
PERSPECTIVE
published: 01 December 2015
doi: 10.3389/fnins.2015.00449

Frontiers in Neuroscience | www.frontiersin.org 1 December 2015 | Volume 9 | Article 449

Edited by:

Michael Pfeiffer,

University of Zurich and ETH Zurich,

Switzerland

Reviewed by:

Terrence C. Stewart,

Carleton University, Canada

Yulia Sandamirskaya,

University of Zurich and ETH Zurich,

Switzerland

*Correspondence:

Narayan Srinivasa

nsrinivasa@hrl.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 11 August 2015

Accepted: 13 November 2015

Published: 01 December 2015

Citation:

Srinivasa N, Stepp ND and

Cruz-Albrecht J (2015) Criticality as a

Set-Point for Adaptive Behavior in

Neuromorphic Hardware.

Front. Neurosci. 9:449.

doi: 10.3389/fnins.2015.00449

Criticality as a Set-Point for Adaptive
Behavior in Neuromorphic Hardware
Narayan Srinivasa 1*, Nigel D. Stepp 1 and Jose Cruz-Albrecht 2

1 Information and System Sciences Lab, Center for Neural and Emergent Systems, HRL Laboratories LLC, Malibu, CA, USA,
2Microelectronics Laboratory, HRL Laboratories LLC, Malibu, CA, USA

Neuromorphic hardware are designed by drawing inspiration from biology to overcome

limitations of current computer architectures while forging the development of a new

class of autonomous systems that can exhibit adaptive behaviors. Several designs in

the recent past are capable of emulating large scale networks but avoid complexity in

network dynamics byminimizing the number of dynamic variables that are supported and

tunable in hardware. We believe that this is due to the lack of a clear understanding of how

to design self-tuning complex systems. It has been widely demonstrated that criticality

appears to be the default state of the brain and manifests in the form of spontaneous

scale-invariant cascades of neural activity. Experiment, theory and recent models have

shown that neuronal networks at criticality demonstrate optimal information transfer,

learning and information processing capabilities that affect behavior. In this perspective

article, we argue that understanding how large scale neuromorphic electronics can be

designed to enable emergent adaptive behavior will require an understanding of how

networks emulated by such hardware can self-tune local parameters tomaintain criticality

as a set-point. We believe that such capability will enable the design of truly scalable

intelligent systems using neuromorphic hardware that embrace complexity in network

dynamics rather than avoiding it.

Keywords: neuromorphic electronics, adaptive behavior, criticality, spiking, self-organization, synaptic plasticity,

homeostasis, current balance

1. INTRODUCTION

What role does the brain serve for producing adaptive behavior? This intriguing question is a
long-standing one. So far, most attempts to understand brain function for adaptive behavior have
primarily described it as the computation of behavioral responses from internal representations of
stimuli and stored representations of past experience, a description we will take issue with below.

As computational systems have grown in functional complexity, the analogy between computers
and the brain began to be widely adopted. The basic premise for this analogy was that both
computers and the brain received information and acted upon it in complex ways to produce an
output. This analogy between computers and the brain (also known as the computer metaphor) has
provided a candidate mechanism for cognition, equating it with a digital computer program that
can manipulate internal representation according to a set of rules.

The extensive use of the computer metaphor has resulted in the applied notions of symbolic
computations and serial processing to construct human-like adaptive behaviors. The task of brain
science has become focused on answering the question of how the brain computes (Piccinini and
Shagrir, 2014). The key issues, such as serial vs. parallel processing, analog vs. digital coding, and
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symbolic vs. non-symbolic representations, are being addressed
using the computer metaphor wherein perception, action, and
cognition are taken to be input, output, and computation.
Traditional algorithms that are derived by adopting the computer
metaphor have yielded very limited utility in complex, real-world
environments, despite several decades of research to develop
machines that exhibit adaptive behaviors.

