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Global cortical activity predicts
shape of hand during grasping
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José L. Contreras-Vidal 1

1Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston, Houston,

TX, USA, 2Hyperspectral Image Analysis Lab, Department of Electrical and Computer Engineering, University of Houston,

Houston, TX, USA

Recent studies show that the amplitude of cortical field potentials is modulated in the

time domain by grasping kinematics. However, it is unknown if these low frequency

modulations persist and contain enough information to decode grasp kinematics in

macro-scale activity measured at the scalp via electroencephalography (EEG). Further,

it is unclear as to whether joint angle velocities or movement synergies are the optimal

kinematics spaces to decode. In this offline decoding study, we infer from human EEG,

hand joint angular velocities as well as synergistic trajectories as subjects perform natural

reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient

(r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across

15 hand joints. Across the first three kinematic synergies, decoding accuracies were

r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG

channel recruitment showed early involvement of contralateral frontal-central scalp areas

followed by later activation of central electrodes over primary sensorimotor cortical areas.

Information content in EEG about the grasp type peaked at 250ms after movement

onset. The high decoding accuracies in this study are significant not only as evidence for

time-domain modulation in macro-scale brain activity, but for the field of brain-machine

interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as

opposed to local members of the neural ensemble (as in intracranial approaches), may

provide a means of extracting information about motor intent for grasping without the

need for penetrating electrodes and suggests that it may be soon possible to develop

non-invasive neural interfaces for the control of prosthetic limbs.

Keywords: grasping, electroencephalography, decoding, brain-machine interfaces

Introduction

Grasping is one of the most fundamental ways humans interact with the world, allowing us
to manipulate and interact with objects around us. The kinematics of grasping and the neuro-
science underlying the smooth and continuous control of the hand and fingers have been studied
extensively (Jeannerod, 1984; Santello et al., 2002; Castiello, 2005), and experiments have shown
modulation in neural spiking activity associated with various stages of grasping (Rizzolatti et al.,
1988; Murata et al., 1997; Bansal et al., 2011). PET and fMRI experiments show the involve-
ment of widely distributed brain areas during a self-initiated grasping movement (Castiello, 2005).
Proximal and distal upper extremity movement information has been shown to be encoded as the
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power in various frequency bands in cortical field potentials at
various spatial scales, such as local field potentials (LFPs), electro-
corticography (ECoG), electroencephalography (EEG), andmag-
netoencephalography (MEG) (Ball et al., 2008; Kubánek et al.,
2009; Waldert et al., 2009; Zhuang et al., 2010; Pistohl et al.,
2012). More recently, researchers have shown that information
is also encoded in the time-domain amplitudes of these fields in
the lowest frequency band (0–5Hz) (Bradberry et al., 2009, 2010;
Kubánek et al., 2009; Acharya et al., 2010; Bansal et al., 2011;Mol-
lazadeh et al., 2011; Hall et al., 2014). A summary of results from
grasp decoding studies is shown in Table 1. It remains unclear
if these amplitude modulations contain enough information to
be able to infer the dexterous movement of the fingers during
grasping, at the macro scale of scalp EEG.

LFP modulations have been shown to contain information
about grasping movements not just in the primary motor cor-
tex, but in a multitude of other brain areas as well (Bansal
et al., 2011; Mollazadeh et al., 2011; Hall et al., 2014). While it
is clear that a widely distributed network involving pre-frontal,
sensori-motor as well as visuo-motor areas in both hemispheres
is responsible for the control of self-initiated grasping actions
(Matsumura et al., 1996; Rizzolatti et al., 1996), the characteriza-
tion of scalp-level neural representations of these areas remains
unknown. Recent findings revealed cyclic activity in motor cor-
tex LFP signals locked to “submovements” (Hall et al., 2014).

TABLE 1 | Summary of grasp decoding studies.

Behavioral task Decoded kinematics Decoding accuracy Signal modality; features;

subjects

References

3D Reach-to-grasp Finger joint angles Monkey C: r = 0.72

Monkey G: r = 0.74

Microelectrodes; neuron firing

rates; Monkeys

Vargas-Irwin et al., 2010

3D Reach-to-grasp Grasp aperture Delta: r = 0.46

Gamma: r = 0.62

Microelectrodes; LFP

frequency bands; Monkeys

Zhuang et al., 2010

3D Reach-to-grasp Grasp aperture Position: r = 0.65

velocity: r = 0.75

Microelectrodes; LFP

0.3–2Hz; Monkeys

Bansal et al., 2011

Slow grasping motion Finger joint angle PC r = 0.52 ECoG; 2 s moving average

filter; Human patients

Acharya et al., 2010

Repetitive individual

finger flexion and

extension

MCP joint angles Thumb: r = 0.56

Index: r = 0.60

Middle: r = 0.54

Ring: r = 0.50

Little: r = 0.42

ECoG; 100ms average

window; frequency bins from

8 to 175Hz; Human patients

Kubánek et al., 2009

Repetitive finger taps Index finger MCP joint angle r = 0.36 EEG; 0.1–3Hz; Human

subjects

Paek et al., 2014

3D Reach-to-grasp MCP joint angles r = 0.76 EEG; 0.1–1Hz with genetic

algorithm; Human subjects

Agashe and Contreras-Vidal, 2011

3D Reach-to-grasp Precision vs. Power grasp

classification

Classification accuracy = 88% ECoG; 0–5Hz, Human

subjects

Pistohl et al., 2012

3D reach-to-grasp Finger joint velocities and

their PCs

PC1 r = 0.59

PC2 r = 0.47

PC3 r = 0.32

EEG; 0.1–1Hz; Human

subjects

Current study

Understanding how these delta band (0–4Hz) submovements
combine to yield functional motion may provide clues to the
origins of delta-band activity and why they encode upper limb
movement information (Hall et al., 2014).

