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Memristive devices are popular among neuromorphic engineers for their ability to

emulate forms of spike-driven synaptic plasticity by applying specific voltage and

current waveforms at their two terminals. In this paper, we investigate spike-timing

dependent plasticity (STDP) with a single pairing of one presynaptic voltage spike and one

post-synaptic voltage spike in a BiFeO3 memristive device. In most memristive materials

the learning window is primarily a function of the material characteristics and not of

the applied waveform. In contrast, we show that the analog resistive switching of the

developed artificial synapses allows to adjust the learning time constant of the STDP

function from 25ms to 125µs via the duration of applied voltage spikes. Also, as the

induced weight change may degrade, we investigate the remanence of the resistance

change for several hours after analog resistive switching, thus emulating the processes

expected in biological synapses. As the power consumption is a major constraint in

neuromorphic circuits, we show methods to reduce the consumed energy per setting

pulse to only 4.5 pJ in the developed artificial synapses.

Keywords: BiFeO3 memristor, artificial synapse, single pairing STDP, memory consolidation, learning window,

low-power device

Introduction

Since the discovery of spike-timing dependent plasticity (STDP) in biological synapses (Bi and Poo,
1998; Snider, 2008; Di Lorenzo and Victor, 2013), scientists have been captivated by the idea of
changing the synaptic weight, i.e., the strength between the pre- and post-neuron, in bioinspired
electronic systems in a fashion similar to biology (Indiveri et al., 2006). However, the circuit-
oriented approach is complicated because the “synaptic weight” variable has to be stored typically
either as charge in a capacitor (Koickal et al., 2006) or even digitally in neuromorphic IC (Schemmel
et al., 2012; Mayr et al., 2013). This adds circuit complexity and increases energy consumption
(Indiveri et al., 2006; Adee, 2009; Ananthanarayanan et al., 2009). Therefore, nonvolatile analog
resistive switches, namely resistive random-access memory (RRAM) or memristors (Chua, 1971;
Du et al., 2013), responding to well-defined input signals by suitably changing their internal state
(“weight”) are currently developed. For example, the emulation of STDP with 60–80 pairings of
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pre- and post-synaptic spikes has been shown for artificial
synapses based onmemristive TiOx (Seo et al., 2011; Thomas and
Kaltschmidt, 2014), WOx (Chang et al., 2011), HfOx (Yu et al.,
2011), GST (Kuzum et al., 2012), and on the memristive BiFeO3

(Mayr et al., 2012; Cederström et al., 2013).
Figure 1A shows a memristor between the electrical

Integrate & Fire (I&F) neurons. The synaptic weight of the
memristor can be controlled by the time delay 1t between
pre- and post-spike from the 1st layer I&F neuron (Figure 1A)
(Zamarreño-Ramos et al., 2011). The 2nd layer I&F neuron
sums up the signals from all incoming neurons and generates
voltage spikes transmitted to other neurons (not shown)
through memristor-based artificial synapses. The memristive
BiFeO3(BFO) can serve as an analog resistive switch (Shuai et al.,
2011) with multiple distinguishable low resistance states (LRSs)
(Shuai et al., 2013; Jin et al., 2014) and with a single detectable
high resistance state (HRS). Due to the thermal diffusion of Ti
atoms and their substitutional incorporation into the lower part
of the BiFeO3 (BFO) layer during BFO thin film growth on a Pt/Ti
bottom electrode, the barrier at the Pt/Ti bottom electrode is
flexible.

Earlier we have shown that STDP and triplet plasticity
with learning windows on the millisecond time scale can be
faithfully emulated on BFO-based artificial synapses by applying
60–80 pairings of pre- and post-synaptic spikes (Mayr et al.,
2012; Cederström et al., 2013). In this work we investigate a
significantly wider range of timescale configurability, ranging

FIGURE 1 | (A) Schematic illustration of the memristor-based synaptic

electronics. The artificial synapses are placed between Integrate & Fire

neurons (I&F neuron). With a well-defined time delay 1t between the pre- and

post-spikes the internal state (“weight”) of the memristor is suitably changed.

(B) Hysteretic current-voltage (IV) characteristics of a Au/BiFeO3/Pt memristor

in LRS and HRS with a top electrode area of 4.5E4µm2 under source

voltages with maximum sweeping pulse amplitude of 8.5 V and a pulse width

of 100ms. The current in high resistance state IHRS and in low resistance state

ILRS is read out at +2.0 V, after having switched the memristor into HRS and

LRS, respectively. The long term potentiation current ILTP and the long term

depression current ILTD lie below the reading current in LRS (ILRS) and HRS

(IHRS). Inset shows the structure of a BFO memristor. (C) Schematic

demonstration of the distribution of fixed Ti4+, fixed Fe3+ and mobile V+o .

from 25ms to 125µs. To the best of our knowledge, this kind
of timescale configurability has not been shown in memristive
synapses before. We also examine the evolution of the induced
memristive weight change over time and provide several power
consumption figures. By increasing the programming voltage
(HRS/LRS writing pulse amplitude), it is possible to decrease
the switching pulse width as well as the power consumption
during a single STDP writing process on BFO-based artificial
synapses. Furthermore, the increased programming voltage also
shortens the total pairing spike time, and enables to move from
the standard biology-like 60–80 spike pairing STDP experiment
to a single pairing STDP experiment that results in the same
weight/memristance change.

