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Multi-subject or group-level component analysis provides a data-driven approach to

study properties of brain networks. Algorithms for group-level data decomposition

of functional magnetic resonance imaging data have been brought forward more

than a decade ago and have significantly matured since. Similar applications for

electroencephalographic data are at a comparatively early stage of development

though, and their sensitivity to topographic variability of the electroencephalogram

or loose time-locking of neuronal responses has not yet been assessed. This

study investigates the performance of independent component analysis (ICA) and

second order blind source identification (SOBI) for data decomposition, and their

combination with either temporal or spatial concatenation of data sets, for multi-subject

analyses of electroencephalographic data. Analyses of simulated sources with different

spatial, frequency, and time-locking profiles, revealed that temporal concatenation

of data sets with either ICA or SOBI served well to reconstruct sources with both

strict and loose time-locking, whereas performance decreased in the presence of

topographical variability. The opposite pattern was found with a spatial concatenation

of subject-specific data sets. This study proofs that procedures for group-level

decomposition of electroencephalographic data can be considered valid and promising

approaches to infer the latent structure of multi-subject data sets. Yet, specific

implementations need further adaptations to optimally address sources of inter-subject

and inter-trial variance commonly found in EEG recordings.

Keywords: EEG, group component analysis, multisubject analysis, blind source separation, ICA, SOBI

1. Introduction

Recent years saw a rapid advance in the development of methods for the analysis of large multi-
subject data sets in neuroscience, not least because signals and images obtained from the brain are
complex and hard to structure without reverting to computational methods (Lemm et al., 2011).
A predominant goal of current developments is to directly make inferences on the general nature
or structure of neurocognitive processes underlying a specific task context or disease state. Many
of these group-level analyses have been developed in the context of functional magnetic resonance
imaging (fMRI, e.g., Calhoun and Adal, 2012), but more recent developments also address other
modalities such as electroencephalography (EEG). However, each modality comes with its own
peculiarities that need to be addressed. This paper sets out to evaluate applications of independent
component analysis (ICA) and second order blind identification (SOBI) for the analysis of
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multi-subject EEG data, focusing on approaches that directly
infer a structure of sources common to subjects and considering
major sources of variance in EEG, namely temporal jittering
of neuronal responses and inter-individual variability of scalp
topographies.

EEG is acknowledged as an important tool to study perceptual
processing and cognition as it measures neuronal activity
reflected in spatio-temporal patterns of voltage fluctuations
across a subject’s scalp (Nunez and Srinivasan, 2006; Buzski et al.,
2012). With EEG, the spatially and temporally summed current
flows resulting from synaptic activity at the neurons’ dendrites
are considered the major source of voltage fluctuations registered
at the head’s surface. To be detected at an EEG electrode, currents
generated at a specific brain region have to traverse through the
different tissue types of the brain, as well as the scull and the
scalp. This process usually is referred to as volume conduction,
which causes surface electrode recordings to reflect mixtures of
the temporal profiles of concurrently active brain sources (Nunez
et al., 1997; Winter et al., 2007). Hence, a specific event recorded
in the EEG most likely does not reflect a single process or activity
of a single brain region. Figure 1 depicts the mixing of brain
sources at recording electrodes.

Because of this mixing problem, blind source separation via
ICA for EEG has become increasingly popular (Hyvrinen and
Oja, 2000; Onton et al., 2006). When applied to EEG data, ICA
reconstructs source activity time courses by maximizing their
statistical independence while estimating the parameters of the
underlying (de-)mixing process. The most common application
of ICA to EEG without a doubt is artifact correction: ICA is
used to estimate and deplete the activity of artifactural sources
(e.g., the activity of facial muscles or eye blinks; e.g., Hoffmann
and Falkenstein, 2008), in the end reconstructing artifact-free
EEG. On the other hand, ICA also is used to isolate and extract
desired brain activity. Hence, by demixing the original EEG
recordings, ICA helps to identify and separate the activity of
single brain sources, thereby also increasing the SNR of the
reconstructed EEG events of interest (Delorme et al., 2012). In
the most common applications, though, ICA is applied to data
of single subjects and therefore does not naturally generalize to a
group of subjects, because the number of sources or their exact
constellation may well differ across a pool of subjects. That is,
even when working on the same task, subjects may use different
cognitive strategies thereby causing variations with regard to the
number of active brain sources or their mixing. In addition, no
two brains are identical and because EEG recordings rely on
volume conduction, differences in brain anatomy alone can cause
variations in the sources’ mixing as found at surface electrodes
(Michel et al., 2004).

Another source of variance is a potential variability of the
onset of neuronal processes in response to external or internal
events. The computation of an event-related potential (ERP) rests
on the assumption that the triggered neuronal processes show
no variability regarding temporal onset and peak. However, so-
called induced responses show a substantial temporal jittering
such that simple averaging over trials does not only reduce
noise, but also reproduces a significantly depleted or distorted
version of the sources’ signals only (Makeig et al., 2004). Thus,

when (pre-)processing EEG data care has to be taken not to lose
significant portions of the signal that might be of interest in a
given task or analysis context (see Figure 1).