Apart from the neuroscience community, being able to decode
grasping kinematics is of great interest to the brain-machine
interface (BMI) community. Upper limb amputation, stroke, or
severe spinal cord injury result in loss or significant reduction
in bimanual motor function and dexterous hand movements in
the affected limb(s). Improved upper extremity function is the
leading requirement among tetraplegics (Snoek et al., 2004) and
other clinical populations with impaired hand function. Control
of hand prosthetics with peripheral signals such as intramus-
cular/surface electromyography (sEMG) (Cipriani et al., 2011,
2014) and targeted muscle re-innervation (Kuiken et al., 2009)
show promise. BMI which extract movement intent from brain
activity and control external devices are another possible strategy
to regain hand function (Birbaumer, 2006; Lebedev andNicolelis,
2006) while also tracking plasticity in the brain. Current upper
limb neuroprosthetics restore some degree of functional abil-
ity, but fail to approach the ease of use and dexterity of the
natural hand, particularly for grasping movements. Control of
an anthropomorphic robotic arm with intracortically recorded
neural activity was recently shown to be possible (Collinger
et al., 2012; Hochberg et al., 2012; Wodlinger et al., 2015). These
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invasive BMI systems are able to extract intended arm position
and movement in space, along with a control over opening and
closing a grasp. However, the multitude of grasp types required
in activities of daily living require a detailed level of control over
manual dexterity and grasp posture. Further, the inherent risks
associated with surgery required to implant electrodes, along
with the long-term stability of recorded signals, is of concern
(Schultz and Kuiken, 2011). Current approaches to non-invasive
BMIs typically require the user to learn to control the power in
their sensorimotor mu-rhythms (specific frequency bands usu-
ally centered around 10 and 22Hz) (Wolpaw and McFarland,
2004; McFarland et al., 2010). Here we show that it is feasible to
extract detailed information on intended grasping movements to
various objects in a natural, intuitive manner, from a plurality of
scalp EEG signals.

Research shows that to manipulate the large number of joints
available in the hand during grasping, the motor system con-
trols an inherently low-dimensional manifold called the syn-
ergy space (Santello et al., 1998, 2002; Vinjamuri et al., 2010).
A common approach to identifying these movement synergies
is by decomposing joint angle velocities into their Principal
Components (PCs) (Santello et al., 1998). The kinematic space
(joint angle velocities vs. movement synergies) that is optimally
encoded in cortical field potentials remains unknown. In this
study, five human subjects performed self-initiated and natural
reach-to-grasp movements to five common objects while EEG
and hand kinematics were recorded simultaneously. We selected
five objects requiring distinct types of grasps: a soda can (cylindri-
cal power grasp), a CD (whole hand circular grasp), a credit card
(lateral precision grasp), a small coin (precision pinch grasp),
and a screwdriver (tool power grasp) (Santello et al., 1998). In
an offline analysis, we reconstructed the trajectories of the hand
in both joint angle velocity and synergy (PC) spaces during the
grasping movement. The decoding was performed with a lin-
ear regression model with lags (i.e., time delay between EEG
and decoded kinematics; see Materials and Methods). Notably,
the time-domain feature space, coupled with the linear decoder,
requires that the EEG signals share the same frequency band-
width as the movement kinematics. The majority of power in
grasping movements performed by subjects in this study was
concentrated in the 0.1–1Hz band (see Materials and Meth-
ods), requiring that EEG be low-pass filtered at 1Hz as well (see
Materials and Methods).

Materials and Methods

Data Acquisition and Experiment Design
The Institutional Review Board (IRB) at the University of
Houston approved this research. Five healthy, able-bodied right-
handed volunteers (4 males, 1 female; ages 20–28 years) par-
ticipated in this study after giving written informed consent.
Whole head 64-channel EEG with a 10–20 system layout (Brain
Vision LLC, USA) and hand kinematics were recorded simulta-
neously at 1000Hz using BCI2000 software (Schalk et al., 2004),
while participants performed an object grasping task. The tra-
jectories of 18 hand joint angles were recorded with a data
glove (CyberGlove Systems LLC, USA). The following 15 joint

angles were recorded and used for further processing: metacarpo-
phalangeal (MCP) and proximal inter-phalangeal (PIP) joints for
the four fingers; carpo-metacarpal (CMC),metacarpo-phalangeal
(MCP), and interphalangeal (IP) joint for the thumb; and abduc-
tion/adduction (ABD) between the fingers. In addition, three
more joints were recorded but not used for further process-
ing: flexion/extension and abduction/adduction of the wrist; and
palm arch which measures the curvature across the palm. These
joint angles were not used for further processing since the wrist
orientation does not determine the finger posture relevant to
grasping the object, and the palm arch sensor was not used due
to low resolution over its limited range of motion (0–5◦).An
accelerometer mounted on the wrist was used to record hand
transport in three subjects (subjects S1, S2, and S3).

During the behavioral task, subjects were seated behind a table
with their hand resting on a push-button, which was used to
detect movement onset and offset. In front of the push-button,
objects were presented on a visually marked area on the table’s
surface. The distance between the object and the push-button
were determined such that subjects were able to reach the objects
comfortably. One of five objects (soda can, credit card, CD, US
penny, and a screwdriver) was placed on the marked area in a
pseudorandom sequence. Subjects were instructed to start each
trial with a relaxed gesture on the switch, then self-initiate a
reach and grasp movement to the object, followed by release and
back to the resting position, at their preferred speed. The mean
movement time was 1.9 ± 0.3 s across all subjects. Each subject
performed 250 trials (50 trials per object), except subject S4 who
performed 270 trials.

EEG Data Preprocessing
All following analyses were performed in MATLAB (The
MathWorks Inc., USA). Raw EEG data were detrended and high-
pass filtered at 0.3Hz with a zero-phase 4th order Butterworth
filter to remove amplifier drift and ultra-low frequency compo-
nents (Figure 1). Independent component analysis (ICA) was
used to decompose the EEG into statistically independent com-
ponents using the EEGLAB toolbox (Delorme andMakeig, 2004)
after manually removing data segments corrupted by movement
artifacts. Independent components corresponding to eye blinks
and eye movements were identified and removed, followed by
a projection back to the scalp EEG space. Six peripheral chan-
nels (M1, M2, TP9, TP10, PO9, and PO10) were excluded from
further analysis. EEG data were low-pass filtered at 1Hz with a
zero-phase 4th order Butterworth filter. These filter cutoffs (0.3–
1Hz) were chosen based on previous findings (Bradberry et al.,
2010; Agashe and Contreras-Vidal, 2011; Garipelli et al., 2013).
EEG data were downsampled to 100Hz and differentiated. Tem-
porally lagged versions of EEG were concatenated along the third
dimension, for a total of 11 lags (10 to 0 samples, corresponding
to 100 to 0ms in steps of 10ms), resulting in an n× 58× 11 data
matrix, with the first dimension corresponding to time, the sec-
ond dimension to EEG channels and the third dimension to lags.
Continuous EEG was segmented into trials, from 400ms before
movement onset to 100ms after movement offset and standard-
ized by subtracting the mean and dividing by standard deviation
across all trials.
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FIGURE 1 | Data processing flowchart. The flowchart showing all data

processing steps leading up to the decoding is shown. The left stream

corresponds to EEG processing, and the right stream corresponds to

kinematics processing.