Our work is structured as follows: In Section Materials and
Methods, we describe the non-volatile resistive switching of
BFO–based artificial synapses and introduce the single pairing
STDP pulse sequence. In Section Results, we present the
measured learning window, memory consolidation, and energy
consumption of the single pairing STDP in BFO-based artificial
synapses and discuss configurability, energy consumption, and
retention of weight change in Section Discussion. The paper is
summarized and an outlook is given in Section Summary and
Outlook.

Materials and Methods

Nonvolatile, Analog Resistive Switching in BiFeO3
Polycrystalline, 600 nm thick BiFeO3 (BFO) thin films with
a flexible bottom barrier have been grown by pulsed laser
deposition on Pt/Ti/SiO2/Si substrates. Circular Au top contacts
have been magnetron sputtered on the BFO thin films using
a shadow mask (Shuai et al., 2011, 2013; Jin et al., 2014).
The Pt/Ti bottom electrode and the Au top contacts posses a
flexible and a fixed barrier height, respectively. As illustrated in
Figure 1B, by applying the sweeping source voltage from 0V
→ −8.5V → +8.5V → 0V between the Au top electrode
and the bottom electrode, the current-voltage characteristics,
which were recorded using a Keithley source meter 2400, reveal
reproducible nonvolatile hysteretic bipolar resistive switching in
BFO memristors with mobile donors (oxygen vacancies) and
fixed donors (Ti donors). As illustrated in Figure 1C which
has been adapted from Ref. (You et al., 2014), the physical
mechanism underlying resistive switching in BFO memristors
is related with the nonvolatile change of flexible barriers in Ti-
containing BFO memristors. Due to voltage application of a LRS
writing pulse, fixed Ti donors close to the bottom electrode can
effectively trap mobile oxygen vacancies in BFO. The bottom
electrode becomes non-rectifying and the BFO memristor is in
LRS. On the other hand, when applying the HRS switching pulse,
the mobile donors in BFO memristors are redistributed between
the top and the bottom electrode. The bottom electrode becomes
rectifying and the BFO memristor is in HRS. Note that for both
writing pulses the Au top electrode remains rectifying.

A single writing pulse with an amplitude Vw = +8.0V and
−8.0 V can be used to switch the BFO memristor into LRS and
HRS, respectively. The maximum possible amplitude increases
with the thickness of the BFO memristor and decreases with
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the length of the writing pulse. For a BFO layer thickness of
600 nm and a writing pulse length of 100ms, the barrier height
of the bottom electrode typically starts to change at a writing
pulse of amplitude Vw = +3.0V. Applying a dc voltage below
+2.0V to the BFO memristor does not change the barrier height
of the bottom electrode, and the state of the BFO memristor
does not change. Therefore, the +2.0V dc voltage is defined
as the reading bias for the 600 nm thick BFO memristor. The
ratio between the resistance RHRS in HRS and the resistance
RLRS in LRS amounts to RHRS/RLRS = 2770 (Figure 1B). For
changing the synaptic weight the absolute value of the amplitude
Vp of the pre-synaptic and post-synaptic spike has to be larger
than the reading bias amplitude +2.0V (Smerieri et al., 2008;
Borghetti et al., 2009; Lai et al., 2009). In our previous work,
we used a 500 nm thick BFO layer and an amplitude of 2.3 and
2.0V for STDP with 60–80 pairings of pre- and post-synaptic
spikes. In this work, we use a 600 nm thick BFO layer and an
amplitude Vp of 3.0 V for STDP with single pairing of pre-
and post-synaptic spikes. For the potentiating (depressing) spike
sequence, the long term potentiation current ILTP (long-term
depression current ILTD) decreases exponentially with decreased
pulse amplitude in positive (negative) voltage range: ILRS > ILTP
(IHRS < ILTD).