To allow for inferences about the source configuration at
the group-level using ICA, two strategies have been suggested.
First, single-subject ICAs are computed and the components
are matched across subjects using clustering algorithms (e.g.,
Bigdely-Shamlo et al., 2013). Second, components constantly
expressed across subjects can be estimated using a single ICA
computed on aggregate data sets built from EEG recordings
of multiple subjects. Algorithms of the latter class usually are
referred to as group ICA (e.g., Eichele et al., 2011; Cong et al.,
2013). These two approaches can be considered as opposites
on a methodological spectrum. The clustering of single-subject
components holds the potential problem that many of the
resulting clusters will be sparse, i.e., not all subjects contribute
to all clusters. Whereas one might argue that this corresponds
to a true representation of the latent sources, one cannot easily
make statistical inferences at the group level anymore, since
subjects may show extremely unequal contributions to many
clusters. Hence, this approach focuses on the integrity of an
individual’s representation at the expense of limited capabilities
for population-level inferences. Group ICA, on the other hand,
aims at extracting components consistently expressed across
subjects and has extensively been used for the identification of
networks in fMRI (Calhoun and Adal, 2012). Since a set of
components is estimated that is common to all subjects, this
model naturally translates to population-level inferences and can
easily be applied to group comparisons. Two approaches for
group ICA have been suggested and their evaluation will be the
focus of this study.

Computing a group ICA simply by temporally concatenating
the data of multiple subjects has already been suggested about a
decade ago (Delorme and Makeig, 2004), but was only recently
published in a more formal framework (Cong et al., 2013). In this
approach, an aggregate data set is built from matrices containing
the single-subject EEG data. Specifically, let yk be the EEG data
of the k-th subject containing EEG recordings fromm electrodes
as row elements, and o samples as columns. Then, the aggregate
data set Yh of size m × (n ∗ o) is given by the horizontal
(temporal) concatenation Yh = [y1, ..., yk, ..., yn], with k =

1, ..., n, and n being the total number of participants included
in the analysis. Furthermore, we apply centering and whitening
via principal component analysis (PCA) to Yh, providing us
with the principal components RTYh, where R corresponds to
the orthonormal transformation matrix obtained from PCA1.
Applying the basic ICA model to the preprocessed data leads
to RTYh = ASh, where Sh = [s1, ..., sk, ..., sn] is the matrix
containing the horizontally/temporally concatenated component
time courses (estimated source activities) of the n participants.
Note, that this design implies thatA = A1 = ... = Ak = ... = An,
i.e., the mixing matrices of the different subjects are identical.
Hence, the number of sources and their variances must not vary
across the single-subject data sets. Because this approach to group

1Further processing steps, such as z-transformations of input variables, are omitted

for notational simplicity.
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FIGURE 1 | The mixing problem of EEG and trial averaging. Neuronal

activity is picked up at scalp electrodes (blue circles), with recordings at each

electrode originating from a specific mixture of brain sources (as indicated by

the arrows’ thickness). To the right, simulated recordings from an electrode

are shown. The left of the two columns depicts source activities that are

time- or phase-locked to an event. The right column depicts onset times that

show some temporal variability across trials. Because at the same point in

time (see black bar) the activity can be in different phases of the neuronal

response (e.g., either at a peak or a trough), averaging only restores a

distorted version of the source activities as recorded at an electrode.

ICA of EEG relies on temporal concatenation of single-subject
data sets, we will refer to it as tcICA. Please refer to Figure 2 for a
depiction of this approach.

Following the notion that different participants or separate
conditions may produce differing sets and constellations of
components, Eichele et al. (2011) proposed a different approach
to group ICA of EEG. Their procedure encompasses two
consecutive data reduction steps with subsequent reorganization
and aggregation prior to ICA (see Figure 2). Specifically, let yk
again be an EEG data set of subject k with m electrodes. In
the first step, for each of the n subjects a PCA is computed
on their data such that we receive the subject-specific principal

components RT
k
yk, where RT

k
is the transposed c1 × m PCA-

transformation matrix, where c1 corresponds to the number of
principal components that have been extracted at this level. Note
that both RT

k
and yk are specific for the k-th subject. Then, an

aggregate data set of size (n ∗ c1)× o is built via vertical (spatial)
concatenation of the n reduced data sets RT

k
yk. Note that c1

usually is smaller than m, because PCA often is used for data
reduction. On this aggregate data set a second PCA is computed,
now extracting c2 group principal components. At this step, we

receive matrix X, which is of size c2 × o and contains the group
principal components computed via matrix GT , which is the

transformation matrix of the group PCA. Note that in the basic
application of PCA both RT

k
and GT would be square, whereas

here these matrices may have been reduced to c1 and c2 rows,

respectively. Finally, we can compute the c2 group independent
components from the group principal components according to
S = WX, where S is the c2×omatrix with the group independent

component time courses, and W is the c2 × c2 demixing matrix
of the group ICA.

In contrast to tcICA, this model does not directly deliver
subject-specific time courses of the independent components,
but rather some aggregate, group independent component time
courses. However, subject-specific independent component time
courses sk can easily be computed via multiplication of the
original data, the subject-specific elements of the first- and
second-level PCAs, as well as the demixing matrix: sk =

WGT
k
RT
k
yk. Similarly, the subject-specific topographies of an

independent component can be reconstructed by tk = ATGT
k
RT
k
,

where each row of tk contains the weights indicating a
component’s contribution to a given EEG channel. Because the
approach of Eichele et al. (2011) relies on nested component
analyses computed at multiple levels, we will refer to it as mlICA.