Kinematics Data Preprocessing
Fifteen hand joint angles were recorded at 1000Hz syn-
chronously with EEG data. The joint angle data were low-
pass filtered at 1Hz with a 4th order zero-phase Butterworth
filter, followed by downsampling to 100Hz (Figure 1). The
change introduced due to filtering the kinematics was quanti-
fied using the signal-to-error ratio (SER) defined as SER

(

y, y∗
)

=

10 log10
Var(y)

MSE(y,y∗)
, where y is the raw kinematics, y∗ is the filtered

kinematics,Var denotes the variance andMSE is the mean square
error. The mean SER across all blocks was found to be 15.5 ±

2.9 dB ensuring filter cutoffs were appropriate. Joint angles were
then differentiated to yield angular velocities. Kinematics were
segmented consistent with EEG (400ms before movement onset
to 100ms after movement offset). Principal Component Analy-
sis (PCA) was used to decompose the joint angular velocities into
kinematic synergies, across all trials. The input to the PCAmatrix
consisted of an n× 15 matrix, where n is the sum of trial lengths.

The first three synergies accounted for 90 ± 1% of the variance
and were retained for decoding. Individually, the first three syn-
ergies accounted for 50 ± 1%, 29 ± 1%, and 10 ± 1% of the
variance.

Decoding
A Wiener filter was used to continuously decode joint angle
velocity PCs:

PCi [t] = β0i +

N
∑

n= 1

L
∑

k= 0

βnkiEEGn

[

t − k
]

where PCi[t] is the ith PC (i = 1, 2, 3 for the first three PCs), βnki

are the model parameters, N = 1 − 58 are the number of EEG
channels used for decoding, L is the maximum time lag (100ms)
and EEGn[t−k] is the preprocessed EEG value of the nth channel
at time t − k.

Within each subject, an 8-fold cross validation procedure was
employed to assess the decoding accuracy: data were divided
into eight parts, with the ith part designated as testing data in
the ith cross validation fold (a total of 8-folds). The remaining
seven parts in a cross validation fold constituted the training data
for that fold. For each cross-validation fold, model parameters
were calculated on training data by minimizing the square error
between the observed and model-estimated values for each PC.
These model parameters were then applied to pre-processed EEG
from the testing set to obtain a prediction of the PC value. We
report the median correlation coefficient between the predicted
and the observed PC values across all folds as the metric to assess
decoding accuracy.

We evaluated the dependency of the decoding accuracy on
the number of EEG channels used for the decoding process
by the following procedure. Preprocessed EEG channels were
ranked according to how well they were correlated with the three
kinematic principal components (PCs), averaged over all lags.
Specifically, the metric used for ranking was,

Rn =
1

L+ 1

L
∑

k= 0

√

β2
nkPC1

+ β2
nkPC2

+ β2
nkPC3

,

where Rn is the metric for the nth EEG channel and β are
the regression parameters calculated over the entire dataset for
each subject (Bradberry et al., 2010). The 8-fold cross validation
decoding procedure was then performed iteratively using the best
N EEG channels (N = 1 to 58) according to the channel ranking
metric described above.

We assessed the contribution %Ti at each lag i ( i = 0 to−100
ms) as,

%Ti = 100%×

N
∑

n= 1

√

β2
nkPC1

+ β2
nkPC2

+ β2
nkPC3

L
∑

k= 0

N
∑

n= 1

√

β2
nkPC1

+ β2
nkPC2

+ β2
nkPC3

.

We plotted the contributions from EEG channels at each lag
on a scalp map to graphically assess the evolution of sensor
contributions with time.
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Discrete Classification
We quantified the information content in EEG by measuring its
ability to discriminate between the grasp types with a multiple
kernel learning (MKL) classifier (Rakotomamonjy et al., 2008;
Gönen and Alpaydın, 2011), which is a multiple-kernel gener-
alization of support vector machines (SVM). The key idea of
MKL is to replace the single kernel in a SVM by a weighted lin-
ear combination of different basis kernels. The scalp was divided
into 8 regions of interest (ROIs): left frontal (LF), right frontal
(RF), left temporal (LT), right temporal (RT), left sensori-motor
(LSM), right sensori-motor (RSM), left parietal-occipital (LPO),
and right parietal-occipital (RPO). The combined kernel function
K

(

xi, xj
)

for input feature samples xi and xj was represented as

K
(

xi, xj
)

=

M
∑

m= 1

dmKm(xi, xj),

such that dm ≥ 0, and
∑M

m= 1 dm= 1, where M = 24 is the

number of basis kernels and dm is the weight for themth basis ker-
nel Km. Parameters dm were optimized through gradient descent
on an SVM-based objective function according to “SimpleMKL”
algorithm (Rakotomamonjy et al., 2008). Radial basis functions
with relative width parameter σ = {5, 10, 15} were used as
basis kernels for each of the 8 ROIs, resulting in a total of 24
basis kernels. This range of values was found to be reasonable
after applying kernel alignment to an initial training set for each
subject (Shawe-Taylor and Kandola, 2002). The input features for
the discrete classifier were identical to the Wiener filter decoder
detailed above, viz. low frequency time-domain EEG, lagged from
0 to 100ms.

The information content in EEG was calculated as the reduc-
tion in entropy of the probability distribution over grasp types,
due to the classifier output, given the EEG pattern (Quian
Quiroga and Panzeri, 2009):

I =
∑

PG,MG

P (PG,MG) log2
P (PG,MG)

P(PG)P(MG)
,

where I is the information content in EEG about the grasp type;
P(PG, MG) is the joint probability over predicted grasp type
PG and measured grasp type MG, calculated from the confusion
matrix of the classifier; P(PG) and P(MG) are the marginal prob-
abilities. We calculated the information content from −1 to 3 s
with respect to movement onset, in steps of 250ms. For each time
step, an 8-fold cross validation scheme was used.

Results

Both Joint and Synergy Spaces Can Be Decoded
from Scalp EEG
Previous studies point to both joint angular velocities as well as
synergies as possible spaces in which the brain encodes grasp-
ing movement information (Kubánek et al., 2009; Acharya et al.,
2010; Vargas-Irwin et al., 2010; Agashe and Contreras-Vidal,
2011; Pistohl et al., 2012). Here, we found high decoding accura-
cies for both joint angle velocities and their synergies. Movement

synergies were calculated as the principal components (PCs) of
joint angular velocities across all grasp types (Santello et al., 1998;
Vinjamuri et al., 2010). We retained the first three PCs, which
retained 90% of the variance. Figure 2 shows examples of PC tra-
jectories across all objects and the visualization of PC loadings
on each joint angle. PC1 was highly loaded on the finger PIP and
MCP joints representing grasp opening/closing motion. PC2 was
loaded mainly on the abduction joints, representing the spread-
ing motion of the hand. PC3 was loaded on the thumb joints,
mainly rotation, and represents the independent movement of
the thumb.