The nonvolatile resistive switching of BFO was examined by a
retention test (Figure 2A). A single writing pulse ofVw = +8.0V
and −8.0V and a pulse width of tp = 100ms was used to switch
the BFO memristor into LRS and HRS, respectively. The reading
currents have been read out with a reading bias of Vr = +2.0V
and are defined as the current of HRS (IHRS) and LRS (ILRS).
As shown in Figure 2A the BFO memristor exhibits degradation
of the LRS within the testing time of 2 h. No significant change
has been observed for HRS during the retention time of 5 h.
This non-ideal retention motivated us to investigate memory
consolidation (Clopath et al., 2008) in BFO with the shortened
pulse sequence of single pairing STDP.

A BFO memristor with multilevel resistive switching can
be considered as an analog resistive switch and used as an
artificial synapses. The retention of multilevel resistive switching
is illustrated in Figure 2B. Positive writing pulses ranging from
2.0 to 8.0V are applied to the BFO-based artificial synapse. As
expected from the current-voltage characteristics (Figure 1B),
the reading current at 2.0 V increases with increasing amplitude
of the writing bias. After applying the positive writing pulses
Vw (as switched, tw = 2 s), the reading current was largest
and slightly decreased (30mins, tw = 30min) with increasing
waiting time tw (Figure 2B). However, due to the degradation
(Figure 2B) different LRSs will become indistinguishable. E.g.,
the reading current for a writing bias of Vw = 5.5V and a
waiting time of tw= 2 s is the same as the reading current for
Vw = 6.0V and tw = 30min. We have already shown that the
retention of BFOmemristors can be significantly improved by an
additional BFO surface modification using low energy Ar+ ion
irradiation before depositing the Au top electrode (Shuai et al.,
2011). Optimized parameters for the Ar+ irradiation process are
discussed in Ref. (Ou et al., 2013). The Ar+ irradiation helps to
homogenize the average crystallite size in the polycrystalline BFO
memristors.

Pulse Sequence for Single Pairing Spike-timing
Dependent Plasticity
In our previous work, we have used a bias amplitude of Vp =

2.3V for STDP with 60–80 pairings of pre- and post-synaptic
spikes (Mayr et al., 2012; Cederström et al., 2013). Especially,
Mayr et al. illustrates how the pre- and post-synaptic waveforms
of a specific biology-derived synaptic plasticity rule (Mayr and
Partzsch, 2010) can be adjusted to operate the BFO memristors.
The resulting waveforms are comparable to the waveforms
proposed by Zamarreño-Ramos et al. (2011). In order to shorten
the total pairing spike time, in this work we slightly increased
the bias amplitude to Vp = 3.0V and applied a single pre- and

FIGURE 2 | (A) Retention test with a reading bias of Vr = +2.0V after

setting the BFO memristor to LRS (red symbols) and to HRS (blue

symbols). The reading current has been recorded every 30 s. (B) Retention

of multilevel resistive switching in a BFO memristor, which has been initially

set to HRS by a writing voltage of Vw = −8.0V. The reading current has

been measured at a small reading bias of Vr = +2.0V directly after

switching BFO into one of the multiple LRSs with a positive writing bias of

Vw ranging from +2.0 to +8.0 V (top edge of the rectangles, tw = 2 s) and

30min later (bottom edge of the rectangles, tw = 30min). Note that the

reading current starts to increase for a writing voltage of ca. +3.0 V, i.e.,

the state of the BFO starts to change. All states in (B) are read with a

pulsed reading bias amplitude of Vr = +2.0V and length 100ms. Because

the reading current changes from Ir = 1.1E-2µA in HRS with R = 1.8E8 �

to Ir = 2µA in LRS with R = 1E6 �, the power (P = R · I2) will change from

2.2E-8 W in HRS to 4.0E-6 W in LRS. The resolution of a pulsed power

meter amounts to 0.01 dB. So theoretically more than 2000 power levels

would be achievable, and we expect that at least 32/64 levels are possible

in a power efficient manner.
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post-synaptic spike. In comparison to what is discussed in Mayr
et al. (2012), the single spike pairing instead of multiple (60–80)
pairings allows us to shorten the total spike time and to adjust
the learning time constant of the STDP function from 25ms to
125µs. The detailed signal scheme of Memristor initialization,
single pairing STDP, and memory consolidation for long-term

potentiation (LTP) and long-term depression (LTD) are shown
in Figure 3. In order to facilitate reproducing this signal scheme,
the parameters used in every step in the pulse sequence are
listed in Table 1. As illustrated in Figure 6A the signal scheme
for resistive switching from HRS into a single LRS (Figure 6B)
can be simplified and reduced to Memristor initialization for

FIGURE 3 | Signal scheme of Memristor initialization, Single pairing

STDP, and Memory consolidation. (A) A pre-post spike order is used for

long term potentiation (LTP). (B) A post-pre spike order is used for long term

depression (LTD). The potentiation current ILTP (depression current ILTD)and

the initial HRS current IHRS (and the initial LRS current ILRS) are used to

normalize the long term potentiation current 1ILTP (the long term depression

current 1ILTD) as defined in Equations (2) and (3). tp is the pulse width and

tw is the measurement waiting time before applying the reading pulse Vr .