This impasse has forced us to rethink the notion of how
adaptive behavior might be realized in machines. One inspiration
comes from a key observation that was made in 1950s by Ashby
(1947), when he designed amachine called the homeostat (Ashby,
1960). According to him, animals are driven by survival as the
objective function and animals that survive are very successful in
keeping their essential variables within physiological limits. The
term homeostasis dates from 1926, when Cannon (1929) used it
to describe the specialized mechanisms unique to living systems
which preserve internal equilibrium in the case of an inconstant
world (Moore-Ede, 1986). These variables and their limits are
fixed through evolution. For example, in humans, if the systolic
blood-pressure (which is an example of an essential variable)
drops from 120 mm of mercury to 30, the change will result in
death. Ashby’s thesis then was that systems that exhibit adaptive
behaviors are striving to keep their essential variables within
limits. Our take-away was that machines that exhibit adaptive
behaviors are like a control system that strives to keep a variable
within or around a set point.

A related observation is that the complexity of adaptive
behaviors increases with the number of physiological parameters
that are to be maintained within their limits. We believe
that this includes collective essential variables that are learned
during the animal’s interaction with the environment. However,
approaching this from a control system point of view, it can be
interpreted as the system striving to maintain stability across a
complex set of interacting or coupled control loops with several
set points. It is known that maintaining stability of such complex
networks with multiple set points is a non-trivial task (Buldyrev
et al., 2010). A second non-triviality is due to the inherent delays
associated with homeostatic mechanisms. These delays require
that homeostatic processes are also predictive. Indeed, analysis
of periodic variations in essential variables, such as plasma
cortisol levels in humans, shows that the so-called responses of
homeostatic mechanisms are largely anticipatory (Moore-Ede,
1986).

The homeostat can be thought of as a simple kind of self-
organization. Once its structure is set, external forces interact
with various internal forces that automatically balance and create
feedback that affects those same external forces. A special kind
of dynamic balance, one that persists through and because
of constant change, is known as criticality (for the notion of
criticality intended, see Bak et al., 1987; Beggs and Plenz, 2003;
Legenstein and Maass, 2007). A critical system is poised to react
quickly to deviations or perturbations, because of a different
balance at the system level—between decay and explosion.
Homeostatic balance is a balance of forces, while critical balance
is a balance of the dynamics themselves. A system that contains
both kinds of balance is typical of so-called self-organized
criticality (SOC). A slight reorganization of SOC puts criticality

under the control of a homeostatic balance. Such a system would
be driven toward criticality.

2. CRITICALITY AS A SET-POINT

The mammalian cortex is a complex physical dynamical system.
Several lines of research (Linkenkaer-Hansen et al., 2001;
Beggs and Plenz, 2003; Petermann et al., 2009; Shew et al.,
2011; Tagliazucchi et al., 2012; Yang et al., 2012), demonstrate
that spontaneous cortical activity has structure, manifested
as cascades of activity termed neuronal avalanches. Theory
predicts that networks at criticality or edge-of-chaos, maximize
information capacity and transmission (Shew et al., 2011),
number of metastable states (Haldeman and Beggs, 2005),
and optimized dynamic range (Kinouchi and Copelli, 2006).
The ubiquity of scale invariance in nature combined with its
advantages for complex dynamics suggests that each of the
foregoing properties would be beneficial for both models and
artificial systems (Avizienis et al., 2012; Srinivasa and Cruz-
Albrecht, 2012).

Evidence for such rich and ceaseless dynamics has been
reported across spatial and temporal scales and contain
both spatial and temporal structure (Beggs and Plenz, 2003;
Kitzbichler et al., 2009; Shew et al., 2011; Tagliazucchi et al., 2012;
Yang et al., 2012; Haimovici et al., 2013). Brain activity exists in a
highly flexible state, simultaneously maximizing both integration
and segregation of information, with optimized information
transfer and processing capabilities (Friston et al., 1997; Bressler
and Kelso, 2001; Shew and Plenz, 2013; Tognoli and Kelso, 2014).
One remarkable feature of spontaneous neural dynamics is that
they are present in all but themost extreme brain states (e.g., deep
anesthesia, Scott et al., 2014) and have been observed acrossmany
different brain configurations (e.g., with different ages, structural
differences across individuals and across species).

