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Spiking cochlea models describe the analog processing and spike generation process

within the biological cochlea. Reconstructing the audio input from the artificial cochlea

spikes is therefore useful for understanding the fidelity of the information preserved

in the spikes. The reconstruction process is challenging particularly for spikes from

the mixed signal (analog/digital) integrated circuit (IC) cochleas because of multiple

non-linearities in the model and the additional variance caused by random transistor

mismatch. This work proposes an offline method for reconstructing the audio input from

spike responses of both a particular spike-based hardware model called the AEREAR2

cochlea and an equivalent software cochlea model. This method was previously used

to reconstruct the auditory stimulus based on the peri-stimulus histogram of spike

responses recorded in the ferret auditory cortex. The reconstructed audio from the

hardware cochlea is evaluated against an analogous software model using objective

measures of speech quality and intelligibility; and further tested in a word recognition task.

The reconstructed audio under low signal-to-noise (SNR) conditions (SNR< –5 dB) gives

a better classification performance than the original SNR input in this word recognition

task.

Keywords: spike reconstruction, cochlea spikes, silicon cochlea, cochlea model, digit recognition, analog

reconstruction

1. Introduction

Spiking neuromorphic sensors such as silicon retina and cochlea sensors produce outputs only
in response to stimulus changes, in contrast to frame-based sensors where frames are generated
periodically regardless of incoming signal. Their asynchronous outputs can carry more precise
timing information about stimulus changes when compared to sampled outputs. Processing such
asynchronous outputs can be useful for understanding the benefits of event-driven processing also
seen in brains. For example, the pencil balancer system which uses the silicon Dynamic Vision
Sensor (DVS) retina system (Lichtsteiner et al., 2008) showed lower response latency in the sensory-
motor loop and 100X lower computational costs, both as a result of using the sparse and quick
events from the DVS in response to the moving pencil (Conradt et al., 2009).

A further example is demonstrated for an auditory source localization algorithm that uses the
output spikes of a silicon cochlea which are phase-locked to the input frequency. The sparser
sampled events can lead to a reduction of 30X in the computational cost of the localization
algorithm when compared to an algorithm that uses the sampled microphone signals (Liu et al.,
2014).
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To further understand the possible benefits of this event-
driven sensory representation, extensive databases recorded
from these sensors will be useful for research that show the
comparative advantages of methods for processing spikes from
these bio-inspired sensors. This work uses a database of spike
recordings from a particular silicon spiking cochlea system
(AEREAR2) in response to recordings from the TIDIGIT
database used in many speech studies.

The AEREAR2 system (Liu et al., 2014) is one of a number of
silicon cochlea designs which embed a subset of properties of the
biological cochlea ranging from the spatial frequency-selective
filtering of the basilar membrane, the rectification property of
the inner hair cells, the local automatic gain control mechanism
of the outer hair cells, and the generation of spikes by the spiral
ganglion cells (Lyon and Mead, 1988; Watts et al., 1992; Lazzaro
et al., 1993; van Schaik et al., 1996; Kumar et al., 1998; Abdalla
and Horiuchi, 2005; Fragniere, 2005; Georgiou and Toumazou,
2005; Sarpeshkar et al., 2005; Chan et al., 2006; Katsiamis et al.,
2009; Wen and Boahen, 2009; Liu and Delbruck, 2010; Liu et al.,
2014). In these silicon implementations, certain cochlea models
are preferred for their ease of design in VLSI technology. The
first VLSI cochlea by Lyon and Mead (1988) implements the all-
pole filter cascade (APFC) model of the basilar membrane even
though other cochlea models like the gamma-tone filter bank
can explain better the results of various auditory psychophysical
experiments such as the two-tone masking experiments (Irino
and Patterson, 2005).

The binaural 64-channel AEREAR2 cochlea model also uses
the APFC circuit of Lyon and Mead (1988) as the base for the
front-end with subsequent circuits for modeling the inner hair
cell and the spiral ganglion cells. The spike outputs of this sensor
system have been applied in various auditory tasks such as digit
recognition (Abdollahi and Liu, 2011), speaker identification
(Chakrabartty and Liu, 2010; Liu et al., 2010; Li et al., 2012),
source localization (Finger and Liu, 2011; Liu et al., 2014), and
sensory fusion (Chan et al., 2006, 2012; O’Connor et al., 2013).
The analogous APFC model is described by the Lyon cochlea
model (Lyon, 1982) implemented in Matlab within a widely used
toolbox by Slaney (1998).