It can clearly be seen that these two approaches, tcICA and
mlICA, should exhibit different strengths and weaknesses with
regard to the above-mentioned sources of variance in EEG.
With tcICA it is assumed that the mixing of sources, and
correspondingly their scalp topographies, do not differ across
subjects. It seems reasonable, however, that this assumption will
be violated in nearly all multi-subject EEG data sets to some
extent. Therefore, Cong et al. (2013) suggested to first assess the
model order of the subject-specific data sets, for example by using
the Akaike or Bayesian information criteria, then testing whether
there is sufficient homogeneity of these indices to warrant the
application of tcICA (Cong et al., 2013). Note though, that the
absence of inter-individual variation in terms of the number of
sources is a necessary criterion for this group ICA approach, but
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FIGURE 2 | Basic concepts of group analyses using temporal

concatenation and multilevel decomposition in combination with

ICA or SOBI. For temporal concatenation, data aggregation yields a

horizontally elongated matrix on which the demixing matrix W can be

estimated, assuming the same mixing process for all subjects. This,

however, is not the case with multilevel decomposition since

single-subject as well as group-level decomposition prior to ICA/SOBI

not only reduce the number of variables, but also allow for some

variability of the latent structure across subjects. Note that usually only

a subset of the c*n vertically concatenated components (c = number of

channels/components, n = number of subjects) enter final

decomposition via ICA or SOBI.

not a sufficient one. Two subjects may show the same number
of sources, but the individual mixing matrices may still differ,
simply because corresponding sources may project differently
to the scalp or because the spatial, temporal, or frequency
characteristics of sources do not match across subjects (i.e., a
specific source is actually not expressed in every subject). With
mlICA, on the other hand and although only a single common
demixing matrix W is estimated for all subjects, inter-subject
variability in the weighting of independent components to the
single-subject scalp recordings is allowed. This is because not
only the single-subject PCA, but also the group PCA may show
inter-individual variation in their transformation matrices. Note
that the transformation matrix GT , as obtained in the context of
mlICA (but not tcICA), can be partitioned into subject-specific
GT
k
, thereby providing the contribution of the subject-specific

principal components to the group principal components,
and ultimately also the group independent compenents. This
compensates for differences regarding the number or nature of
sources across subjects. However, when considering temporal
jittering of source activity, mlICA should exhibit a bias toward
activity patterns consistently expressed and correlated across
subjects, since the group PCA will select for such activity patterns
and non-consistent activity might be lost during this data
reduction step. Temporal jitter should not lead to deteriorated
performance with tcICA, though, as long as the mixing matrices

indeed show a high degree of similarity. This is because volume
conduction will still guarantee high correlations across channels
and tcICA’s PCA only considers correlations across channels but
not subjects.

Infomax ICA (Bell and Sejnowski, 1995) has shown good
performance for the analysis of neuroscientific data and usually
is the algorithm of choice also in applications of tcICA and
mlICA. Recently it has been argued, though, that algorithms
relying on second order statistics may be more adequate to
use when variations in source mixing are to be expected. Lio
and Boulinguez (2013), for example, showed that SOBI (second-
order blind identification; Belouchrani et al., 1997) performs
significantly better than Infomax ICA in context of group ICA
for EEG (using temporal concatenation), when mixing matrices
vary slightly as it would result from differences in electrode
placements. It still needs to be determined though, whether
this finding still holds with more pronounced differences in
mixing matrices. Hence, within the framework of this study two
additional applications for the estimation of group components,
namely tcSOBI and mlSOBI, are derived by replacing ICA with
SOBI.

With this study, we will put temporal concatenation as well
as the multilevel data decomposition to test under controlled
yet realistic conditions, using both Infomax ICA and SOBI as
algorithms for blind source separation. Multi-subject EEG data
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will be simulated using a known set of sources whose activity
profiles vary in terms of frequency, phase-locking, as well as their
topographical mapping. In an initial simulation the generated
signals will be embedded in random Gaussian noise, whereas a
second simulation will use real EEG measurements of subjects
at rest as background signal. Note that the former case is a
well-controlled state, because the number of relevant sources
as well as their contributions to the surface EEG are specified.
When using real resting state EEG as noise, however, we have
to deal with an additional and unspecified number of distractor
sources whose strengths are not known. Ultimately, this study
will provide initial guidelines for the application of group-level
ICA and SOBI for EEG, as well as important reference points for
further development.

2. Materials and Methods

2.1. Design
To evaluate the performance of these algorithms under realistic
conditions, multi-subject EEG data were simulated roughly
mimicking brain responses as observed in a simple response
task with visual stimulation. A total of five factors were varied.
(I) Three sources were modeled expressing activity relative
to a virtual event. One source was characterized by an early
40Hz gamma band response showing largest activity at occipital
electrodes over the visual cortex. The second source modeled
increased activity over medial electrodes in the alpha band with
a spectral peak at 10Hz. The third source reflected beta band
activity at 20Hz over the left motor cortex, modeling EEG activity
associated with a button press. The amplitudes of the response
profiles of the three sources were varied independently from
trial to trial. (II) The single-trial onset times of the sources were
varied in five steps ranging from a jitter of 0–200 ms around
an average onset time, thus modeling a transition from perfectly
time- or phase-locked (evoked) to non-phase locked (induced)
brain activity. Specifically, onset times could vary up to a total
of either 0, 25, 50, 100, or 200ms. (III) Topographies resulting
from a given source could either be constant or variable across
subjects; i.e., the single-subject mixing matrices were either the
same or varied. (IV) The two approaches for group analysis
and their combinations with ICA and SOBI (tcICA, mlICA,
tcSOBI, mlSOBI) were compared. (V) The simulated EEG was
embedded into background noise. This background noise was
either artificially generated (Gaussian random noise) or taken
from real EEG recordings of participants at rest.