FIGURE 2 | Kinematic trajectories show synergies while grasping

objects. Principal Component Analysis (PCA) was performed on the 15

recorded joint angular velocities across all trials for each subject. (A) Mean

principal component (PC) amplitudes (± s.e.m; shaded regions) are shown for

the first three PCs for all objects in subject S5, from 400ms before movement

onset to 100ms after movement offset. For display purposes, the different trial

lengths for an object were rescaled in time to the mean trial length for that

object. PC amplitudes from each trial were standardized to zero mean and

unity standard deviation. (B) PC loading (weights) on the 15 joint angles are

shown for the first three PCs. Darker colors represent larger weight magnitudes

averaged across all subjects, normalized between zero and one. PC1 is highly

loaded on the finger PIP and MCP joints representing grasp opening/closing

motion. PC2 is loaded mainly on the abduction joints, representing the

spreading motion of the hand. PC3 is loaded on the thumb joints, mainly

rotation, and represents the independent movement of the thumb.
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FIGURE 3 | Decoding Accuracies. Decoding accuracies were calculated as

the median across 8-folds for each of the 58 EEG sensor (channel) sets, for all

subjects, for the first three PCs and the 15 joint angles. (A) Mean decoding

accuracies across subjects are shown in red (± s.e.m; shaded regions) for

PC1, PC2, and PC3. As the number of channels used in the decoding

increases from 1 to 58, the curves shows a rapid increase followed by a slow

decrease. To assess the validity of our results, we also calculated chance

levels using two methods: (1) by scrambling the phase of the EEG and (2) by

scrambling the EEG trial indices. The mean decoding accuracy (± s.e.m;

shaded regions) for the “phase scrambled” and “fold scrambled” is shown in

blue and purple traces, respectively. Decoding accuracies are seen to be far

above chance levels, indicating the validity of our method. To assess the

impact of ocular artifact on the decoding accuracy, we omitted 4 frontal EEG

channels most affected by such artifacts and recalculated the decoding

(Continued)

FIGURE 3 | Continued

accuracy, shown by the green trace. The change in decoding accuracy on

omitting the frontal channels is minimal, demonstrating the independence of

our results on eye artifacts. (B) Decoding accuracy curves similar to panel

(A) were calculated across EEG channel sets for each joint angle. The

highest decoding accuracy for each curve is shown for each joint angle. In

general, decoding accuracies were higher for finger PIP joints and lowest

for MCP joints.

FIGURE 4 | Decoded trajectories. Predicted trajectories (light traces)

showed similarity with measured trajectories (heavy traces). Examples of

decoded PC trajectories for each object are shown for subject S5.

Decoding accuracies were quantified as the median correla-
tion coefficient between the predicted and measured kinemat-
ics across cross validation folds. For each subject, we calculated
decoding accuracies across the best n channels, with n ranging
from 1 to 58, to evaluate the dependence of decoding accuracy
on the number of EEG channels used. The common pattern
across all decoded kinematics (PCs and joint angle velocities)
was a rapid initial increase followed by saturation/slow decrease
(Figure 3). To determine the peak in a robust manner, we fit a
double exponential to the curves. For PC1, PC2, and PC3, peak
decoding accuracies (mean± s.e.m) were r= 0.59± 0.04, 0.47±
0.06, and 0.32 ± 0.05, with the peaks occurring when 22, 29,
and 27 EEG channels were used to decode, respectively (optimal
number of channels for each subject are shown in Supplemen-
tary Materials Table S1). Examples of decoded PC trajectories
are shown in Figure 4. For individual joint angle velocities, we
found that peak decoding accuracies were highest for the index,
middle and ring PIP joints (r = 0.65 ± 0.03, 0.63 ± 0.02, and
0.58± 0.02) and lowest for thumb CMC, index MCP and middle
MCP joints (r = 0.38 ± 0.04, 0.39 ± 0.03, and 0.37 ± 0.02). The
mean decoding accuracy across all joints was r = 0.49 ± 0.02.
The decoding accuracies for joint angles and kinematic PCs are
comparable, indicating that both kinematic spacesmay be equally
encoded in EEG-based sensor space. These decoding accuracies
are comparable to results from ECoG studies (r = 0.52 for first
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synergy; Acharya et al., 2010) and intracortical studies in mon-
keys (r = 0.62 for grasp aperture and r = 0.46 for aperture
velocity; Zhuang et al., 2010).

Decoding accuracies were highly significant (p < 0.001; Bon-
ferroni corrected for multiple comparisons across all subjects,
kinematic variables, number of EEG channels and cross vali-
dation folds). We also calculated empirical chance levels using
two methods: (1) by scrambling the phase of the EEG (Theiler
et al., 1992) and (2) by scrambling the EEG trial indices (Antelis
et al., 2013). “Phase-scrambled” EEG signals were obtained by
randomizing the phase in the Fourier domain, while keeping
the magnitude unchanged, followed by a transformation back to
the time domain. The assumption behind time-domain decod-
ing is that EEG signals are phase-locked to the kinematics, and
a randomization of the phase would theoretically result in zero
decoding accuracy. In the case of “fold-scrambled” EEG, the
pairing between EEG and kinematics across trials was random-
ized, so that EEG corresponding to the kinematics from trial n
was assigned to trial m. The expected decoding accuracy in this
case is also close to zero as EEG for one type of grasped object
would correspond to kinematics of a different object. The decod-
ing procedure as detailed in the Materials and Methods Section
was applied to the “phase-scrambled” and “fold-scrambled” EEG
signals with 5 random repetitions each. We found close to zero
decoding accuracy in both cases (Figure 3), showing that the
decoding accuracy obtained without scrambling is significantly
higher than chance levels.