TABLE 1 | Parameters for the potentiating spike sequence (1t > 0) and for the depressing spike sequence (1t < 0) during Memristor initialization,

Memory consolidation, and Single pairing STDP.

Step in pulse sequence Memristor

initialization

Memory

consolidation

Single pairing

STDP

Memory

consolidation

Memory

consolidation

Potentiating spike sequence -Vw & tp tw -Vp & tp/+Vp & τ

1t > 0

+Vp & tp/-Vp & τ

tw +Vr & tr

Depressing spike sequence +Vw & tp tw +Vp & tp/−Vp & τ

1t < 0

−Vp & tp/+Vp & τ

tw +Vr & tr

The amplitude |Vw |and the length tp of the writing bias pulse determine the Memristor initialization. The waiting time tw after Memristor initialization, the waiting time tw after Single pairing

STDP and the amplitude |Vr | and the length tr of the reading bias pulse determine Memory consolidation. The amplitude −Vp, the length tp, the amplitude +Vp and exponential decay τ

determine the presynaptic spike and the amplitude +Vp, the length tp, the amplitude −Vp, and the exponential decay τ determine the post-synaptic spike. The time delay between the

pre- and the post-spike is defined by 1t.
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LTP and to Memory consolidation for LTD (Figure 6A). The
step labeled Memristor initialization refers to the application of
a writing pulse to set the BFO memristor in HRS and LRS. In
the HRS the BFO memristor has both rectifying top and bottom
electrodes whereas in the LRS the BFOmemristor has a rectifying
top electrode and a non-rectifying bottom electrode (You et al.,
2014). For the pulse order leading to potentiation (Figure 3A),
a single negative pulse, i.e., the HRS writing pulse, is applied to
switch the memristive device into HRS. After the waiting time
tw a single pre- and a single post-spike is applied to the top
electrode of device. The pre- and post-spikes superimpose at
the BFO memristor as potentiating spike, and the spike timing
difference 1t determines the waveform of the potentiating spike
(1t = tp > 0 for the potentiating inputs). Each pre- and post-
spike consists of one rectangular pulse with pulse amplitude Vp

and one exponentially decaying pulse Vexp

Vexp = |Vp| • exp

(

−t

τ

)

, (1)

with the decay time τ = τpre = τpost, where τpre and τpost are
the exponential decay times of pre- and post-spikes, respectively.
In order to reduce the influence of the exponential decay on the
single pairing STDP function, we choose τ = 2.5 · tp. For the
potentiating (depressing) spike order, the spike timing difference
1t between the pre- and post-spike is positive (negative) and
lies in the range: tp = |1t| = 10 · tp. In both pre- and post-
spikes, the rectangular pulse is short compared to the decay
time of the exponential waveform, and the amplitude of the
overlapped spike pulses depends on the spike time difference
1t between both waveforms. After the measurement waiting
time tw the synaptic weight of BFO-based artificial synapses
has been checked by applying a reading bias of Vr = +2.0V
with a pulse width of tr = 100ms. The reading current is
defined as the potentiation current ILTP anddepression current
ILTD after sourcing potentiating spike and depressing spike,
respectively.

Finally, the reading current IHRS (ILRS) of BFO in HRS (LRS)
is measured at a reading bias of Vr = +2.0V after recording
ILTP (ILTD). For biological reasons it is desirable to keep STDP
bounded. Therefore, we have normalized the LTP and LTD
current values. After a potentiating spike sequence the synaptic
weight scales with the normalized potentiation current 1ILTP

1ILTP (%) =
ILTP − IHRS

ILTP
∗ 100%, (2)

and after a depressing spike sequence the synaptic weight scales
with the normalized depression current 1ILTD

1ILTD (%) =
ILTD − ILRS

ILRS
∗ 100%. (3)

After normalization using Equations (2) and (3) LTP lies in
the range from 0 to +100% and LTD lies in the range from 0
to −100%, respectively. As we have shown in Mayr et al. (2012),
the specific STDP characteristics can be configured through the

waveform. Specifically, τ pre directly translates to the STDP pre-
post time window, while τpost translates to the post-pre time
window. The Vp of the pre- and post-pulses translate to the
respective scaling of the STDP amplitudes.

Results

In the following single pairing STDP in BFO-based artificial
synapses (Section Nonvolatile, Analog Resistive Switching in
BiFeO3) is demonstrated by using different pulse widths tp and
measurement waiting times tw. The potentiating and depressing
input signals (Section Pulse Sequence for Single Pairing Spike-
timingDependent Plasticity) have been generated with anAgilent
pulse function arbitrary generator 81150A. The reading current
has been measured with a Keithley 2400 source meter.