2.2. Simulations
Fifteen single-subject data sets were simulated, each containing
data from 62 electrodes and 50 trials. Each trial contained
three seconds of data generated at a sampling rate of 500Hz.
The three sources showed activity relative to a virtual event
occurring at 1000ms. The three sources showed sinusoidal
activity of 100ms duration at 10Hz (alpha), 20Hz (beta), and
40Hz (gamma), with average onset times of 400, 600, and 200ms
post stimulus presentation, respectively. Exact onset times of
the sources could vary across trials in accordance with five
conditions: time windows for temporal jittering were centered

at the previously described average onset times and allowed
source onset variability of 0, 25, 50, 100, or 200ms. The average
amplitude of a source was scaled such that it corresponds to an
average surface EEG amplitude of 10 µV. Across trials, however,
source amplitudes varied between 5 and 15 µV. The exact values
for amplitude and latency variations were generated via random
selections from a uniform distribution. To transform source
activities to scalp EEG, five varying projections were defined
for each of the sources. That is, the projection vector defined
a source’s contribution to each of the electrodes by setting the
corresponding loading to 0, 1, or −1. The EEG can be simulated
by computing Ysim = ÂS, where Â is the sparse 62 × 3 mixing
matrix of our model with columns containing the projection
vectors of the sources, and S the 3 × (1500 × 50) matrix with
the source time courses of the temporally concatenated trials. The
varying projection patterns for the three sources are shown in
Figure 3A. The single-subject data sets were simulated according
to two conditions, with Â either being constant or different
across subjects. To generate variable topographies according to
the latter condition, for a given subject the source projections
were randomly chosen from the set of possible assignments
displayed in Figure 3A, with the additional constraint that no two
mixing matrices must be identical. Please refer to Figure 3B for a
depiction of the resulting source-to-scalp projections.

At last, noise was added to finalize the generation of the
simulated data. In one condition, noise was generated by
selecting random numbers from a Gaussian distribution. In a
second condition excerpts from real EEG measurements of 15
subjects at rest (eyes open and focusing on a fixation cross)
were taken as approximations of real EEG noise and added
to the simulated data. The Gaussian noise was generated such
that it matched basic characteristics of the EEG noise; hence,
noise under both conditions exhibited a mean of 0 and a
standard deviation of 8.5. The EEG recordings correspond to
calibration measurements of the first session of a neurofeedback
training study (Enriquez-Geppert et al., 2014). This study was
approved by the ethics committee of the University of Oldenburg,
Germany.

The simulated data sets were subjected to group analyses as
discussed in the Introduction. In case of tcICA and tcSOBI,
data were horizontally concatenated to form the multi-subject
data set Yh

sim. This multi-subject data set was centered and
whitened using PCA. However, PCA was not used to reduce
data dimensionality; rather, all 62 principal components were
then subjected to Infomax ICA or SOBI. Finally, this provides
us with data matrix S̃hsim = [s̃1, ..., s̃k, ..., s̃n] that contains
the horizontally/temporally concatenated components or source
estimates of the n participants. These subject-specific component
time courses were later used for the evaluation of the algorithms’
performance.

With mlICA and mlSOBI, first, all single-subject data sets
separately undergo centering and whitening via PCA, again using
all 62 principal components for further processing. Then, amulti-
subject data set is built by vertically concatenating the single-
subject principal components and a second PCA is computed
on these data. Now, the first 62 group principal components,
i.e., those contributing most to the variance of the single-subject
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A

B

FIGURE 3 | Source projections. (A) The first, second, and third row each

contain the five scalp projections used for the alpha, beta, and gamma

source, respectively. Black dots on the scalp indicate electrode positions.

Red and blue represent positive and negative weights, respectively. (B)

Shown are the simulated subject topogrpahies that could either be constant

or variable across subjects.

principal component data, are subjected to Infomax ICA or
SOBI, ultimately providing us with the time courses of the group
components or source estimates. Finally, the subject-specific
source time courses s̃k and the corresponding topographies t̃k
were back-reconstructed.

The data simulations as well as the implementations of the
four analytic approaches were scripted inMATLAB (R2012a, The
MathWorks Inc., Natick, MA, 2000). Notable exceptions are the
implementation of Infomax ICA, SOBI, as well as functions for
data filtering and plotting of EEG topographies; for these tasks,
routines of the MATLAB-based open source software package
EEGLAB were used (Delorme and Makeig, 2004).

2.3. Performance Measures and Statistical
Assessment
Three main dependent variables were derived from the
reconstructed single-subject sources for the evaluation of the
algorithms: (1) correlations of frequency-spectra between the
original and the reconstructed sources were computed and
the highest correlation for each of the original sources was
determined; (2) for each pair of an original and a reconstructed

source as matched in (1), the correlation of amplitude variations
was calculated; (3) the reconstruction accuracy, i.e., the variance
of the original source explained by the variance of the
reconstructed source, was computed based on the time domain
representations of both the source and the matched independent
components.