Besides the creation of this new database in this work, the
second aim is to reconstruct the acoustic input from the spike
responses in this database. Reconstructing the audio is a way of
studying the fidelity of the information carried by the spikes from
a particular model. Theoretical methods exist for reconstruction,
for example, methods to recover the analog stimulus that
stimulate biological neurons such as retinal ganglion cells. They
include the use of a generalized linear integrate–and-fire neuron
(Pillow et al., 2005) or non-linear methods for reconstructing the
analog input to retinal ganglion cells (Warland et al., 1997).

Other studies demonstrate that the fidelity of the
reconstructed analog input to an integrate-and-fire neuron
model is high if one ensures that the frequency range of the
analog input is restricted (Lazar and Toth, 2004; Lazar and
Pnevmatikakis, 2008). This study is based only on the threshold
non-linearity of the neuron and would have to be adapted to
include other non-linearities such as the rectification property
of the inner hair cell. These methods can be computationally

very expensive in the hardware case because of the presence of
multiple non-linearities in the model and the variance in the
operating parameters of the hardware implementation due to the
silicon fabrication process (Kinget, 2005).

This work presents a simpler method of reconstructing the
acoustic input from the hardware AEREAR2 cochlea spikes
by using an optimal reconstruction method (Mesgarani et al.,
2009) previously proposed for reconstructing the auditory
stimulus from the recorded spike responses in the ferret auditory
cortex. It has also been applied successfully to other types of
neural recordings, including local field potentials (Pasley et al.,
2012a) and scalp-EEG (O’Sullivan et al., 2014). This linear
reconstruction method is computationally cheaper than non-
linear methods and establishes a lower-bound on the stimulus
information that is encoded in the spike outputs of the cochlea
models.

This reconstruction method is applied to the spikes from both
the hardware AEREAR2 system and the software Lyon cochlea
model. The quality of the reconstructed acoustic waveform from
both the hardware and software cochlea spikes is evaluated
using the Perceptual Evaluation of Speech Quality (PESQ; Hu
and Loizou, 2008) and Short Time Objective Intelligibility score
(STOI; Taal et al., 2011) tests. In addition, the reconstructed
audio is tested on a word recognition task and compared against
the original audio of the TIDIGIT database in different SNR
conditions by adding babble noise.

Section 2 describes the cochlea models and methods used
in the reconstruction work, Section 3 describes the results of
the perceptual tests and the digit classification task on the
reconstructed audio from the software and hardware cochlea
models and Section 4 discusses the results.

2. Materials and Methods

This section covers the details of the software and hardware
spiking cochlea models, the audio reconstruction algorithm from
the cochlea spikes, and the subjective performance evaluation
tests on the reconstructed audio and finally the use of this audio
in a digit recognition.

2.1. Cochlea Models
The cochlea architecture used in both the software and hardware
cases consists of a cascaded set of filters with a log spacing of
center frequencies.

2.1.1. Software Cochlea
We use the Lyon’s cochlear model implemented using the Slaney
toolbox (Slaney, 1998). This early stage model has also been used
in other auditory computational models (Yildiz et al., 2013). The
analog filter outputs of the cochlea stages (or channels) are used
as the firing probabilities of neurons for each channel of the
cochlea in a particular time bin, n. The matrix describing the
firing probabilities of the channels vs. the time bins is called a
cochleagram C. The default values of the parameters from the
toolbox are used: the ear quality factor = 8, and the step factor
(or window overlap) between two filters is 0.25. To match the
hardware AEREAR2 cochlea model, we chose 64 filters which
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cover the frequency range from ∼63Hz to 10.7 KHz and did not
include the Automatic Gain Control factor.

The matrix of spikes (or spikegram) in response to a particular
sound is generated by comparing the firing probabilities of the
corresponding cochleagram to a random matrix:

P[t,m] =

{

1 C[t,m] ≥ M[t,m]
0 C[t,m] < M[t,m]

}

(1)

where m = 1 . . . 64 is the cochlea channel index, t = 1 . . .T is
the index of the time bin, and M is a matrix where each element
takes a random value in the range [0,1]. The time bin of the
spikegram P is the same as that of C, that is, n = 1/Fs =

0.05ms, where Fs is the sampling rate of the audio signal. A
smoother version of the spikegram is computed by generating a
P matrix over several trials and then computing their averages,

Pk = 1
k

∑k
i= 1 Pi. The values k = 1, 10, 100 are used in this

work. Theoretically, averaging over infinite number of trials will
produce the distribution of the cochleagram. An example of how
the original audio sample is transformed into a cochleagram and
then into a single trial of a spikegram is shown in Figure 1.