Learning Window
According to the input signal scheme (Figure 3) the BFO
memristor is set in the HRS and in the LRS with a writing pulse
amplitude of Vw = −8.0 and +8.0V, respectively. For the single
pairing STDP measurements on a BFO-based artificial synapse
pre- and post-spikes of different pulse widths tp = 10ms, 1ms,
500µs, and 50µs, and with a pulse amplitude of |± Vp|= 3.0V,
and a waiting time tw 10 s have been chosen (Figure 4). The
exponential decay time constant (τ = 2.5 · tp) amounts to
τ = 25ms (Figure 4A), 2.5ms (Figure 4B), 1.25ms (Figure 4C),
and 125µs (Figure 4D). After recording ILTP (ILTD) the reading
current IHRS (ILRS) of BFO in HRS (LRS) has been measured at a
reading bias of Vr = +2.0V and the normalized potentiation
current 1ILTP Equation (2) and the normalized depression
current 1ILTD Equation (3) are calculated. The synaptic weight
of the BFO memristor scales with the normalized potentiation
current 1ILTP and the normalized depression current 1ILTD. If
the prespike precedes the post-spike (1t > 0) biological synapses
(Bi and Poo, 1998) undergo long term potentiation LTP, i.e.,
the connection between two neurons becomes stronger. On the
other hand, if the post-spike precedes the prespike (1t < 0),
biological synapses undergo long term depression LTD, i.e., the
connection between two neurons becomes weaker. We have
measured the LTD current ILTD and the LTP current ILTP in
a BFO-based artificial synapse and can show that the BFO
memristor emulates the STDP function of biological synapses.
The normalized current 1I decreases with increasing delay time
|1t|. The normalized current curve for positive and negative
1t is the LTP and LTD curve (Figure 4), respectively. As an
example, in the following we discuss the LTP curve in Figure 4

for 1t = tp > 0. Initially the BFO-based artificial synapse is set
into HRS. The maximum amplitude of the potentiating spike
amounts to 2Vp = +6.0V. For this potentiating spike the BFO-
based artificial synapse is fully switched to LRS. The normalized
potentiation current 1ILTP at 1t = tp amounts to ca. 100%.
In the time delay range 0 < tp < 1t ≤ 10 · tp, the maximum
amplitude of potentiating spikes is reduced from 6.0 to 3.2V.
Therefore, the exponential-like decay of the normalized current
dominates STDP with increasing 1t and the synapse cannot be
fully switched to LRS by applying these potentiating spikes. For
both positive and negative time delays |1t |= 10 · tp,1I decreases
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FIGURE 4 | Long term depression current 1ILTD (negative range of

y-axis) and long term potentiation current 1ILTP (positive range of

y-axis) of a ca. 600nm thick BFO memristor with a contact area of

4.5E4 µm2 for single pairing STDP with pulse width (A) tp = 10ms, (B)

tp = 1ms, (C) tp = 500 µs and (D) tp = 50 µs, measurement waiting

time tw = 10000ms, pulse amplitude Vp = 3.0V, reading pulse

amplitude Vr = +2.0V and reading pulse width tr = 100ms. 1ILTD and

1ILTP have been normalized using Equations (2) and (3), respectively. The

memristor was preset in HRS and LRS (Memristor initialization in Table 1)

with a writing pulse amplitude of Vw = −8.0V and Vw = +8.0V, respectively.

with decreasing pulse width tp. At tp = 500µs and 50µs, 1ILTP
amounts to 0% at |1t | = 10 · tp. It is also noticed that 1ILTP
decreases more strongly than 1ILTD in the larger time delay
range. That is because the threshold voltage for LRS is higher
than the threshold voltage for HRS. For example in Ref. (Mayr
et al., 2012) a voltage of 2.3 V and of 2.0V has been used as the
threshold voltage to switch a BFO-based artificial synapse to LRS
and HRS, respectively. The shaded regions in Figure 4 show the
ranges of the delay time1t where the normalized current is larger
than 50% for four different pulse widths tp. This range is also
called learning window and decreases from 25ms to 125µs with
decreasing pulse width tp from 10ms to 50µs.

As can be seen from Figure 4, the STDP time windows can
be finely controlled. Specifically, making 1t longer results in
a monotonous decrease in both potentiation and depression
with increasing 1t, i.e., the memristance change directly and
fine grainedly follows the applied waveform resulting from the
overlay of pre- and post-pulse. This is in contrast to most
other reported memristive synapses, where the time difference
between pre- and post-pulse only translates to a stochastic,
average change of memristance (Jo et al., 2010; Alibart et al.,
2012).