Regarding the first measure (spectral correlations), for the
original and the reconstructed component time courses of a
subject, 512 consecutive data points starting from the 1000 ms
time stamp (presentation of the virtual stimulus) were extracted
from every trial. These data excerpts were subjected to a discrete
Fourier transform separately for each trial and subsequently
averaged across trials. This yielded three frequency spectra for
the original sources (alpha, beta, and gamma), and 62 frequency
spectra of the components reconstructed for every subject. Then,
correlations between the spectra of the original on the one,
and the reconstructed components on the other hand were
computed. From this correlation matrix, the highest correlation,
averaged across subjects after Fisher-z transform, of any of the
reconstructed components with each of the three original sources
was extracted providing us with dependent variable 1.
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Whereas measure 1 relies on frequency-domain
representations of the signals, the computation of the remaining
two measures is done in the time-domain. Dependent variable 2
assesses the quality of the reconstruction of amplitude variations
at the single-trial level. To derive this measure, those three
components identified during computation of measure 1, and
each matching one of the original sources, were processed using
a band-pass filter with a width of 8 Hz centered at the frequency
of the matched source. Then, these data were rectified and
temporally smoothed by using a 10-point lagged moving average:
i.e., the value at time point t was computed as the average of the
amplitude at time point t and its nine preceding data points.
Subsequently, the maximum amplitude of each of the processed
trials was computed and correlated with a vector coding the
amplitude variations of the original source. Filtering and
temporal smoothing were applied to compensate for the effects
of noise, which was not present in the original source model but
inevitably affects source estimation and reconstruction, thereby
further differentiating it from the following measure.

The reconstruction accuracy (dependent variable 3) was
computed to represent the percentage of the original source’s
variance in the time domain explained by the reconstructed
independent component as identified for the computation of
measure 1. More specifically, again 512 data points starting at
1000 ms were extracted from each trial, temporally concatenated,
and the correlation of the original and the reconstructed time
course was computed. When squaring the correlation coefficient,
it indicates the percentage of mutually explained variance. Thus,
in contrast to measure 2, variable 3 is well sensitive to the effects
of noise; i.e., a reconstructed independent component capturing
a substantial degree of noise may show high correlations
regarding single-trial amplitude variations (measure 2), but low
reconstruction accuracy due to an attenuated SNR.

Note that these measures are calculated on the single-subject
data. However, in many cases the average correlation will be
of interest. To compute the latter, correlation coefficients are
first Fisher-z transformed, which represents a variance-stabilizing
transformation, averaged, then computing the inverse Fisher-z
transform of the average prior to reporting the results.

One measure that has recently been suggested for the
evaluation of independent components is “dipolarity,” which
basically relies on the match between the components’ maps
and the projection of single equivalent dipoles to scalp
electrodes (Delorme et al., 2012). We did not apply this
measure for our evaluations though, because we used simplified
topographies with discrete loadings, which is not uncommon in
simulation studies of EEG and fMRI. Real EEG topographies,
however, are smoother, and sometimes more complex. Simplified
topographies as applied in the context of this study, although fully
sufficient for the evaluations applied here, are not well suited for
inverse modeling, or dipole localization, as would be necessary
for the dipolarity index as suggested by Delorme et al. (2012).

In sum, the design of this study corresponded to a four-
factorial design of the simulations with factors SOURCE
(alpha, beta, gamma), JITTER (0, 25, 50, 100, 200),
TOPOGRAPHY (constant, variable), and ALGORITHM
(tcICA, mlICA, tcSOBI, mlSOBI). NOISE conditions

(Gaussian, EEG) were not directly statistically compared, because
this would have violated some of the statistical assumptions
of variance-analytic measures. ANOVAs corresponding to
this design were computed for each of the three dependent
variables and the two NOISE conditions separately. Although
performance measures based on correlation values underwent
Fisher-z transform prior to statistical assessment, figures will
report the underlying correlation values to ease interpretation.
Follow-up analyses relied on post-hoc computations with
Tukey-tests. Statistical assessments were done using the Statistica
software (10, Stat Soft Inc., Tulsa, OK, USA) and MATLAB
(R2012a, The MathWorks Inc., Natrick, MA, 2000).

3. Results

3.1. Simulations with Gaussian Noise
Means and standard deviations, reported in accordance with
the different combinations of the factor-levels, can be found for
spectral correlations, amplitude correlations, and reconstruction
accuracies in Figures 4–6, respectively.

3.1.1. Effects of Temporal Jitter

As listed in Table 1, all three dependent variables
revealed the expected two- and three-way interactions of
ALGORITHM×JITTER and ALGORITHM×JITTER×SOURCE,
as well as the four-factorial interaction including
TOPOGRAPHY, to be significant. Irrespective of a source’s
frequency, with a temporal jitter of 200 ms, tcICA and tcSOBI
outperformed mlICA in all measures (all p < 0.001). MlSOBI
sometimes showed a performance in-between, but overall
revealed a similar pattern as mlICA. More importantly though,
the performance of mlICA and mlSOBI was modulated by
an interaction of JITTER×SOURCE, which altogether was
the cause of the aforementioned three-way interaction; the
higher a source’s frequency, the lower the temporal jitter
necessary to deteriorate the performance of mlICA and
mlSOBI. This effect was most clearly seen with reconstruction
accuracy (see Figure 6), where alpha, beta, and gamma sources
were associated with significant decreases in the explained
variance at jitters of 200, 50, and 25 ms (all p < 0.001),
respectively.