2.1.2. Hardware Cochlea
The silicon AEREAR2 cochlea system comprises a binaural
cochlea each modeled as a 64-stage cascaded filter bank receiving
inputs from two microphones (right and left ear). The cascaded
filter bank models, the basilar membrane and the filter outputs
are then rectified by an inner hair cell, and spiral ganglion cells
with details in Chan et al. (2006) and Liu et al. (2014). Each
stage of the cascaded filter bank corresponds to one channel
and comprises a second order section which models the basilar
membrane, followed by a half-wave rectifier modeling the inner
hair cell, and a spike generator modeling the spiral ganglion
cell. The cochlea architecture is shown in Figure 2 and follows
the architecture of the basilar membrane silicon design of the
Lyon’s model first described in Lyon and Mead (1988). A sample
response of the spike train generated by the AEREAR2 in
response to a speech sample is shown in Figure 3. In this plot, the
best characteristic frequencies (BCF) of the 64 filter channels have
been tuned from 50Hz to 20 kHz. The high frequency channels
do not generate spikes because of both the chosen volume of the
recorded audio and the lower energy in high frequency signals.

The sharpness of the filter is described by its quality factor, Q.
Because this cochlear architecture depends on the cascading of
the filters to build up the effective Q of each filter, the initial filters
of the high frequency channels do not have enough effective Q to
amplify the inputs.

2.2. Reconstruction Algorithm
Stimulus reconstruction (Fairhall et al., 2001; Mesgarani et al.,
2009) is an inverse mapping method in which the neural
responses are used to approximate the acoustic representation
of the sound that was heard by a subject. It is applied in brain-
computer decoding applications (Pasley et al., 2012a; O’Sullivan
et al., 2014). This method can be used to investigate what
stimulus features are encoded in the neural responses (Borst
and Theunissen, 1999) by examining the neural information
in the stimulus space, where it is better understood. To use
this method in our study, spikes from either the software or
hardware cochlea models are binned to convert them into
a spike histogram (or binned spikegram). The reconstruction
method then finds a linear mapping from the spikegram at each
time to the time-frequency representation of the sound that
elicited the spikes. Once this mapping is learned, any unseen
binned spikegram can be transformed to the corresponding
auditory spectrogram. Since the auditory spectrogram does not
contain the phase information, a convex projection algorithm
is used to recover the phase signal that is needed to
reconstruct the audio from the estimated auditory spectrogram
(Chi et al., 2005).

2.2.1. Auditory Spectrogram from Audio
The auditory spectrograms are computed using the MATLAB
implementation of the NSL Auditory Model toolbox from the
University of Maryland (Chi and Shamma, 2005). Spectral
analysis of a sound is performed in the time domain using a bank
of auditory filters logarithmically placed along the frequency
range of 180–7246Hz after the waveforms are resampled at
16 kHz. Both the time constant for the leaky integration and that
of the frame length are set to 10ms. The auditory spectrogram in
this study has 128 channels and a 10ms resolution. The resulting
time-frequency representation mimics the early auditory nerve
responses.

FIGURE 1 | Transformation from audio to spikegram. This figure shows the steps of first transforming the audio into a cochleagram using the Lyon’s cochlea

model in Slaney’s toolbox, and second, using the analog values of the cochleagram as probabilities for generating the spikegram.
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FIGURE 2 | Architecture of one ear of the spike-based binaural AEREAR2 system. The binaural cochlea has 64 channels per ear. Each channel has a model of

the basilar membrane (second-order section), a model of the inner hair cell (modeled by half-wave rectifier), and four spiral ganglion cells (modeled by

integrate-and-fire neurons) driven by four separate thresholds, VT1–VT4. The incoming output of the microphone goes to a preamplifier before the audio is processed

by the different channels of the cochlea, starting with the filters with the highest best characteristic frequency (BCF). Adapted from Liu et al. (2014).

FIGURE 3 | Cochlea spike responses to a digit sequence “5, 4, 7” (top)

and the corresponding audio waveform (bottom). Events or spiral

ganglion cell outputs from the 64 channels of one ear of the binaural AEREAR2

chip. Low channels correspond to low frequencies and high channels to high

frequencies.