Artifacts Did Not Aid Decoding
EEG is known to be affected by ocular and muscular artifacts
(Goncharova et al., 2003), which may contribute to decoding if
they are task-correlated. In our experiment, muscular artifacts
are unlikely to affect decoding results because we low-pass fil-
tered EEG signal at 1Hz, and the dominant frequency content

of muscular artifacts is above 8Hz (Goncharova et al., 2003).
Additionally, we excluded from analysis six peripheral EEG chan-
nels most likely to be affected by muscular artifacts (M1, M2,
TP9, TP10, PO9, and PO10). We prevented ocular artifacts from
affecting our results in two stages: (1) by using Independent Com-
ponent Analysis (ICA) to identify and remove ocular artifacts
(Delorme and Makeig, 2004), as detailed in the Materials and
Methods Section, and (2) by experiment design: All objects to be
grasped were presented to subjects in the same spatial location,
likely resulting in identical eye movements for all objects, mak-
ing it unlikely that such a common pattern across objects could
distinguish between them. To show the efficacy of these steps,
we ran the decoding procedure without the four frontal channels
affected most by ocular artifacts (FP1, FP2, AF7, and AF8). The
decoding accuracy was unchanged (Figure 3), demonstrating
that ocular artifacts did not affect our decoding results.

Neural Representation of Grasping Kinematics in
Sensor Space
To assess which scalp regions contributed the most to kine-
matics prediction, we plotted the contribution of EEG channels
(see Section Materials and Methods) at each time lag on a scalp
map, for PC1 (Figure 5), as PC1 accounted for 50 ± 1% of the
joint velocity variance and was also the best decoded synergy.
Lags −90 and −80ms contributed maximally (17.0 and 15.7%),
particularly at scalp locations C1, FC1, P1, and P3. Interestingly,
C1 and FC1 are located above the primary motor cortex and
supplementary motor areas, which may explain their high con-
tributions. P1 and P3 lie above the associative cortices which pro-
cess the visuo-motor transformations necessary for a reach-and
grasp movement. In agreement with established neuroscience
findings, the contralateral hemisphere made the highest contri-
bution. However, motor areas from the ipsilateral hemisphere
(C5, P5, and CP7) also made contributions. At around −60

FIGURE 5 | Scalp locations and lags contribution to PC1 prediction.

EEG channel contributions to prediction of PC1 trajectory (mean across

subjects) were plotted on scalp maps, with each map corresponding to a lag

as indicated on the horizontal axis. The overall percentage contribution of

each lag is shown below each scalp map. Lags −90 and −80ms

contributed maximally, particularly with EEG channels C1, FC1, P1, and P3.

Channel CP5 was also a major contributor at other lags. Interestingly, all

these channels lie above the known contralateral motor areas of the cortex.
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to −40ms, CP5 played the major role in decoding PC1 kine-
matics. Transient recruitment of specific EEG channels primar-
ily between −90 and −40ms argues against movement arti-
facts inadvertently aiding the decoding process, since movement
artifacts are expected to correlate maximally with movement at
zero lag.

Grasp Classification Peaked 250ms after
Movement Onset
The decoding accuracies shown represent the prediction of the
finger joint velocities/PCs, and can be implemented directly to
control the grasping motion of a prosthetic hand. A hybrid
approach could conceivably be used as well, in which the grasp
type is predicted as a discrete class from EEG, based on which
a pre-determined grasp trajectory can be implemented. A met-
ric that measures the performance of such a classification-based
motor prosthesis is the information (in bits) conveyed about
the grasp type. We constructed MKL classifiers (see Materials
and Methods) to classify 100ms windows of EEG into discrete
grasp types. When applied over the grasp duration, from −1
to 3 s with respect to movement onset, the information con-
tent in EEG peaked at 250ms (Figure 6). This is in agreement
with a previous study (Pistohl et al., 2012) which showed similar
results with ECoG (electrocorticographic) data over a two-class
grasp (precision vs. power) problem. For our five-class prob-
lem, the maximum information was 0.68 bits, occurring 250ms
after movement onset. The mean confusion matrix across sub-
jects at 250ms is shown in Figure 6. The classifier confusion
matrix at 250ms after movement onset is diagonal, indicating
high classification accuracies. Precision grasps were decoded at
a lower classification accuracy (27%; card, penny) than whole-
hand grasps (48%; can, CD, screwdriver). Surprisingly, a penny
(precision grasp) was often misclassified as a CD (whole hand
circular grasp), possibly due to the similarity in their kinematic
trajectory shapes (Figure 2A), despite the differences in ampli-
tude. The overall decoding accuracy was 40% across the 5 objects,
with chance level at 20%.

Discussion

Delta-Band Time Domain EEG Encodes Grasping
Kinematics
Recent studies onmonkeys and humans attempted to decode var-
ious aspects of grasping such as joint angles or grasp types from
brain activity recorded through microelectrode arrays implanted
in the brain or electrocorticographic (ECoG) grids placed over
the cortex (Artemiadis et al., 2007; Hamed et al., 2007; Aggar-
wal et al., 2008; Kubánek et al., 2009; Acharya et al., 2010; Saleh
et al., 2010; Vargas-Irwin et al., 2010; Zhuang et al., 2010; Agashe
and Contreras-Vidal, 2011; Townsend et al., 2011; Pistohl et al.,
2012). Activity of multiple neurons in the motor cortex has been
shown to classify finger and wrist movements as well as grasp
patterns (Artemiadis et al., 2007; Hamed et al., 2007; Aggarwal
et al., 2008). Interestingly, individuated finger movements and
movements during slow grasping motion can be predicted from
the fluctuations of low-pass filtered (the so-called “local motor
potential” or LMP) ECoG activity in humans (Kubánek et al.,

FIGURE 6 | Information content in EEG. A discrete classifier predicted the

object being grasped from 100ms windows of preprocessed EEG at various

points in time during the grasp. (A) The information content was calculated as

the reduction in the entropy of the distribution over grasp types due to the

classifier. Information in EEG peaked at around 250ms after movement onset.

(B) The classifier confusion matrix at 250ms after movement onset is

diagonal, indicating high classification accuracies. Precision grasps were

classified with a lower accuracy (27%; card, penny) than whole-hand grasps

(48%; can, CD, screwdriver). The overall decoding accuracy was 40% across

the 5 objects, with chance level at 20%.

2009; Acharya et al., 2010). Accurate classification of precision vs.
whole-hand grip has also been shown with ECoG LMP (Pistohl
et al., 2012). A recent study showed that motor networks control-
ling the upper limb exhibit an intrinsic periodicity at submove-
ment frequencies in the delta band (0.1–4Hz) that is reflected in
the speed profile of movements (Hall et al., 2014). The present
results, obtained using low-frequency time domain features, sug-
gest that such an encodingmechanism, based on amplitude mod-
ulation, is observed in non-invasively recorded macro-scale level
brain activity as well (Figure 3).