3.1.2. Effects of Varying Mixing Matrices

All three measures showed the expected two- and three-
way interactions (ALGORITHM×TOPOGRAPHY, and
ALGORITHM×TO-POGRAPHY×JITTER), as well as the four-
factorial interaction including SOURCE. Test statistics are again
listed in Table 1 and the effects are depicted in Figures 4–6.
First, compared to constant mixing matrices, the performance
of tcICA and tcSOBI significantly drops in all measures when
the mixing matrices vary across subjects, an effect evident at all
levels of JITTER (all p < 0.001). A similar, yet less pronounced
effect, is seen with mlICA and mlSOBI. Importantly, the more
pronounced drop in performance with tcICA and tcSOBI leads
to significantly higher amplitude correlations and reconstruction
accuracies with mlICA and mlSOBI in case of variable mixing
matrices (all measures with p < 0.01).
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FIGURE 4 | Shown are means and standard deviations for spectral correlations between the simulated and reconstructed sources. This measure

provides feedback on the algorithms’ ability to separate spectrally distinct sources.

JITTER, however, significantly modulates the associations of
ALGORITHM and TOPOGRAPHY. Although the performance
of mlICA, but not necessarily mlSOBI, drops with increasing
temporal jitter with both conditions of TOPOGRAPHY, they
also provide significantly better performance measures with
jitters of 0, 25, or 50 ms (all p < 0.005), and significantly

worse performance with a jitter of 200 ms (all three measures
with p < 0.001). As can be seen in Figures 4–6, the exact
performance pattern associated with JITTER also depends on the
sources’ frequency as already listed in the previous paragraph,
altogether explaining the observed interaction including all four
experimental factors.
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FIGURE 5 | Shown are means and standard deviations of the amplitude correlations, i.e., the correlation of the amplitude variability across trials as

modeled in the simulated and captured in the reconstructed sources.

3.2. Simulations with EEG Noise
3.2.1. Effects of Temporal Jitter

Overall, the effects utilizing sources embedded in EEG
noise show results comparable to those found with
simulations using Gaussian noise. Again, both the two-

and three-way interactions (ALGORITHM×JITTER and
ALGORITHM×JITTER×SOURCE) turned out significant with

all three dependent variables. Please refer to Table 2 for the test

statistics. All measures show deteriorated performance with
mlICA and mlSOBI as compared to tcICA and tcSOBI with
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FIGURE 6 | Depicted are means and standard deviations of reconstruction accuracies, a measure that indicates the algorithms’ capabilities to isolate

the signal and attenuate the noise.

temporal jitters of 100 ms and above (all p < 0.001); beyond,
beta and gamma sources show even earlier onsets of deteriorated
performance starting at jitters of 50 and 25 ms, respectively (all p
< 0.05), giving rise to the aforementioned three-way interaction.

However, the spectral correlation measure and the
reconstruction accuracy show better performance with mlICA
and mlSOBI and beta and gamma sources at jitter-levels up to 25
and 0 ms, respectively (all p < 0.02).
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TABLE 1 | Summary of statistical effects computed from simulations using Gaussian noise.

Measure, Effects F-value df, dferror p-value

MAXIMUM SPECTRAL CORRELATION

ALGORITHM × JITTER 98.66 5.21, 72.99 <0.001

ALGORITHM × JITTER × SOURCE 22.96 13.18, 80.03 <0.001

ALGORITHM × TOPOGRAPHY 52.61 1.47, 20.63 <0.001

ALGORITHM × TOPOGRAPHY × JITTER 11.15 4.33, 60.6 <0.001

ALGORITHM × TOPOGRAPHY × JITTER × SOURCE 9.37 4.83, 81.04 <0.001

AMPLITUDE CORRELATION

ALGORITHM × JITTER 99.89 4.82, 67.4 <0.001

ALGORITHM × JITTER × SOURCE 21.22 6.16, 85.89 <0.001

ALGORITHM × TOPOGRAPHY 76.09 1.38, 19.29 <0.001

ALGORITHM × TOPOGRAPHY × JITTER 11.51 2.38, 73.5 <0.001

ALGORITHM × TOPOGRAPHY × JITTER × SOURCE 8.59 2.65, 86.59 < 0.001

RECONSTRUCTION ACCURACY

ALGORITHM × JITTER 251.27 3.38, 47.25 <0.001

ALGORITHM × JITTER × SOURCE 53.36 3.73, 52.28 <0.001

ALGORITHM × TOPOGRAPHY 139.22 1.34, 18.8 <0.001

ALGORITHM × TOPOGRAPHY × JITTER 11.71 3.86, 53.99 <0.001

ALGORITHM × TOPOGRAPHY × JITTER × SOURCE 8.07 3.62, 50.67 < 0.001

Degrees of freedom (df) have been corrected according to Greenhous-Geisser for violation of sphericity; the same holds for the corresponding F- and p-values.