2.2.2. Mapping Algorithm
Before the reconstruction step, the spikes from both the hardware
and software cochlea models are first binned using 1ms bins
and further resampled into 10ms time bins resulting in a binned
spikegram. Then, the mapping is carried out using the “optimal
stimulus prior” method originally derived to reconstruct the
stimulus from the auditory cortex neural responses (Mesgarani
et al., 2009). This method estimates the optimal linear mapping
between the binned spikegram R(t,m) and the stimulus auditory
spectrogram by minimizing the mean-squared error (MSE)
between the original S

(

t, f
)

and reconstructed spectrograms

Ŝ
(

t, f
)

[t = 1 . . .T is the time bin,m = 1 . . . 64 cochlea channel
index, and f = 1 . . . 128 is the frequency bin of the auditory
spectrogram]. The mapping takes into account past as well as
future time bins with a lag τ up to 15 time bins. Thus, we get:

Ŝ
(

t, f
)

=

64
∑

m= 1

15
∑

τ=−15

g
(

t, f ,m
)

R(t − τ,m) (2)

where g(t, f ,m) is the mapping function. This equation assumes
that the reconstruction of each of the frequency channel is
independent of the other channels. The reconstruction of a
frequency channel follows:

Ŝf (t) =

64
∑

m= 1

15
∑

τ=−15

gf (τ,m)R(t−τ,m) (3)

The function gf is estimated by minimizing the MSE between
the original and reconstructed spectrograms for that frequency
channel.

ef =
∑

t

[

Sf (t) − Ŝf (t)
]2

(4)

This equation can be solved analytically by using a normalized
reverse correlation method (Bialek et al., 1991; Stanley et al.,
1999). Further details of the method can be found in Mesgarani
et al. (2009).

The power spectral density of a digit in a particular
spectrogram frequency bin is determined as follows:

〈

Ŝf

〉

=

T
∑

t= 1

Ŝf (t)/T. (5)
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The normalized power spectral density T̂f of the reconstructed
spectrogram of the digit is then computed as

T̂f = Ŝf /
∑

f

〈

Ŝf

〉

(6)

2.2.3. Reconstruction of Audio from Auditory

Spectrogram
The sound is resynthesized from the output of cortical
and early auditory stages using a computational procedure
described in detail in Chi et al. (2005). While the non-linear
operations in the early stage make it impossible to have
perfect reconstruction, perceptually acceptable renditions are still
feasible as demonstrated in Chi et al. (2005). The reconstructed
sound is obtained from the auditory spectrogram using a method
based on the convex projection algorithm proposed in Yang et al.
(1992) and Chi et al. (2005). This method starts with a Gaussian
distributed white noise signal and iteratively shapes its frequency
components prior to the non-linearity according to the mean
squared distance with the target spectrogram (Yang et al., 1992).

2.3. Database for Reconstruction
The original audio files from the TIDIGIT training sets of
both male and female speakers were used in the reconstruction
experiments. These files contain digit recordings from 57 female
speakers and 55 male speakers. For each speaker, there are two
recordings of each digit from “1” to “9” and two recordings
each for the two pronunciations of 0, namely “O” and “Z.”
Furthermore, there are 55 different sequences of connected single
digit recordings for each speaker. These digits are presented to
the hardware AEREAR2 cochlea and the software Lyon model.
The recorded spikes from each cochlea model are further divided
into two sets for each speaker: Half of the recorded spike data
is used for learning the reconstruction filter and this filter is
then applied to the remaining half of spike data to obtain
the reconstructed audio dataset which is then used for the
experiments described in this work. This reconstructed dataset
consists of half the number of the connected digits and one copy
of each single digit.

2.4. Performance Evaluation on Reconstruction
Two well-known subjective PESQ and STOI scores, which are
accepted as speech quality and intelligibility metrics, respectively,
are used for evaluating the quality of the reconstructed data. They
are:

(1) Perceptual Evaluation of Speech Quality (PESQ) scores (Hu
and Loizou, 2008) computed over the target audio signal
and the reconstructed audio signal. PESQ was particularly
developed to model subjective tests to assess the voice quality
by human beings and is a standardized measure by the
International Telecommunication Union (ITU).

(2) Short-Time Objective Intelligibility (STOI) scores (Taal
et al., 2011) computed over the target audio signal and
the estimated audio signal. STOI is based on short time
(386ms) speech intelligibility measure and has shown good
correlation with the perceived speech intelligibility.

The reconstructed audio was also tested in a digit recognition
task using the Hidden Markov Model (HMM) Toolkit (HTK),
which includes tools for speech analysis, HMM training, testing,
and result analysis (Young et al., 2009).

