 | Pattern of networks in HV and PD. Lines indicate the edges
for which more than half of the subjects in the group showed connectivity
with costs. The numbers in the figure indicate the wired cost (%). Yellow
lines indicate the edges observed in both the HV and PD. Blue lines
indicate the edges observed in the HV. Red lines indicate the edges
observed in the PD.

Group comparison between HV and PD
All results are shown in the Tables 2, 3. The PD patients show
weakened connectivity between the mPFC and other cortical
areas, including the primary motor area (M1), the extrastriate
visual cortex and the associative cortex. Simultaneously, how-
ever, PD patients display a few regions of increased connectiv-
ity with the mPFC. In the PD patients, the striatum and the
thalamus have reduced connectivity with the extrastriate visual
cortex, and the connectivity between the VLPFC and the stria-
tum, between the M1 and the posterior insula, as well as with
the cerebellum (Cereb) for the left and right sides, respectively,
was weakened. Inter connectivity between the left and right
DLPFC and within the subcortical regions were also reduced in
the PD patients. However, the connectivity between the bilat-
eral VS and intra extrastriate visual cortex was stronger in
the PD.

Table 2 | Differences in edge strength connectivity between HV and

PD during the finger movement tasks (HV > PD).

Edges (HV > PD) (OFF) p-value Subcortical activity

HV PD

PreSMA1 DLPFC1 0.0463 * *

PreSMA1 IPL2 0.0232 * *

PreSMA1 SMA3 0.0003 * *

PreSMA1 InsPost1 0.0023 * *

PreSMA1 SOG4 0.0342 *

PreSMA1 SMA2 0.0434 *

PreSMA1 SOG1 0.0263 * *

PreSMA2 M1-1 0.0094 *

PreSMA2 SMA2 0.0392 * *

PreSMA3 PMd2 0.0246 *

SMA1 M1-1 0.022 *

SMA1 IPL5 0.0444 *

SMA2 DLPFC2 0.0415 *

DLPFC1 DLPFC2 0.0249 *

DLPFC3 SOG1 0.002 * *

DLPFC3 SOG3 0.0331 *

M1-1 InsPost1 0.0319

M1-2 Cereb6 0.0489

VLPFC3 Put1 0.0362 *

Put2 Thal1 0.0236 *

Put2 Thal2 0.0131 * *

PutPost VS1 0.0136 *

VS1 LG3 0.0022 *

Thal1 LG2 0.0079 * *

Thal1 FG1 0.0147

Thal3 MOG3 0.0226 *

Thal3 FG1 0.0054

Edges whose connectivity strength was positively correlated to subcortical

(striatum and/or thalamus) activation are marked by an asterisk.

Correlation analysis between correlation ratio of edges and
activation of subcortical regions in HV and PD
Fourteen out of the 27 edges for which connectivity strength was
weakened in PD patients were correlated with the subcortical
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Table 3 | Difference in edge strength connectivity between HV and PD

during the finger movement tasks (PD > HV).

Edges (HV < PD) p-value

PreSMA3 LG4 0.0489

SMA2 Cereb7 0.0088

SMA3 IPL1 0.0388

VS1 VS2 0.0077

MOG1 LG1 0.0229

MOG1 LG2 0.0448

activation during the SI task in HV (Table 4, Figure 3). All the
edges that are significantly correlated with subcortical regions are
marked with an asterisk in the Table 2. Eighteen of those connec-
tion strengths were correlated with the t-value of the SI – CTL
contrast in the PD patients (Tables 2, 4, Figure 3). Although nine
edges overlapped between HV and PD, the correlation patterns
were different between the groups. In HV, the correlation between
the correlation ratio of the edges and the striatal activation was
positive, whereas the correlation between the correlation ratio of
the edges and thalamic activation was negative (Table 4). In con-
trast, in PD, the correlation was positive for the striatum as well as
the thalamus. Of note, none of the connectivity was significantly
correlated with RT.

Relationship between correlation ratio of the cortico-subcortical
connection and task performance in HV and PD
The connectivity strength between the right DLPFC (DLPFC1
and DLPFC3, in the Table 1) and the striatum was nega-
tively correlated with RT (r = −0.557; p = 0.038, r = −0.596;
p = 0.245; r = −0.553, p = 0.040, respectively) (Figure 4). The
connectivity strength between right VLPFC (VLPFC3, in
the Table 1) and the striatum was strongly positively corre-
lated with RT (r = 0.857; uncorrected p = 0.00006, corrected
p = 0.0105).