TABLE 2 | Summary of statistical effects computed from simulations using EEG noise.

Measure, Effects F-value df, dferror p-value

MAXIMUM SPECTRAL CORRELATION

ALGORITHM×JITTER 895.06 2.31, 32.35 < 0.001

ALGORITHM×JITTER×SOURCE 252.59 19.56, 61.53 < 0.001

ALGORITHM×TOPOGRAPHY 4.85 1.04, 14.58 < 0.001

ALGORITHM×TOPOGRAPHY×JITTER 34.44 3.25, 44.88 < 0.001

ALGORITHM×TOPOGRAPHY×JITTER×SOURCE 7.23 4.61, 64.52 < 0.001

AMPLITUDE CORRELATION

ALGORITHM×JITTER 423.14 2.97, 41.51 < 0.001

ALGORITHM×JITTER×SOURCE 153.45 2.96, 41.46 < 0.001

ALGORITHM×TOPOGRAPHY 5.21 1.18, 16.53 < 0.04

ALGORITHM×TOPOGRAPHY×JITTER 42.24 2.49, 34.87 < 0.001

ALGORITHM×TOPOGRAPHY×JITTER×SOURCE 6.58 2.98, 41.74 < 0.002

RCONSTRUCTION ACCURACY

ALGORITHM×JITTER 2331.17 2.61, 36.55 < 0.001

ALGORITHM×JITTER×SOURCE 685.9 4.76, 66.59 < 0.001

ALGORITHM×TOPOGRAPHY 43.53 1.13, 15.85 < 0.001

ALGORITHM×TOPOGRAPHY×JITTER 40.36 2.65, 37.09 < 0.001

ALGORITHM×TOPOGRAPHY×JITTER×SOURCE 22.22 4.74, 66.42 < 0.001

Degrees of freedom (df) have been corrected according to Greenhous-Geisser for violation of sphericity; the same holds for the corresponding F- and p-values.

3.2.2. Effects of Varying Mixing Matrices

Again, the two-way interaction of
ALGORITHM×TOPOGRAPHY as well as the 3- and 4-way
interactions were statistically significant with all three measures.
Please refer to Table 2 and Figures 4–6 for statistics and
depictions of the effects. Overall, all three dependent measures
revealed a drop in performance with tcICA and tcSOBI from

constant to variable topographies (all p< 0.05). As already noted,
these findings were furthermore modulated by factors JITTER
and SOURCE, such that mlICA and mlSOBI effectively showed
better performance with specific combinations of temporal jitters
and sources on the one, and variable topographies on the other
hand. These effects were found with all dependent variables,
but were most pronounced with the spectral correlations and
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reconstruction accuracies, especially at higher source frequencies.
With beta and gamma sources, for example, performance of
mlICA and mlSOBI was significantly better with variable as
opposed to constant topographies at jitters of up to 25 and 0 ms,
respectively (all p < 0.02). A similar outcome was found with the
alpha source regarding mlSOBI, and partially also with respect to
mlICA (e.g., Figure 6).

4. Discussion

The concurrent analysis of data sets obtained from multiple
subjects for the estimation of latent variables representative for
these aggregate data is a powerful tool that already has proven
its usability in context of magnetic resonance imaging. With
EEG though, the number of algorithms currently available is
rather limited. The use of Infomax ICA in combination with
either a temporal or vertical concatenation of data sets has been
suggested. In addition, more recently SOBI has been brought
forward as alternative to ICA for the processing of EEG (Lio and
Boulinguez, 2013). However, altogether these early approaches
have not yet fully considered major sources of variance in EEG
recordings, namely topographic variability and differences in
time-locking of neuronal responses across trials.With the present
study our goal was to systematically evaluate and validate the four
possible combinations resulting from the two procedures for data
aggregation and the two prevalent source separation procedures.
This way one could not only identify potential strengths and
weaknesses of these methods, but also derive some guidelines for
their application.

Overall, we found our hypotheses on the performance of
these methods, when varying relevant characteristics of the
simulated data sets, to be supported. When multi-level data
decomposition is used (mlICA, mlSOBI; Eichele et al., 2011) a
strong bias toward evoked activity patterns is found: the stronger
the temporal jittering of source onset times across trials, the lower
the performance. In addition, cancelation and decorrelation are
more pronounced for a given degree of temporal jitter with
high as compared to low frequency sources. As a consequence,
tcICA and tcSOBI outperformed mlICA and mlSOBI with
induced as compared to evoked source activity patterns. This
pattern of results was very similar for both EEG and Gaussian
background noise. Hence, this clearly supports the notion that
using a group-level PCA as second preprocessing and data-
reduction step on the aggregated multi-subject data does induce
a strong bias toward evoked activity and lower frequency sources.
Data reduction, however, is a necessary step because of the
extremely high computational load associated with high-density
EEG recordings, suggesting the need for further adaptations of
this procedure.

On the other hand, we found the previously described
performance pattern to be strongly affected by variations
of source topographies, which could easily result from
inconsistent electrode placement (minor effects) or inter-
individual differences in neuroanatomy (major effects). That
is, when topographies of the sources varied across subjects,
the performance of the algorithms relying on temporal
concatenation (Cong et al., 2013) significantly dropped,

effectively leading to performance levels significantly lower than
those of mlICA andmlSOBI at least with low degrees of temporal
jittering. This effect was most pronounced with reconstruction
accuracies, suggesting high degrees of noise relative to the signal
when reconstructing source activities. Again, the effects were
most pronounced with high frequent oscillatory activity, with
performance decreases ranging from about 10 to 60% of the
explained variance from alpha to gamma sources, respectively.
Given the significant degree of variability of subject topographies
observable across recordings, a very pronounced susceptibility
for decreased performance with real EEG recordings is to be
expected.