The HTK converts each input waveform into a feature vector
consisting of 39 Mel-frequency cepstral coefficients (MFCCs).
These features are fed into a HMM with five states: a beginning
state, end state, and three intermediate emitting states. Each of
the five states is represented by a mixture Gaussian density. For
every iteration each Gaussian is split into two distributions and
the unknown parameters of the hidden Markov model are re-
estimated using the Baum-Welch algorithm. At the end of the
fifth iteration, each emitting state contains 16 Gaussian mixture
densities.

The training set used for the HTK consists of the connected
digits from the reconstructed dataset as described in Section 2.3.
The test set consists of the single digit samples from the same
reconstructed dataset.

3. Results

This section shows results from using the reconstructed audio
generated from both hardware (HW) and software (SW) cochlea
spikes. The reconstructed audio dataset is tested in two ways:
(1) through objective measures for assessing the speech quality
and intelligibility and (2) through the performance on a digit
recognition task.

3.1. Audio Reconstruction
The outcome of the different steps in generating the binned
spikegrams of the spike responses, the mapped auditory
spectrograms, and the reconstructed audio from both HW and
SW spikes in response to a particular digit is presented in
Figure 4. The binned spikegrams are mapped using g(t, f ,m)
to the corresponding auditory spectrograms which look very
similar to the auditory spectrograms of the original audio. Using
the NSL toolbox, the inversion of the auditory spectrogram to
the audio waveform is carried out as outlined in Section 2.2.
By visual inspection the reconstructed waveforms show similar
temporal modulations as the original audio. The quality of the
reconstructed audio is tested in speech intelligibility tests as will
be described in the next section.

3.2. Subjective Performance using PESQ and
STOI Metrics
The speech quality and intelligibility of the reconstructed audio
from the spikes of both software and hardware cochlea models
are tested using the PESQ and STOI metrics. The PESQ plot in
Figure 5 shows the results from the 11 reconstructed digit classes
for both male and female speakers. In both sets of speakers, digit
“4” scores lower than all other digits and there is a large variation
in the scores for any one digit. The possible reasons for the low
score of this digit will be discussed later. Overall the different
cochlea models have comparable scores.

However, better speech quality (higher PESQ scores) might
not necessarily reflect better speech intelligibility. Some speech
processing algorithms achieve a significant improvement in
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FIGURE 4 | Audio, binned spikegram, and auditory spectrogram plots for an example of digit “Z” from a female speaker (speaker FC, digit ZB). The

responses of the software model come from a spikegram generated over 10 trials. The rightmost waveforms are zoomed-in parts of the entire waveform (third column

from the left) in the region demarcated by the two vertical slashed lines. The binned spikegrams and auditory spectrograms are normalized in this figure.

FIGURE 5 | PESQ scores on reconstructed audio. (A) Male speakers (B) Female speakers. The error bars show the standard deviation of the PESQ scores.

quality but this improvement is not accompanied by an increase
in intelligibility (Goldsworthy and Greenberg, 2004). Therefore,
it is noteworthy to also perform an intelligibility test for our
results. We use the STOI metrics, which is based on the linear
correlation between a time-frequency representation of the clean
and reconstructed audio. STOI provides a very high correlation
(>0.9) with the intelligibility scores provided by human listeners
(Taal et al., 2011; Gómez et al., 2012) allowing us to make
reasonable conclusions about the reconstructed audio. As can
be seen in Figure 6, both the hardware and the software models

have comparable scores. The p-values of a two-tailed t-test on the
differences in PESQ scores as well as differences in STOI scores
between hardware and software models does not demonstrate
clear dominance of one model over the other.

We found that certain digits (for example, digit “4”) have
a lower PESQ or STOI score. This could be due to a larger
error in the mapping function for certain frequency bins. The
reconstructed digits whose power is primarily concentrated in
these frequency bins would also have a larger error in the
difference between their mapped auditory spectrogram and the
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FIGURE 6 | STOI scores on reconstructed audio. (A) Male speakers (B) Female speakers. The error bars show the standard deviation of the STOI scores.

corresponding spectrogram of the original audio. To determine
if this is one of the reasons for the lower scoring, we plotted the
normalized mean-square error ef for each frequency bin across
the 11 digits as shown in Figure 7. The frequency-dependent
error is maximal for frequency bins between 20 and 40 but when
normalized by the power in the individual bins, the maximum
shifts to the higher frequency bins (Figure 7B).