Frontiers in Neuroscience | www.frontiersin.org 8 April 2015 | Volume 9 | Article 121

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Agashe et al. EEG predicts hand grasping shape

Relevance to Clinical Populations and
Brain-Machine Interfaces
The spatial locations of highly contributing electrodes over
multiple lags over the scalp suggest early recruitment of the
contralateral frontal-central scalp areas and parietal electrodes,
followed by involvement of the central electrodes over primary
sensorimotor cortical areas (Figure 5). This pattern of spatiotem-
poral information processing is in agreement with previous stud-
ies (Castiello, 2005). Changes in these spatial patterns of neural
activity, at the level of scalp electrodes, may provide a window
to investigate the plasticity of the brain during learning to use a
brain-machine interface (BMI). These maps of predictive elec-
trodes may also be informative when compared to those from
clinical populations. The high values and significance levels of
the decoding accuracies (Figure 3) argue against the need for
more localized means of extracting neural activity for decoding,
and suggest that information about dexterous grasping move-
ments are represented in fast-changing global networks at the
EEG scale. Importantly, these findingsmerit further investigation
to assess the feasibility of EEG-based decoding for closed-loop
BMI systems to control dexterous neuroprosthetics.

The high decoding accuracies (compared to similar previ-
ous studies, see Table 1) obtained in this study suggest that this
methodology is a promising candidate for application in real-
time closed loop BMI systems for inferring desired grasping
movements. We obtained similar levels of decoding for individ-
ual joint angles and synergies based on PCs, which suggests that
a PC-based control scheme requiring lesser degrees of freedom
is advantageous over individual joint angle control for closed-
loop control of a hand neuroprosthesis. We are cognizant that
effective BMI systems require decoding of movement intent in
the absence of real movement. In this regard, recent studies
demonstrated reach and grasp by tetraplegics using a neurally
(intracranial electrodes) controlled robotic arm, albeit not as fast
or accurate as those of an able-bodied person (Collinger et al.,
2012; Hochberg et al., 2012; Wodlinger et al., 2015). Although
the present study deciphers the cortical EEG signatures of actual

movement, it is likely that some neural characteristics or features
may be shared between imagined and real movements (Yuan
et al., 2010; Bradberry et al., 2011; Hochberg et al., 2012; Agashe
and Contreras-Vidal, 2013). Results from a few studies suggest
that with training, patients could regain control of neural popu-
lations that would otherwise participate in natural movements for
the purpose of a BMI (Hochberg et al., 2006, 2012; Collinger et al.,
2012; Wodlinger et al., 2015). Our methodology could also help
to elucidate the changes in the neural representation for move-
ment during skill learning or during intervention to rehabilitate
fine motor control after brain injury. Importantly, our results
challenge the perceived limitations of scalp EEG as a source sig-
nal for BMI systems or their use to investigate cortical plasticity
during imagined or performed motor acts.

Demonstration of Real-Time Closed-Loop
Neuroprosthetic Control of Grasping by an
Amputee
To investigate the feasibility of these methods for real-time
closed-loop control of a hand neuroprosthesis, we implemented
our methods to control neuroprosthetic grasping from EEG of an
amputee participant (56 year old male). The participant was fit-
ted with an anthropomorphic neuroprosthetic hand (IH2Azurra,
Prensilia s.r.l., Italy). During the training phase, the participant
was instructed to reach out to grasp the presented object: either
a bottle (cylindrical whole hand grasp) or a credit card (lateral
precision grasp). Initiation of hand transport triggered a pre-
determined grasping sequence in the robotic hand, suitable to the
object being presented. The participant was instructed to imag-
ine himself controlling the hand pre-shaping and grasping. In
addition to the visual feedback, he was asked to imagine kines-
thetic feedback as well. The grasp was held steady for 2 s, fol-
lowed by an opening of the grasp and a return to the resting
position (reverse of the grasping trajectory). During the grasp
release trajectory, participants transported the hand back to its
resting position (Figure 7). The participant performed 100 tri-
als during the training phase. Following the training phase, EEG

FIGURE 7 | Grasp pre-shaping with closed loop real-time hand neuroprosthetic control based on EEG. Examples of successful grasps during the

closed-loop control are shown for the cylindrical (top row) and the lateral (bottom row) grasps. Videos of the shown task are available in the Supplementary Section.
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data and the pre-recorded hand kinematics were used to create
a decoder, using methods similar to those described here in the
Materials and Methods section. In the testing phase, the amputee
participant was asked to reach and grasp the presented object by
intending to perform such action within 5 s. The first and sec-
ond Principal Components were controlled by the participant’s
EEG in real time. During the testing phase, the participant was
able to achieve a grasping success rate of 80% over 100 trials. A
video showing example grasps is available in the Supplementary
Section.

In this study we decode with simple linear models as they have
been shown to provide high decoding accuracies from a mul-
titude of brain signals (spiking activity, LFP, ECoG, EEG, and
MEG) (Bradberry et al., 2008, 2010; Acharya et al., 2010; Mol-
lazadeh et al., 2011). Dexterous tasks like handwriting have been
reconstructed from electromyography (EMG) signals from the
hand with linear filters as well (Linderman et al., 2009). While
evidence is mounting for a time-domain encoding mechanism

in field potentials, including EEG, more research is needed to
elucidate its relationship with frequency domain representations
and spiking activity (Bansal et al., 2011). Further research is also
required to characterize the consistency of the channel selections
and neuroprosthetic control made across subjects and across ses-
sions, and to investigate the role of higher frequencies for EEG
decoding.

Acknowledgments

This work was supported by the National Science Foundation
award IIS-1219321.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2015.00121/abstract

References

Acharya, S., Fifer, M. S., Benz, H. L., Crone, N. E., and Thakor, N. V.

(2010). Electrocorticographic amplitude predicts finger positions during slow

grasping motions of the hand. J. Neural Eng. 7:046002. doi: 10.1088/1741-

2560/7/4/046002

Agashe, H. A., and Contreras-Vidal, J. L. (2011). “Reconstructing hand kinemat-

ics during reach to grasp movements from electroencephalographic signals,” in

2011 33rd Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC) (Boston, MA), 5444–5447.

Agashe, H. A., and Contreras-Vidal, J. L. (2013). “Observation-based calibration of

brain-machine interfaces for graspingm” in 2013 6th International IEEE/EMBS

Conference on Neural Engineering (NER) (San Diego, CA), 1–4.