Difference of path length from the primary motor area and other
nodes in HV and PD
The path length from the left M1 to the pre-SMA and SMA, left
and right DLPFC, and the right posterior putamen, was shorter
in the HV compared with PD. The path length from the right
M1 to the right insula, right thalamus, right dorsal premotor
cortex (PMd), and the left lingual gyrus (LG) was longer in the
HV. Results are shown in the Table 5. The mean lengths form the
M1-1 to these brain regions as a function of cost are shown in the
Complementary data (C-Figure 1).

DISCUSSION
The BG, modulated by dopaminergic projections (Schultz, 1998;
Seamans and Yang, 2004; Joshua et al., 2009; Howe et al., 2013),
are thought to play a crucial role in the integration of information
from multiple sources in order to make a decision and perform
an optimized action (Bar-Gad et al., 2003; Bogacz and Gurney,
2007). The dopaminergic neurons might be involved in the for-
mation of an ideal network combining the cognitive and motor
networks in the brain for conducting a series of tasks. We used

Table 4 | Correlation between edge strength and subcortical activity.

Edges (HV > PD) Subcortical regions r (normalized) p-value

HV (SUBCORITICAL ACTIVATION)

DLPFC1 DLPFC2 PutPost 0.619 0.018

DLPFC3 SOG1 VS2 0.568 0.034

PreSMA1 DLPFC1 VS1 0.563 0.036

PreSMA1 DLPFC1 VS2 0.587 0.027

PreSMA1 DLPFC1 Thal1 −0.694 0.006

PreSMA1 InsPost1 Put2 0.548 0.043

PreSMA1 IPL2 Caudate1 0.645 0.013

PreSMA1 IPL2 Caudate2 0.639 0.014

PreSMA1 IPL2 Thal1 −0.655 0.011

PreSMA1 IPL2 Thal2 −0.601 0.023

PreSMA1 SMA2 Caudate2 0.655 0.011

PreSMA1 SMA2 VS2 0.639 0.014

PreSMA1 SMA2 Thal1 −0.750 0.002

PreSMA1 SMA2 Thal2 −0.721 0.004

PreSMA1 SMA3 VS2 0.753 0.002

PreSMA1 SMA3 Thal2 −0.628 0.016

PreSMA1 SOG1 Thal1 −0.628 0.016

PreSMA2 SMA2 Thal1 −0.576 0.031

PreSMA2 SMA2 Thal2 −0.637 0.014

Thal1 Put2 PutPost 0.690 0.006

Thal1 Put2 Thal1 −0.570 0.033

Thal1 LG2 PutPost 0.569 0.034

Thal2 Put2 PutPost 0.725 0.003

LG3 VS1 PutPost 0.581 0.029

MOG3 Thal3 PutPost 0.544 0.044

PD (SUBCORITICAL ACTIVATION)

PreSMA2 M1-1 Thal2 0.581 0.048

DLPFC3 SOG3 Put1 0.624 0.030

PD (SI—CTL) (t-VALUE)

DLPFC1 PreSMA1 Put2 0.698 0.012

DLPFC1 PreSMA1 Thal1 0.583 0.047

DLPFC1 SMA2 VS1 0.632 0.027

DLPFC2 SMA2 Thal1 0.677 0.015

DLPFC2 SMA2 Thal2 0.656 0.021

DLPFC3 SOG1 Caudate2 0.578 0.049

PreSMA1 InsPost1 VS2 0.658 0.020

PreSMA1 IPL2 Put2 0.675 0.016

PreSMA1 IPL2 Thal1 0.664 0.019

PreSMA1 SMA3 Caudate1 0.648 0.023

PreSMA1 SOG1 VS1 0.645 0.024

PreSMA1 SOG4 Put2 0.616 0.033

PreSMA1 SOG4 PutPost 0.584 0.046

PreSMA1 SOG4 Thal1 0.761 0.004

PreSMA1 SOG4 Thal2 0.686 0.014

PreSMA2 M1-1 PutPost 0.676 0.016

PreSMA2 SMA2 PutPost 0.674 0.016

PreSMA2 SMA2 Caudate1 0.717 0.009

PreSMA2 SMA2 Thal1 0.672 0.017

PreSMA2 SMA2 Thal2 0.741 0.006

PreSMA3 PMd2 VS1 0.691 0.013

PreSMA3 PMd2 VS2 0.607 0.036

(Continued)
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Table 4 | Continued