How this error in the mapping function manifests itself
in the auditory spectrogram can be seen in Figure 8 where
the reconstructed spectrograms of two example digits show
a big difference to the spectrograms of the original audio in
the higher frequency bins. In the case of digit “4,” we see
increased power in these frequency bins of its reconstructed
spectrogram. The increased power leads to distortion in the
reconstructed audio and could be a reason for its “poor”
PESQ score. Even with perceptual distortions in the audio
during listening, the reconstructed audio could still form a
good representation for the digits in a word classification
task. In Section 3.3, we describe experiments that test the
performance of the reconstructed audio in a digit recognition
task.

3.3. Classification Performance on Digit
Recognition Task
There is a remarkable difference between the classification
accuracies on reconstructed digits from the HW and SW models
when the training set comes from the original audio versus when
it comes from the reconstructed audio as shown inTable 1. When
the training set is composed of the original audio samples of the
TIDIGIT database, the test performance on the reconstructed
audio is quite poor. However, when the reconstructed audio
samples from the source cochlea models are used for the training
set, the performance increased dramatically. For example in
the case of the HW cochlea spikes of the female speakers, the
accuracy increased from 28.2 to 88.1%. A similar increase in
performance is also seen in the reconstructed audio of the SW
cochlea spikes. This increase in performance is in line with
results from Hirsch and Pearce (2000) that demonstrated an

increase in classification accuracy for noisy digits when noisy
digits instead of clean digits are used for the training set. In
general, the classification accuracy using the source reconstructed
audio in both the training and testing sets is higher for the HW
cochlea spikes when compared to the accuracy of the spikegram
created from one trial using the software cochlea model. In
the three SW cases that we consider here, the classification
accuracy of the hardware model is closest to that of the software
model where the averaged spikegram is generated over 10
trials.

To determine whether the classification accuracy is affected by
the large variability in performance between certain digits seen
in the PESQ and STOI results, we also look at the classification
accuracy of the individual digits generated from all cochleamodel
variants as shown in Table 2. The results are shown for the case
where the HMM is trained using the reconstructed audio from
the corresponding cochlea model spikes. We see that certain
digits are classified with high accuracy, for example, digits “7”
and “Z” in the case of female speakers. There is also a difference
in the classification accuracy depending on the cochlea model. In
the case of the hardware spikes, digits like “O” and “9” have a
lower classification accuracy but digit “9” is classified with higher
accuracy on the reconstructed audio from the software spikes.
In contrast, digit “4” is classified with higher accuracy for the
hardware audio reconstruction compared to the software model
spikes.

For many of the digits, the classification accuracy is reasonably
matched between the reconstructed audio of the HW and SW
cochlea spikes. Between the two sets of speakers, we see that
certain digits like “2” and “6” from the male speakers are not
classified with as high accuracy as the same digits spoken by
the female speakers. When listening to these incorrect classified
digits, one finds that they are hardly recognizable by ear.
For example, some samples sound like two digits spoken at
the same time or they sound completely like another digit
(see Supplementary Material). The binned spikegram, auditory
spectrogram, and reconstructed audio are plotted for both
cochlea models in the case of a correctly classified digit (Figure 4)
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FIGURE 7 | Dependence of normalized mean-squared error on frequency bin. (A) Normalized mean-squared error ef in the mapping function gf for each

frequency bin averaged over all digits (black curve) and the normalized power spectral density of digits “1” to “Z” (light yellow to green curves). (B) Normalized

mean-squared error ef normalized by the power in each frequency bin plotted for each individual digit. The black curve shows the average over all digits. Data is

extracted from the male speakers and the software cochlea model (10 trials). Ratio of neighboring frequency bins is 1.029. Minimum frequency is 180Hz, maximum

frequency is 7240Hz. Bin 10 corresponds to a frequency around 240Hz, bin 40 to a frequency around 571Hz, and bin 60 to a frequency around 1017.5Hz.

FIGURE 8 | Responses to two example digits. Binned spikegrams (first column), auditory spectrograms of the original audio (middle column) and of the

reconstructed audio (last column) for (A) digit “4” and (B) digit “O”.

TABLE 1 | Classification accuracy of spikes from both hardware (HW) and software (SW) cochlea models using original and reconstructed audios for the

training set.

F/M Test

Original HW SW 1 trial SW 10 trials SW 100 trials

Train Original 99.8/100 28.2/ 33.1 23.8/46.5 29.2/54.9 31.1/43.3

HW 92.7/85.5 88.1/79.3 78.5/73.7 84.9/79.7 84.5/81.5

SW 1 trial 90.3/82.3 71.9/61.3 79.3/80.3 89.8/86.3 87.9/84.0

SW 10 trials 89.3/77.9 71.5/63.1 87.2/84.1 91.2/89.4 90.1/87.9

SW 100 trials 93.0/77.7 71.8/65.0 89.3/83.8 90.9/89.9 90.9/88.6

Results are shown for female (F) and male (M) speakers. The entries in bold show the results when the reconstructed audio in both the training and test sets come from the same

cochlea model.
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TABLE 2 | Percentage of correctly classified digits for the different cochlea spike models.