Memory Consolidation
Memory consolidation has been investigated inmodels of biology
in order to improve the understanding of the translation of an
initially induced weight change to long term weight stabilization

(Anokhin, 2005; Clopath et al., 2008). This motivated us to
investigate the memristance weight, i.e., memory consolidation,
in BFO-based artificial synapses in more details by performing
single pairing STDP measurements with different waiting times
tw (2 s = tw = 5 h). In biological systems, the waiting
time corresponds to the time which elapses before something
learned is retrieved. On the other hand, for the memory
consolidation measurements, we have again used the ca. 600 nm
thick BFO-based artificial synapses and applied a writing voltage
of Vw = +6.0V. In Figure 5A the corresponding STDP
data are plotted for tw = 2, 60, and 300 s. We have chosen
single pre- and post-synaptic spikes with the same absolute
value of the pulse amplitude Vp = 3.0V, pulse width tp =

10ms and exponential decay time τ = 25ms. As shown in
Figure 5A, the LTP and LTD curves shift toward low normalized
current values with increasing waiting time in both positive
and negative spike timing ranges. Therefore, the dependence
of LTP and LTD on the writing pulse amplitude can be used
to trace differences in the LTP and LTD curves of single
pairing STDP. For BFO-based artificial synapses with a smaller
writing voltage Vw, the optimized STDP curve with more
significant exponential-like function (as shown in Figure 4) is
reproducible by choosing a smaller pulse amplitude Vp, e.g.,
Vp = 2.5V.

Furthermore, memory consolidation measurements
(Figure 5B) reveal that for a waiting time tw shorter than
1 h there is a visible change of reading current (degradation)
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FIGURE 5 | (A) STDP of a BFO-based artificial synapses with

different waiting times tw = 2 s (circles), 1min (quadrangles), and

5min (triangles) for tp = 1t = 10tp. Pulse amplitude Vp = 3.0V, pulse

width tp = 10ms, and exponential decay time τ = 25ms. (B)

Memristance weight consolidation for a fixed 1t = tp = 10ms and

for a waiting time of tw = 2 s (circles), 60 s (quadrangles), and 300 s

(triangles) from (A) and tw = 0.5, 1, 2, 3, 4, 5 h (squares). The

pulse amplitude Vp amounts to 3.0 V. The exponential decay

amounts to τ = 25ms. The writing voltage for Memristor initialization

amounts to |± VW | = 6.0V.

both in positive and negative spike timing ranges after applying
a single pre-synaptic and post-synaptic pulse sequence, whereas
for a waiting time tw longer than 2 h the current is stabilized. This
is in agreement with the results from retention measurements
(Figure 2A).

Energy Consumption
Low energy efficiency, large chip size, and complex STDP synapse
circuits aremajor bottlenecks of today’s bio-inspired systems, e.g.,
neural networks where synapses typically outnumber neurons by
more than 500:1. In order to reliably observe STDP functionality
the corresponding current changes should lie in the nA current
range and above. In addition to the stabilization of multilevel
resistive switching, we can also increase the current level in
a controlled manner by low-energy Ar+ ion irradiation (Ou
et al., 2013). This will allow for integrating BFO-based artificial
synapses with smaller contact area A (Table 2), e.g., in neural
networks, without adding another device for amplifying current
changes. The estimated energy consumption of each synapse
in human brain amounts to only 1–10 fJ (Table 2). In order
to approach the high energy efficiency of biological synapses,
we applied single pairing (not 60–80 pairing) STDP pulses to
BFO-based artificial synapses. For single pairing STDP most of
the energy is consumed during SET operation, e.g., Memristor
initialization into LRS (Table 1, Figure 3). For example, in
TiN/Ge2Sb2Te5/TiN/W artificial synapses the energy for SET
operation is 50 pJ while the energy for RESET operation is 0.675
pJ Ref. (Kuzum et al., 2012).

The energy consumed during SET operation is

E = V ′
w • Iavg • t′p, (4)

with Iavg = Ipeak/2. The writing voltage amplitude Vw, the
setting current Ipeak, and writing pulse width tp are the crucial
parameters for evaluating the energy consumption. Note that
for the polycrystalline BFO memristors with different sizes of

BFO crystallites, larger BFO crystallites below the top electrode
are possibly not switchable. Therefore, the effective area of the
top electrode might be smaller than the nominal area of the top
electrode. Using BFO-based artificial synapses we can downscale
the size of the top electrodes (Jin et al., 2014), increase the pulse
amplitude V ′

w and also reduce the pulse width t′p Equation (4)
to further decrease the energy consumption per setting process
(Figure 6).