Edges (HV > PD) Subcortical regions r (normalized) p-value

SMA1 IPL5 VS1 0.696 0.012

SMA1 M1-1 Thal2 0.750 0.005

Put1 VLPFC3 Caudate1 0.629 0.029

Put1 VLPFC3 VS1 0.590 0.043

Put1 VLPFC3 VS2 0.586 0.045

Put2 Thal2 Caudate1 0.689 0.013

PutPost VS1 Put2 0.700 0.011

PutPost VS1 VS2 −0.752 0.005

Thal1 LG2 Put2 0.629 0.029

Thal1 LG2 Thal1 0.619 0.032

FIGURE 3 | Pattern of networks in HV, at a wired cost of 0.28. Yellow
lines indicate the edges for which more than half of the subjects in HV and
PD groups showed connectivity with cost = 0.28. Blue and red lines
indicate the edges with stronger connectivity strength in the HV compared
with PD. Red lines indicate edges with significant correlation with the
subcortical activity, in the HV and/or PD groups.

a graph theory approach on SI finger movements during fMRI
acquisition in order to investigate this function in HV and PD
patients.

GRAPH-THEORY APPROACH
We used the graph-theory approach while considering wiring cost
to select edges relevant for the SI finger movement task used. This
could improve the detection of pivotal edges affected by the dis-
ease. The peak of the cost efficiency was located at the cost of
0.271 and 0.284 in the HV and PD groups, respectively. Based
on a hypothesis that the brains operate optimally with the max-
imum cost efficiency, maximizing information transfer (Sporns
et al., 2000; Achard and Bullmore, 2007), we selected the cost of
0.28 to determine individual networks. Then, the edges included
in more than half of the subjects for each group were considered,
considering them as a common network for the task. Costs of 0.20
and 0.36 were also calculated, and the results were comparable to
the results with a cost of 0.28 (data not shown). Additionally, the
results using correlation threshold were also equivalent (patterns
of networks with this method are shown in Complementary Data,
C-Figure 2), similar to our previous study showing relatively
preserved results with the two thresholding methods (Carbonell
et al., 2014).

FIGURE 4 | Relationship between correlation ratio of the

cortico-subcortical connections and task performance in HV.

Table 5 | Difference in path length between the primary motor area

and other nodes.

Nodes Path length (mean ± SD) p-value

HV PD

M1-1 SMA1 1.429 ± 0.646 2.083 ± 0.669 0.019

PreSMA1 1.643 ± 0.633 2.250 ± 0.622 0.027

PreSMA2 1.429 ± 0.646 2.083 ± 0.669 0.019

DLPFC1 1.643 ± 0.745 2.333 ± 0.778 0.033

DLPFC2 1.571 ± 0.646 2.250 ± 0.622 0.016

PutPost 2.000 ± 0.392 2.417 ± 0.669 0.049

M1-2 INS2 2.357 ± 0.497 1.833 ± 0.577 0.028

Thal2 2.214 ± 0.579 1.667 ± 0.651 0.037

PMd3 1.929 ± 0.475 1.417 ± 0.515 0.019

LG2 2.714 ± 0.469 2.167 ± 0.718 0.040

CORTICO-MIDLINE CONNECTIVITY IS MODULATED BY BG ACTIVITY
The main finding of the present study is that connectivity between
the mPFC and the motor cortex, extrastriate cortex, and the asso-
ciative cortex, is weakened in comparison to HV. Furthermore,
the strength of the cortico-midline connections was correlated to
striatal and thalamic activity. This is in accordance with a pre-
vious study that showed a decrease in functional connectivity
between the pre-SMA and M1, PMC, IPL, and the cerebellum in
PD patients during a SI task (Wu et al., 2011). Our results addi-
tionally demonstrate that (1) the lowered connectivity between
the mPFC and other cortices remain prominent within the whole
brain network, and (2) that the activation in the striatum (the
caudate, putamen, and VS) and the thalamus would be involved
in supporting this connectivity.
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We observed weakened connections between the pre-SMA and
M1 in PD patients, and this was accompanied by a reduction of
activity in the right posterior putamen, the motor nucleus of the
BG (Alexander et al., 1986; Albin et al., 1989). The pre-SMA has
anatomical connections with prefrontal areas, without direct con-
nections to the primary motor area (Picard and Strick, 2001). In
addition, the pre-SMA is connected to the caudate nucleus, the
associative nucleus of the BG, the rostral part of putamen and the
globus pallidus (Takada et al., 1998; Lehericy et al., 2004; Akkal
et al., 2007). Functionally, the pre-SMA is in a position to influ-
ence the motor cortex during action selection (Mars et al., 2009).
There may therefore be functional connectivity between the pre-
SMA and M1 mediated by the BG system. Interestingly, the mPFC
(pre-SMA and SMA) is one of the most frequently reported
regions in connectivity analyses (Toro et al., 2008). Moreover, the
mPFC, along with other midline structures, is considered to be
a structural hub, with dense connectivity to the rest of the brain
(Hagmann et al., 2008). A stronger connectivity between the pre-
SMA and M1, then, would result in shortening in the path length
between M1 and the other cortical regions. In accordance with
this hypothesis, we found shorter path lengths between the M1
and the pre-SMA, SMA, putamen, and DLPFC in HV compared
with PD patients.