F/M 1 2 3 4 5 6 7 8 9 O Z

HW 93.1/90.9 86.2/47.3 93.1/90.9 84.5/85.5 94.8/89.1 94.8/63.6 98.3/100 94.8/85.5 72.4/61.8 56.9/58.2 100/100

SW 1 trial 87.7/89.1 71.9/98.2 84.2/98.2 82.5/54.5 80.7/78.2 100/96.4 98.2/100 86/94.5 84.2/60 10.5/47.3 86/96.4

SW 10 trials 93/89.1 89.5/87.3 94.7/72.7 75.4/72.7 94.7/94.5 98.2/100 100/100 98.2/100 94.7/89.1 64.9/56.4 100/98.2

SW 100 trials 87.7/90.9 87.7/76.4 96.5/69.1 77.2/69.1 96.5/92.7 96.5/100 100/100 98.2/98.2 93/83.6 66.7/63.6 100/100

Results are shown for female (F) and male (M) speakers.

FIGURE 9 | Audio, binned spikegram, and auditory spectrogram plots for an example of a misclassified digit (male AW, digit OB). This digit is

misclassified as digit “5” for both software and hardware spikes. The mapped auditory spectrograms for both cochlea model spikes do not resemble well the auditory

spectrograms of “O” and is confused with the digit “5.” The binned spikegrams and auditory spectrograms are normalized.

and an incorrectly classified digit (Figure 9). The results in
Figure 8 also explain the reason for the poorer recognition of
certain digits, for example, digit “4” which has a lower accuracy
and is for example, recognized frequently as digit “O.” The
reconstructed spectrograms for these digits show a remarkable
similarity to each other.

3.3.1. Robustness to Noise
The robustness of the spike responses of the cochlea models in
response to noise in the recordings is tested by creating different
signal-to-noise ratio (SNR) datasets by adding babble noise to the
original audio of the TIDIGIT database. The mapping function
from the subsequent binned spikegrams of the noisy audio to
the audio spectrograms are recomputed and the classification
is tested with a network trained on both the original audio
and the reconstructed audio from the SW cochlea spikes. The
results for SNR of 10 dB and 5 dB show that the accuracy
of the original noisy digits was still close to 100% but with

decreasing SNR, the reconstructed audio maintains its accuracy
much better than the original noisy audio (see Table 3). Similar
to the results in Table 2, the results in Table 3 show that the
performance increases significantly when the training set consists
of the original noisy audio when testing the original digits and
when the training set consists of the reconstructed noisy audio
when testing the reconstructed audio. The results show that
the original audio shows better classification results than the
reconstructed audio at SNR down to 0 dB but worse performance
when the SNR drops to –5 dB and even worser when the SNR
is –10 dB. To understand the reason for the higher performance
of the reconstructed audio from the noisy wave files, we plot the
mapped auditory spectrogram from the spike responses to the
noisy audio digit (Figure 10). Interestingly, the mapped auditory
spectrogram contains less noise in the time bins which are not
occupied by the original digit suggesting that the thresholding
in the spike generation mechanism played a role in reducing
noise.
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TABLE 3 | Classification accuracy averaged over female (F) and male (M) speakers using either the original audio, noisy audio, or the reconstructed audio

from the SW cochlea spikes (spikegrams averaged over 10 trials) at SNR values of 0, –5, and –10dB.

F/M Original audio SNR Reconstructed audio SNR

Training set 0dB –5dB –10dB Clean 0dB –5dB –10dB

Original audio 33.8/28.3 15.4/14.2 10.5/9.4 29.2/54.9 23.9/20.7 17.4/17.4 12.4/14.2

Noisy original/reconstructed audio 91.2/94.6 41.6/55.6 15.6/16.4 91.2/89.4 70.0/74.0 56.3/59.8 38.0/42.0

FIGURE 10 | Audio, binned spikegram, and auditory spectrogram plots for an example of a noisy digit with SNR of –10dB. The mapped auditory

spectrograms for the cochlea model spikes resemble better the auditory spectrograms of the original clean digit (bottom row). The binned spikegrams and auditory

spectrograms are normalized.