In order to optimize the energy efficiency of BFO-based
artificial synapses, we have applied a large writing pulse
amplitude of 23.0V to compensate the short pulse width of
50 ns. The corresponding energy consumption amounts to 4.7
pJ. The LRS reading current and HRS reading current at 2.0V
amount to 980 and 64 nA, respectively. The theoretical maximum
normalized current ranges from 93.5 to 0% and from 0 to 93.5%
in both curves Equation (2) and (3).

In Table 2 (Kandel and Schwartz, 1985; Jo et al., 2010; Chang
et al., 2011; Yu et al., 2011; Kuzum et al., 2012; Wu et al.,
2012) different memristor-based artificial synapses are listed
and compared with respect to their energy consumption per
(re)setting process. The TiN/Ti/AlOx/TiN/Ti memristor (Wu
et al., 2012) shows the smallest energy consumption of 1.5 pJ
per SET pulse. It is expected that to a certain extent the energy
consumption can be further reduced by further reducing the
electrode area size A. However, one has to consider that BFO is
a polycrystalline thin film and that only 1–0.1% of the crystallites
below the top electrode of the polycrystalline BFO are switched
in single pairing STDP.

Discussion

Configurability
In this work single pairing STDP in BFO-based artificial synapses
has been demonstrated for emulating the functionality and the
plasticity of biological synapses. The waveform-defined plasticity
of BFO memristors in addition to their multilevel memristive
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TABLE 2 | Energy consumption E, setting potential amplitude Vw , average setting current Iavg, pulse width tp and top electrode area size A of resistive

switching during SET operation of different memristor-based artificial synapses (Kandel and Schwartz, 1985; Jo et al., 2010; Chang et al., 2011; Yu et al.,

2011; Kuzum et al., 2012; Wu et al., 2012).

Single synapse E (pJ) Vw (V) Iavg (µA) tp (ns) A (µm2)

Human brain (total number of synapses

N = 1015, Ptotal = 10 W) (Kandel and

Schwartz, 1985; Da Costa, 2013)

(1–10) *1E–3 - - - 0.12

TiN/Ti/AlOx/TiN/Ti (Wu et al., 2012) 1.5 +1.5 +100 10 0.72

Au/BFO/Pt/Ti (this paper) 4.7 +23.0 +4.1 50 4.5E+4

TiN/HfOx/AlOx/Pt (Yu et al., 2011) 6.0 −2.5 −240 10 0.0079

TiN/Ge2Sb2Te5/TiN/W (Kuzum et al., 2012) 50 −5.5 −900 10 0.018

CMOS-electrode/Ag + Si/CMOS-electrode

(Jo and Lu, 2008)

430 +3.2 +0.45 3.0E+5 0.031

Pd/WOx/W/SiO2/Si (Chang et al., 2011) 520 +1.3 +0.40 1.0E+6 0.053

FIGURE 6 | (A) Signal scheme for resistive switching a BFO memristor in

HRS into LRS. The memristor is initialized into the HRS by applying a writing

voltage Vw = −6.0V with a pulse width tp = 100ms, and is then switched

back to different LRSs with different pulse amplitudes V ′w and pulse widths

t′p. (B) Reading current of the BFO memristor with a contact area of

4.5E4µm2 in LRS in dependence on the writing voltage V ′w in the range

from 6.0 to 23.0 V and with different constant pulse widths of t′p = 50ms,

1ms, 50µs, 1µs, 500 ns, and 50 ns. The reading voltage amounts to +2.0 V.

For a given pulse width at least one writing voltage (red bar) is large enough

to set the BFO memristor in the LRS. In that case the reading currents is

even larger than the current ILRS read out after applying a writing voltage of

Vw = +6.0V with a pulse width of t′p = 100ms (first red bar).

programming capability enables easy control of the STDP
time windows, as evidenced by the three orders of magnitude
timescale configurability shown in this paper. While there has
been a lot of simulation work on this topic, the number of devices
where STDP or variations have actually been implemented and
measured is still fairly small (Jo et al., 2010; Alibart et al., 2012).
Among those, our highly-configurable, finely grained learning
curves are unique, other implementations exhibit statistical
variations (Jo et al., 2010), can only assume a few discrete levels
(Alibart et al., 2012) or the learning windows are device-inherent,
i.e., cannot be adjusted (Ohno et al., 2011). We expect that for
BFO-based artificial synapses at least 32/64 levels are possible in a
power efficient manner. In addition, the wide range of timescales
possible in BFO-based synapses enables e.g., a timebase-tunable
system that could learn a classification offline in an accelerated
manner, while still able to interact with real-time sensors before
or after this learning.