Although striatal and thalamic activity was decreased in PD
patients compared with HV (Martinu et al., 2012), the strength
of cortico-midline connectivity was positively correlated with
activity in the striatum, but negatively correlated with activity
in the thalamus in the HV. In contrast, in the PD group, cor-
relations with the cortico-midline connectivity were positive for
the striatum as well as the thalamus. The striatum and the thala-
mus are tightly inter-connected through the cortico-BG-thalamo-
cortical loops and the brainstem-thalamo-BG-brainstem loops
(Alexander et al., 1986; Albin et al., 1989; McHaffie et al.,
2005). Within these circuits, the indirect pathway of the cortico-
BG-thalamo-cortical loops exerts opposing effects on the stria-
tum and the thalamus (Alexander et al., 1986; Albin et al.,
1989; McHaffie et al., 2005). Therefore, the opposite correlation
observed in HV may indicate the involvement of the indirect
pathway in the control of cortico-midline connections. Recent
animal studies have shown that the direct and indirect pathways
are concurrently activated during operant tasks, suggesting that
the indirect pathway is positively involved in decision making of
actions, rather than simply suppressing unselected actions (Cui
et al., 2013; Isomura et al., 2013). Indeed, our observations are in
accordance with these recent views.

CONNECTIVITY BETWEEN THE EXTRASTRIATE VISUAL CORTEX AND
SUBCORTICAL REGIONS
Another important observation in the present study was the
decrease in connectivity between the extrastriate visual cortex
and the subcortical regions (thalamus and striatum), between
the striatum and the thalamus, as well as between the putamen
and the VLPFC in the PD group. Our observation suggests that
dopamine is involved in controlling the strength of the connectiv-
ity. The SI task was designed for internally generated movements.
However, the subjects received a visual feedback for pressing a
button. Therefore, the task also has a feature of visual-cue-guided

goal-directed behavior, showing activation in the visual areas.
The extrastriate visual cortex is interconnected with the thala-
mus at the level of the pulvinar (Jacobson and Marcus, 2007;
Leh et al., 2008). In monkeys, this region is connected to the
body and tail of the caudate nucleus (Yeterian and Pandya, 1995).
The VLPFC is also strongly connected to the striatum, espe-
cially in the rostro-ventral part of the caudate nucleus (Leh et al.,
2007). Also, the visual cortex also shows functional connectivity
with the VLPFC/insula during a visualization task (Ebisch et al.,
2013). Nevertheless, the thalamic and striatal regions observed
in the present study included the motor components located in
the ventrolateral/ventral-posterolateral thalamus and the puta-
men (Jacobson and Marcus, 2007). Our results suggest, then, a
level of integration between subcortical regions involved in visual
and motor processes.

INTEGRATION OF INFORMATION BETWEEN THE MOTOR CORTEX AND
THE PREFRONTAL CORTEX
Connectivity strength between the superior occipital gyri and
the DLPFC showed significant decreases in PD that correlated
with subcortical activations. This is in line with a previous study
that showed attention-induced fronto-posterior connectivity to
be modulated by the BG (van Schouwenburg et al., 2010). The
connectivity between the DLPFC and the striatum was not signif-
icant (Figure 3), but was negatively correlated to the RT in HV
(Figure 4). These observations are in accordance with our previ-
ous study, where an increase in temporal connectivity between the
DLPFC and the dorsal striatum was associated with shorter RT
(Nagano-Saito et al., 2008). It has been suggested that the gen-
eral role of the DLPFC is to establish a set of responses suitable
for a given task (Nathaniel-James and Frith, 2002). Additionally,
the DLPFC belongs to the fronto-parietal task control network,
which is considered to play a role in the initiation of movement,
and in trial-by-trial adaptive control (Dosenbach et al., 2007,
2008). In these respects, the connectivity between the DLPFC and
the striatum may correspond to an information flow for trial-
by-trial adaptation supported by the large background of the
fronto-parietal task control network.