4. Discussion

Understanding the fidelity of the reconstructed audio from the

spike trains of the AEREAR2 cochlea spikes can offer insights
into the results from various auditory tasks that use the hardware
spiking cochlea such as speech recognition (Verstraeten et al.,
2005; Uysal et al., 2006, 2008; Chakrabartty and Liu, 2010),
speaker identification (Chakrabartty and Liu, 2010; Liu et al.,
2010; Li et al., 2012) localization (Finger and Liu, 2011; Liu et al.,
2014), and sensory fusion (Chan et al., 2012; O’Connor et al.,
2013).

Although there is prior theoretical work that demonstrates

that the inversion can be done faithfully on the Lyon cochlea
model, this reconstruction is only performed on the analog

outputs of the cochlea (Cosi and Zovato, 1996) and not on
spikes. The theoretical methods proposed for reconstructing an

analog signal faithfully from the spike outputs of an integrate
and fire neuron (Lazar and Toth, 2004; Wei and Harris, 2004;

Wei et al., 2006; Lazar and Pnevmatikakis, 2008) could not be
easily extended to the hardware VLSI cochlea spikes because of
the non-linearities in the acoustic preprocessing and the silicon
mismatch inherent in VLSI circuits.

This work presents instead an alternate approach for
reconstructing the acoustic input from the cochlea spikes
based on the optimal prior reconstruction method proposed by
Mesgarani et al. (2009). This method learns a linear mapping
from the binned spikegram of the cochlea spikes to the auditory
spectrogram of the acoustic input.

The results of this mapping showed that even though the
PESQ and STOI scores of the reconstructed audio were not very
high, a fairly good reconstruction is still possible as evident when
listening to the reconstructed digits. We also investigated the
performance from the use of the reconstructed audio in a task-
specific problem, such as digit recognition which does not require
a perceptual understanding of the acoustic input. The results
were good for many of the digits (98 to 100% accuracy). Our
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results also show that the accuracy goes up significantly when the
reconstructed audio was used for the training set rather than the
original audio most likely because the statistics of the training
and testing sets were more similar. The poor recognition of the
digits could also be due to the possibility that the performance of
HTK generally goes down significantly with noise in the data or
if both training and testing data comes from extremely different
data sets (e.g., different accents; Chengalvarayan, 2001). Thus, the
noise and the distortions in the reconstructed sound can affect the
recognition output of the HTK toolbox even though the digits are
still discernable by ear.

One interesting outcome of our work is the similar
performance obtained with both the reconstructed audio from
the hardware AEREAR2 cochlea and that from the software
model (with spikegrams averaged over 10 trials) in almost all
the presented results, therefore suggesting that the use of the
hardware cochlea in various auditory tasks mentioned at the
beginning of this section can be validated by an equivalent
software model. The results in this paper also suggest that there
could be improvements on the method for transformation of
the acoustic input to spikes. We did not, for example, use
the gain control parameter in the Lyon-Slaney cochlea model
therefore spikes were not generated in places of the audio with
low amplitudes. Other cochlea models such as the gamma-tone
filterbank design (Patterson, 1976) and the CAR-FAC model
(Lyon, 2011), with an added spike-generating block could lead
to better reconstruction results and give guidance for hardware
implementation of these models (Katsiamis et al., 2009; Thakur
et al., 2014). Adding companding strategies to the cochlea model
could also help to preserve information in the acoustic input
under low SNR conditions as illustrated by results from vowel-
in-noise experiments (Turicchia and Sarpeshkar, 2005).

Another area of improvement is the use of alternate methods
to the linear reconstruction method proposed in this work. For
example, better results can be obtained from the use of a non-
linear model such as the one described in Warland et al. (1997).
The results can be validated in the future on the spike TIDIGIT
database created within this benchmarking study.

Another interesting result of this study is the higher
classification performance of the reconstructed audio over the

original audio in the digit recognition task for SNR-values below
–5 dB. These results are in line with other studies that show
for example, the better classification performance of phonemes

using a cochlea model over MFCCs (Jeon and Juang, 2007) and
better noise rejection (Mesgarani et al., 2006). Reservoir networks
with a cochlea pre-processing stage also show better classification
results on speech recordings under low SNR conditions as
previously demonstrated by Verstraeten et al. (2005) and Uysal
et al. (2006, 2008).

This work serves as a benchmark for future hardware cochlea
designs and for understanding the output of other spike-
based software cochlea models. The AEREAR2 spike recording
database will be made available for the research community.
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