As mentioned in the introduction, BFO-based artificial
synapses can be used for conventional STDP experiments, where
only multiple spike pairings exhibit significant weight change,

as well as in the mode used in this paper, where a single
pairing already induces a significant weight change. By changing
the voltage of the pre- and post-synaptic pulses, any point in
between these two extremes can also be chosen, again showing
the excellent configurability of BFO-based artificial synapses.
However, the versatility of BFO memristors comes at the price
that in contrast to e.g., phase-change materials, BFO is not easily
integrated on top of CMOS (Shuai et al., 2013).

Energy Consumption
In Table 2, we have shown an energy consumption of E =

4.7 pJ in a BFO-based artificial synapse with electrode size of
4.52E4µm2. While this is still three orders of magnitude above
the energy consumption of biological synapses, it is one of the
lowest reported so far for other artificial synapses. Compared to
neuromorphic approaches, all memristive approaches are several
orders of magnitude better (Azghadi et al., 2014). In terms
of absolute area, the BFO memristor is comparable to some
neuromorphic implementations (Hasler and Marr, 2013; Noack
et al., 2015), but not competitive withmemristor crossbar devices,

Frontiers in Neuroscience | www.frontiersin.org 8 June 2015 | Volume 9 | Article 227

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Du et al. Single pairing STDP in BFO-based memristor

as we are employing a single device test structure that has a large
contact size for reasons of convenience. However, BFO device
scaling is well established, thus we can aggressively scale the size
of the top electrode to 10µm2 and the thickness of the BFO to
100 nm (Jin et al., 2014). For BFO with larger electrode area size,
the current scales linearly with area size. For smaller electrode
area size we would expect that the current scales with the number
of BFO crystallites below the electrode. And in the limit case of
nanoscale electrodes, the smallest possible current should be the
current through single BFO crystallites.

Retention of Weight Change
We have investigated the retention of memristance weight
change across time. As Figure 5A shows, the basic shape of the
STDP curves is preserved across time. Figure 5B illustrates that
even after memory consolidation, we retain a graded weight, i.e.,
a unimodal weight distribution. Our synapse does not collapse
in either a potentiated or depressed (bimodal) distribution as
predicted in some synaptic models (Fusi et al., 2000; Clopath
et al., 2008). In memristive literature, there is usually no
investigation of these phenomena, the weight change is taken at
some unspecified time after induction and then assumed to be
non-volatile. Only very few articles have investigated the actual
non-volatility/weight retention across time and shown that the
assumption of a non-volatile change is not necessarily valid
(Chang et al., 2011). Thus, compared to other reports, this article
gives a neuromorphic designer a clear guide on how to utilize the
memristive synapses for long-term storage.

Interestingly, this investigation of memory consolidation is
also somewhat missing in the original biological measurements.
Usually, data on the weight evolution ca. 30–60min after
induction is provided, but only on single example pairing
experiments. These data points show various behaviors, from
unchanged weights after initial weight induction (Froemke and
Dan, 2002) to increases of weight change across time (Bi and
Poo, 1998), decreases across time (Markram et al., 1997) or
slow oscillations around the initial potentiated/depressed weight
value (Sjöström et al., 2001). However, it is unclear how the
overall STDP window consolidates over time. Thus, measuring
the evolution of an STDP curve across time after induction at
biological synapses similar to our investigation on memristive
synapses may actually be a quite interesting scientific question.

Summary and outlook

In this work we have investigated a wide range of timescale
configurability, ranging from 25ms to 125µs. Also, we have
investigated power consumption figures and have shown that it
is possible to decrease the switching pulse width and to reduce
the power consumption during a single STDP writing process on
BFO-based artificial synapses to only 4.5 pJ. Furthermore, the
increased programming voltage also shortens the total pairing
spike time, and enables to move from the standard biology-like
60–80 spike pairing STDP experiment to a single pairing STDP
experiment with the same weight/memristance change.

One important advantage of single STDP in comparison to
60–80 spike STDP is that both pre- and post-synaptic waveform

are causal, i.e., they start only at the pre- respectively post-
synaptic pulse. This is in contrast to most currently proposed
waveforms for memristive learning, where the waveforms have
to start well in advance of the actual pulse (Zamarreño-Ramos
et al., 2011), which requires pre-knowledge of a pulse occurrence.
Especially, in an unsupervised learning context with self-driven
neuron spiking, this pre-knowledge is simply not existent.

In a wider neuroscience context, waveform defined plasticity
as shown here could be seen as a general computational principle,
i.e., synapses are not likely to measure time differences as in
native forms of STDP rules, they are more likely to react to local
static (Ngezahayo et al., 2000) and dynamic (Dudek and Bear,
1992) state variables. In the future some interesting predictions
could be derived from that, e.g., STDP time constants that are
linked to synaptic conductance changes or to the membrane time
constant (Pfister et al., 2006; Mayr and Partzsch, 2010). These
predictions could be easily verified experimentally.
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