Aggarwal, V., Acharya, S., Tenore, F., Shin, H.-C., Etienne-Cummings, R.,

Schieber, M. H. V., et al. (2008). Asynchronous decoding of dexterous finger

movements using M1 neurons. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 3–14.

doi: 10.1109/TNSRE.2007.916289

Antelis, J. M., Montesano, L., Ramos-Murguialday, A., Birbaumer, N., and

Minguez, J. (2013). On the usage of linear regression models to reconstruct

limb kinematics from low frequency EEG signals. PLoS ONE 8:e61976. doi:

10.1371/journal.pone.0061976

Artemiadis, P. K., Shakhnarovich, G., Vargas-Irwin, C. E., Donoghue, J. P., and

Black, M. J. (2007). “Decoding grasp aperture from motor-cortical popula-

tion activity,” in Conference Proceedings: IEEE/EMBS Conference on Neural

Engineering (Kohala Coast, HI), 518–521.

Ball, T., Demandt, E., Mutschler, I., Neitzel, E., Mehring, C., Vogt, K., et al.

(2008). Movement related activity in the high gamma range of the human EEG.

Neuroimage 41, 302–310. doi: 10.1016/j.neuroimage.2008.02.032

Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W., and Donoghue, J. P. (2011).

Relationships among low-frequency local field potentials, spiking activity, and

three-dimensional reach and grasp kinematics in primary motor and ventral

premotor cortices. J. Neurophysiol. 105, 1603–1619. doi: 10.1152/jn.00532.2010

Birbaumer, N. (2006). Breaking the silence: brain–computer interfaces (BCI)

for communication and motor control. Psychophysiology 43, 517–532. doi:

10.1111/j.1469-8986.2006.00456.x

Bradberry, T. J., Contreras-Vidal, J. L., and Rong, F. (2008). Decoding

hand and cursor kinematics from magnetoencephalographic signals dur-

ing tool use. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 5306–5309. doi:

10.1109/IEMBS.2008.4650412

Bradberry, T. J., Gentili, R. J., and Contreras-Vidal, J. L. (2010). Reconstructing

three-dimensional hand movements from noninvasive electroencephalo-

graphic signals. J. Neurosci. 30, 3432–3437. doi: 10.1523/JNEUROSCI.6107-

09.2010

Bradberry, T. J., Gentili, R. J., and Contreras-Vidal, J. L. (2011). Fast attainment

of computer cursor control with noninvasively acquired brain signals. J. Neural

Eng. 8:036010. doi: 10.1088/1741-2560/8/3/036010

Bradberry, T. J., Rong, F., and Contreras-Vidal, J. L. (2009). Decoding center-out

hand velocity from MEG signals during visuomotor adaptation. Neuroimage

47, 1691–1700. doi: 10.1016/j.neuroimage.2009.06.023

Castiello, U. (2005). The neuroscience of grasping. Nat. Rev. Neurosci. 6, 726–736.

doi: 10.1038/nrn1744

Cipriani, C., Antfolk, C., Controzzi, M., Lundborg, G., Rosén, B., Carrozza, M.

C., et al. (2011). Online myoelectric control of a dexterous hand prosthesis by

transradial amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 260–270. doi:

10.1109/TNSRE.2011.2108667

Cipriani, C., Segil, J., Birdwell, J., and Weir, R. (2014). Dexterous control

of a prosthetic hand using fine-wire intramuscular electrodes in targeted

extrinsic muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 828–836. doi:

10.1109/TNSRE.2014.2301234

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E.

C., Weber, D. J., et al. (2012). High-performance neuroprosthetic control

by an individual with tetraplegia. Lancet 6736, 1–8. doi: 10.1016/S0140-

6736(12)61816-9

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for anal-

ysis of single-trial EEG dynamics including independent component analysis.

J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Garipelli, G., Chavarriaga, R., and Millán, J. D. R. (2013). Single trial analysis of

slow cortical potentials: a study on anticipation related potentials. J. Neural Eng.

10:036014. doi: 10.1088/1741-2560/10/3/036014

Goncharova, I., McFarland, D., Vaughan, T., andWolpaw, J. (2003). EMG contam-

ination of EEG: spectral and topographical characteristics. Clin. Neurophysiol.

114, 1580–1593. doi: 10.1016/S1388-2457(03)00093-2

Gönen, M., and Alpaydın, E. (2011). Multiple kernel learning algorithms. J. Mach.

Learn. Res. 12, 2211–2268.

Hall, T. M., de Carvalho, F., and Jackson, A. (2014). A common structure underlies

low-frequency cortical dynamics in movement, sleep, and sedation. Neuron 83,

1185–1199. doi: 10.1016/j.neuron.2014.07.022

Hamed, B. S., Schieber, M. H., and Pouget, A. (2007). Decoding M1 neu-

rons during multiple finger movements. J. Neurophysiol. 98, 327–333. doi:

10.1152/jn.00760.2006

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel,

J., et al. (2012). Reach and grasp by people with tetraplegia using a neurally

controlled robotic arm. Nature 485, 372–375. doi: 10.1038/nature11076

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.

H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human

with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Frontiers in Neuroscience | www.frontiersin.org 10 April 2015 | Volume 9 | Article 121

http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2015.00121/abstract
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Agashe et al. EEG predicts hand grasping shape

Jeannerod, M. (1984). The timing of natural prehensionmovements. J. Mot. Behav.

16, 235–254. doi: 10.1080/00222895.1984.10735319

Kubánek, J., Miller, K. J., Ojemann, J. G., Wolpaw, J. R., and Schalk, G. (2009).

Decoding flexion of individual fingers using electrocorticographic signals in

humans. J. Neural Eng. 6:066001. doi: 10.1088/1741-2560/6/6/066001

Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield,

K. A., et al. (2009). Targeted muscle reinnervation for real-time myoelectric

control of multifunction artificial arms. J. Am. Med. Assoc. 301, 619–628. doi:

10.1001/jama.2009.116

Lebedev, M. A., and Nicolelis, M. A. L. (2006). Brain-machine inter-

faces: past, present and future. Trends Neurosci. 29, 536–546. doi:

10.1016/j.tins.2006.07.004

Linderman, M., Lebedev, M. A., and Erlichman, J. S. (2009). Recognition of

handwriting from electromyography. PLoS ONE 4:e6791. doi: 10.1371/jour-

nal.pone.0006791

Matsumura, M., Kawashima, R., Naito, E., Satoh, K., Takahashi, T., Yanagisawa, T.,

et al. (1996). Changes in rCBF during grasping in humans examined by PET.