The connectivity between the VLPFC and the striatum was
also decreased in PD. This is in accordance with our previ-
ous study where we showed that temporal connectivity between
the VLPFC and the striatum was reduced when dopamine was
depleted (Nagano-Saito et al., 2008). However, the connectivity
between the VLPFC and the striatum, as well as the connec-
tivity between the extrastriate visual cortex and the subcortical
regions were strong during the task, as opposed to the connectiv-
ity between the DLPFC and the striatum (Figure 2). Furthermore,
the strength of the connectivity was positively correlated with
the individual RT in the HV (Figure 4). We speculated that the
stronger connectivity between the VLPFC and the subcortical
regions be linked with an increase in visual information flow,
which contributes to inhibiting behavioral responses (Sakagami
et al., 2001). This may help cognitive function, but requires
additional processing for action decision, possibly leading to a
longer RT.

Considering the fact that the DLPFC and the VLPFC are
endpoints of the ventral and dorsal visual pathways (Sakagami
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and Pan, 2007), our observation may imply that the subcortical
regions play a role in connecting the two visual pathways. This is
consistent with a speculation that the BG system would have an
important role in the integration of the dorsal and ventral visual
pathways’ information for decision-making (Cisek and Kalaska,
2010).

The pre-SMA and VLPFC are directly inter-connected (Aron,
2007), and are considered to be a part of the cingulo-opecular
task control network involved in set maintenance (Dosenbach
et al., 2007, 2008; Power et al., 2011). Although the pre-SMA
and VLPFC show synchronized activity during the resting state,
we did not observe strong connectivity between them during
the SI task (Figure 2), suggesting the two regions have distinct
functions. Accordingly, a recent study showed differential mod-
ulation of functional connectivity between the VLPFC and the
pre-SMA during a reasoning task (Ebisch et al., 2013). More
specifically, the VLPFC showed an increase in functional cou-
pling with visual cortices during a visualization task, whereas the
pre-SMA displayed an increase in functional coupling with the
anterior frontal cortex during an induction task (Ebisch et al.,
2013). The pre-SMA and the VLPFC may function for cognitive
tasks collaboratively. However, at least in specific tasks, the pre-
SMA would allow the establishment of a shorter path between the
motor cortex and the other cortical regions, whereas the VLPFC
would allow the collection of visual information to the subcortical
regions. The striatum and the thalamus, then, may further rein-
force these functional connections to generate adequate decisions
on resulting actions.

We speculated that mediation of cognitive and motor mod-
ules supported by these PFC and subcortical regions in the brain
would be important for decision-making processes.

In humans, co-activation of the pre-SMA, VLPFC, DLPFC,
along with the thalamus and the striatum has been repeatedly
reported during cognitive tasks that require a task-set for visually-
guided goal-directed responses (Monchi et al., 2001; Huettel et al.,
2004; Chang et al., 2007; Nagano-Saito et al., 2008), and even dur-
ing our SI tasks (Martinu et al., 2012). Although the exact mecha-
nism behind this integration is unclear, it is most likely mediated
by the striato-nigro-striatal connections (Haber, 2003) and the
cortico-BG-thalamo-cortical loops (McFarland and Haber, 2002;
Calzavara et al., 2007; Draganski et al., 2008).

CONCLUSION
In the present study, we have applied a graph theory approach
to fMRI data. Our results support the hypothesis that through
dopaminergic neuro-modulation (Seamans and Yang, 2004;
Joshua et al., 2009; Howe et al., 2013), the BG play an impor-
tant role in the integration of multiple sources of information
from functionally specific cortical areas in order to generate an
adequate decision on a resulting action (Bar-Gad et al., 2003;
Bogacz and Gurney, 2007). More specifically, the BG would
integrate information dorsally from parieto-frontal areas, and
ventrally from visual areas. Additionally, the BG would allow
to shorten the path length between the mPFC and the motor
cortex. In networking terms, then, mPFC, DLPFC, and VLPFC
interact with the BG to create the adequate network that can com-
bine visual, associative, and motor information to produce the
decision on an upcoming action. A possible model for SI task is

FIGURE 5 | A model of the BG function for determining a network

resulting an action. The visual information reaches to the frontal regions,
such as the DLPFC and VLPFC (endpoints of the extended dorsal and
ventral visual pathways). The BG, with the mPFC and thalamus, are
involved in the integration of multiple sources of information from the
frontal regions and connected to M1, thereby determining a network that
leads to the appropriate decision and performance of the resulting action.
Arrows indicate the extended dorsal and ventral visual pathways; solid lines
indicate the connection shown in current study; Color gradients in the
mPFC, BG, and thalamus, indicate transition of cognitive and motor
components in the regions.

shown in Figure 5. Additional studies will be necessary in order
to determine whether this effect is task-dependent.
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