Previous work found that SOBI may well be suited to
compensate for differences in electrode placement that usually
occur across subjects during preparation of measurements (Lio
and Boulinguez, 2013). In their work, Lio and Boulinguez used
SOBI in combination with a temporal concatenation of multi-
subject data. Consequently, one might hope that SOBI, and
especially tcSOBI, would exhibit a better performance when
subject topographies show a stronger degree of variability as
would be caused by differences in neuroanatomy. Our findings,
however, do only provide mixed support for this notion.Whereas
with Gaussian background noise indeed all three measures
indicated performance increases of mlSOBI relative to mlICA,
this was not necessarily the case with sources embedded in
EEG as background activity. Similar, but even less consistent,
effects were found with tcSOBI and tcICA. Overall, it seems
that SOBI, because of its reliance on lagged cross-correlations of
input variables, may actually be more useful in compensating for
temporal jitter than for topographical variability. Hence, future
work needs to more systematically evaluate the relationship of
the temporal lags used for SOBI’s source estimation, the actual
frequency of a source, as well as the degree of a source’s time-
locking.

The resuls clearly show that topographical variability of source
projections can deteriorate the reconstruction of source time
courses if not adequately compensated for. However, in this
study we did not directly evaluate the accuracy of reconstructed
source topographies. This is, because all procedures tested here
allow for the reconstruction of single-subject source time courses,
as this corresponds to the major strength of temporal ICA.
However, only mlICA and mlSOBI so far also recover subject-
specific source topographies. Source topographies recovered
via tcICA or tcSOBI may substantially be distorted though,
once topographical variability is present. Nonetheless, source
topographies provide impportant information guiding the
interpretation of underlying neurocognitive processes. Future
work thus needs to refine procedures for the reconstruction of
source topographies, as well as their evaluation. When assessing
reconstruction accuracies of topographies, procedures could
either be directly evulated in the electrode, as well as in the
3D source space when utilizing forward and inverse modeling
(Delorme et al., 2012).

In addition, our evaluations support that characteristics of the
inevitable measurement noise constitute critical factors for the
algorithms’ performance. This can, for example, clearly be seen
in the lower performance measures with Gaussian as opposed
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to EEG noise. This effect may at first appear counterintuitive,
yet is not fully unexpected since Gaussian noise may lead to
suboptimal orthogonalization of the input variables (Arora et al.,
2015). Indeed, the characteristics of noise may become even
more relevant if procedures for the estimation of the model-
order are utilized. When analyzing real EEG data, one might
retrieve an estimate of the number of relevant sources by
assessing the intrinsic dimensionality of the data (e.g., Camastra,
2003). Yet, current research suggests a strong dependence of the
accuracy of such methods on the distributional characteristics
of noise (e.g., Majeed and Avison, 2014). The effects of noise
characteristics on both the methods for data decomposition and
model-order estimation need further study though, such that no
definite recommendation can be given yet on how to optimally
configure a processing pipeline given different attributes of
noise.

Based on the observations of this study, there is no
general recommendation for one of the approaches, since none
would be expected to perform well in all possible conditions.
Temporal concatenation and subsequent source separation may
be suggested as method of choice if a study’s focus is on the
estimation of sources generating induced responses. A thorough
inspection of individual topographies needs to ensure that only
minor differences between topographies of subjects exist, well
accepting though that this inspection does not fully guarantee
that the prerequisites of tcICA/tcSOBI are fully met, since a
given topography can well be generated by different source
constellations (known as the EEG inverse problem; e.g., Grech
et al., 2008). However, shouldmarked differences between subject
topographies occur, or should the decomposition of evoked
EEG activity be the major aim anyways, multilevel PCA in

combination with ICA/SOBI would be a better choice. The
latter framework could also be improved easily by sorting trials
according to a criterion that would, at least partially, compensate
for possible inter-trial variability in source onsets.When thinking
about motor-related beta activity, for example, one could simply
sort trials according to reaction times of responses and order
the trials of subjects such that the inter-subject differences for
all consecutive trials are minimized. It is obvious though that
such criteria cannot always be derived easily. There is tasks, for
example, that do not involve overt responding of subjects. Also,
many brain processes may be recorded in the EEG, yet stay
hidden because of strong overlap with other processes and the
lack of an easily accessible outside criterion.

Procedures for group-level data decomposition and analyses
offer powerful tools for the study of brain processes, not least
because they allow for an easy statistical assessment of the
identified sources, a feature not necessarily provided by post-hoc
clustering of sources originally extracted for individuals.
However, this study revealed the necessity to optimize
current procedures to better address typical characteristics
of multi-subject EEG data sets, namely inter-subject and
inter-trial variability of topographies and source onset times,
respectively. We are confident that this study will initiate further
developments as well as refinements of the existing procedures,
thereby contributing to the expansion of the tool set for the
analysis of large-scale neuroscientific data.
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