Neuroreport 7, 749–752. doi: 10.1097/00001756-199602290-00017

McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2010). Electroencephalo-

graphic (EEG) control of three-dimensional movement. J. Neural Eng. 7:36007.

doi: 10.1088/1741-2560/7/3/036007

Mollazadeh, M., Aggarwal, V., Davidson, A. G., Law, A. J., Thakor, N. V., and

Schieber, M. H. (2011). Spatiotemporal variation of multiple neurophysiologi-

cal signals in the primary motor cortex during dexterous reach-to-grasp move-

ments. J. Neurosci. 31, 15531–15543. doi: 10.1523/JNEUROSCI.2999-11.2011

Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti, G. (1997).

Object representation in the ventral premotor cortex (area F5) of the monkey.

J. Neurophysiol. 78, 2226–2230.

Paek, A. Y., Agashe, H. A., and Contreras-Vidal, J. L. (2014). Decoding repeti-

tive finger movements with brain activity acquired via non-invasive electroen-

cephalography. Front. Neuroeng. 7:3. doi: 10.3389/fneng.2014.00003

Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., and Ball, T. (2012).

Decoding natural grasp types from human ECoG. Neuroimage 59, 248–260.

doi: 10.1016/j.neuroimage.2011.06.084

Quian Quiroga, R., and Panzeri, S. (2009). Extracting information from neuronal

populations: information theory and decoding approaches. Nat. Rev. Neurosci.

10, 173–185. doi: 10.1038/nrn2578

Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008). SimpleMKL.

J. Mach. Learn. Res. 9, 2491–2521.

Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., and Matelli,

M. (1988). Functional organization of inferior area 6 in the macaque monkey.

Exp. Brain Res. 71, 491–507. doi: 10.1007/BF00248742

Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., et al.

(1996). Localization of grasp representations in humans by PET: 1. Observation

versus execution. Exp. Brain Res. 111, 246–252. doi: 10.1007/BF00227301

Saleh, M., Takahashi, K., Amit, Y., and Hatsopoulos, N. G. (2010). Encoding

of coordinated grasp trajectories in primary motor cortex. J. Neurosci. 30,

17079–17090. doi: 10.1523/JNEUROSCI.2558-10.2010

Santello, M., Flanders, M., and Soechting, J. F. (1998). Postural hand synergies for

tool use. J. Neurosci. 18:10105.

Santello, M., Flanders, M., and Soechting, J. F. (2002). Patterns of hand motion

during grasping and the influence of sensory guidance. J. Neurosci. 22,

1426–1435.

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw, J. R.

(2004). BCI2000: a general-purpose brain-computer interface (BCI) system.

IEEE Trans. Biomed. Eng. 51, 1034–1043. doi: 10.1109/TBME.2004.827072

Schultz, A. E., and Kuiken, T. A. (2011). Neural interfaces for control of upper

limb prostheses: the state of the art and future possibilities. PM R 3, 55–67. doi:

10.1016/j.pmrj.2010.06.016

Shawe-Taylor, N., and Kandola, A. (2002). On kernel target alignment.Adv. Neural

Inf. Process. Syst. 14, 367. doi: 10.1.1.23.6757

Snoek, G. J., IJzerman, M. J., Hermens, H. J., Maxwell, D., and Biering-Sorensen,

F. (2004). Survey of the needs of patients with spinal cord injury: impact and

priority for improvement in hand function in tetraplegics. Spinal Cord 42,

526–532. doi: 10.1038/sj.sc.3101638

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Doyne Farmer, J. (1992).

Testing for nonlinearity in time series: the method of surrogate data. Phys. D

Nonlin. Phenom. 58, 77–94. doi: 10.1016/0167-2789(92)90102-S

Townsend, B. R., Subasi, E., and Scherberger, H. (2011). Grasp movement decod-

ing from premotor and parietal cortex. J. Neurosci. 31, 14386–14398. doi:

10.1523/JNEUROSCI.2451-11.2011

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J. M. K., Black,

M. J., and Donoghue, J. P. (2010). Decoding complete reach and grasp actions

from local primary motor cortex populations. J. Neurosci. 30, 9659–9669. doi:

10.1523/JNEUROSCI.5443-09.2010

Vinjamuri, R., Sun, M., Chang, C.-C., Lee, H.-N., Sclabassi, R. J., and Mao, Z.-

H. (2010). Dimensionality reduction in control and coordination of the human

hand. IEEE Trans. Biomed. Eng. 57, 284–295. doi: 10.1109/TBME.2009.2032532

Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A., and Mehring, C. (2009).

A review on directional information in neural signals for brain-machine inter-

faces. J. Physiol. Paris 103, 244–254. doi: 10.1016/j.jphysparis.2009.08.007

Wodlinger, B., Downey, J. E., Tyler-Kabara, E. C., Schwartz, A. B., Boninger, M.

L., and Collinger, J. L. (2015). Ten-dimensional anthropomorphic arm con-

trol in a human brain-machine interface: difficulties, solutions, and limitations.

J. Neural Eng. 12:016011. doi: 10.1088/1741-2560/12/1/016011

Wolpaw, J. R., and McFarland, D. J. (2004). Control of a two-dimensional move-

ment signal by a noninvasive brain-computer interface in humans. Proc. Natl.

Acad. Sci. U.S.A. 101, 17849. doi: 10.1073/pnas.0403504101

Yuan, H., Perdoni, C., and He, B. (2010). Relationship between speed and EEG

activity during imagined and executed handmovements. J. Neural Eng. 7:26001.

doi: 10.1088/1741-2560/7/2/026001

Zhuang, J., Truccolo, W., Vargas-Irwin, C. E., and Donoghue, J. P. (2010). Decod-

ing 3-D reach and grasp kinematics from high-frequency local field potentials

in primate primary motor cortex. IEEE Trans. Biomed. Eng. 57, 1774–1784. doi:

10.1109/TBME.2010.2047015

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Agashe, Paek, Zhang and Contreras-Vidal. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 April 2015 | Volume 9 | Article 121

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Global cortical activity predicts shape of hand during grasping
	Introduction
	Materials and Methods
	Data Acquisition and Experiment Design
	EEG Data Preprocessing
	Kinematics Data Preprocessing
	Decoding
	Discrete Classification

	Results
	Both Joint and Synergy Spaces Can Be Decoded from Scalp EEG
	Artifacts Did Not Aid Decoding
	Neural Representation of Grasping Kinematics in Sensor Space
	Grasp Classification Peaked 250ms after Movement Onset

	Discussion
	Delta-Band Time Domain EEG Encodes Grasping Kinematics
	Relevance to Clinical Populations and Brain-Machine Interfaces
	Demonstration of Real-Time Closed-Loop Neuroprosthetic Control of Grasping by an Amputee

	Acknowledgments
	Supplementary Material
	References