A range of theoretical models has aimed to simulate brain
activity at a macroscopic scale and explain how dynamics
occur (Deco et al., 2009; Cabral et al., 2011; Hellyer et al.,
2014; Messé et al., 2014). They developed several measures to
describe the rich dynamics observed, e.g., metastability (Friston
et al., 1997; Bressler and Kelso, 2001; Shanahan, 2010) and
the notion of criticality (Shew and Plenz, 2013). These models
demonstrate the primary importance of the underlying structural
network organization but other factors are also important such
as neural noise, time delays, the strength of connectivity as well
as the balance of local excitation and inhibition (Deco et al.,
2014). While simulating these macroscopic networks, the desired
characteristics of the network (i.e., rich and stable dynamics
observed with fMRI data) only occur within a narrow window
of parameters. Outside this window, models will often fall into a
pathological state: either (i) no dynamics (global activity at ceiling
or floor); or (ii) random activity with little or no temporal or
spatial structure. This is in contrast to actual brain activity, which
maintains non-trivial dynamics in the face of a changing external
environment as well as structural changes (e.g., the configuration
of the brain’s structural connectivity or neurotransmitter levels
during aging) and across development and different species. A
theoretical account of how spontaneous dynamics emerge in the
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brain must therefore include mechanisms that regulate those
dynamics.

One potential mechanism for maintaining neural dynamics
is inhibitory plasticity. Recent computational work suggests
that, at the neural level, inhibitory plasticity can serve as
a homeostatic mechanism by regulating the balance between
excitatory and inhibitory (E/I) activity (Vogels et al., 2011).
Moreover, this form of inhibitory plasticity has been shown
to induce critical dynamics in a mean-field model of coupled
excitatory and inhibitory neurons (Magnasco et al., 2009; Cowan
et al., 2013), exhibit robust self-organization (Srinivasa and
Jiang, 2013), pattern discrimination (Srinivasa and Cho, 2014),
and cell assembly formation (Litwin-Kumar and Doiron, 2014).
These theoretical results suggest that inhibitory homeostatic
plasticity may provide a mechanism to stabilize brain dynamics
at the macroscopic level, and may be relevant for understanding
macroscopic patterns of brain activity.

Given the benefits, it would be useful for networks to be able to
maintain a state of criticality. What follows is a description of an
artificial neural system that appears to do so through a process of
self-organization. We modeled a recurrent EI neuronal network
consisting of 10,000 leaky integrate-and-fire (LIF) neurons
(Vogels et al., 2005) composed of 8000 excitatory (E) neurons and
2000 inhibitory (I) neurons with a fixed connection probability
of 1%. Several physiological phenomena were also modeled:
two types of synaptic current dynamics, excitatory (AMPA) and
inhibitory (GABA); Short-term plasticity (STP) (Markram and
Tsodyks, 1996; Tsodyks et al., 1998), affecting instantaneous
synaptic efficacy; and spike-timing dependent plasticity (STDP)
(Markram et al., 1997), affecting long-term synaptic strength such
that synapses are strengthened when presynaptic spikes precede
postsynaptic spikes, and weakened otherwise. There is abundant
neurophysiological evidence for the role of STP and STDP in
shaping network structure and dynamics (Markram et al., 1997;
Bi and Poo, 1998; Young et al., 2007) For details about this
network design, see Stepp et al. (2015).

To achieve a system that self-tunes toward criticality, i.e.,
treats criticality as set-point, we performed a parameter search at
the level of global STP, STDP, and synaptic kinetics parameters.
This search resulted in several network configurations that
maintained themselves in a state of criticality, even after being
perturbed by external inputs (For details about the parameter
search and associated measurements, see Stepp et al., 2015).
A parameter search of this sort should be distinguished from
a search at the level of individual synaptic characteristics. For
instance, tuning a network to maintain useful activity while
receiving certain input might involve setting individual synaptic
weights. These weights would generally have to be set differently
for different classes of input. The search for self-tuning criticality
happens at amore global network level, and the resulting network
configuration is appropriate for many classes of input. The two
different approaches are depicted in Figure 1.

For a system that must support adaptive behavior, criticality is
directly beneficial. Critical systems, by virtue of their balancing
act, have quick access to a large number of metastable states
(Haldeman and Beggs, 2005). Being able to quickly diverge from
one dynamical trajectory to another is clearly appropriate for a

FIGURE 1 | (A) Tuning process required if synaptic weights or other low-level

parameters need to be tuned for specific network inputs. (B) Tuning process

for a self-tuning critical network. In this case, the network is tuned at a high

level to select for critical dynamics that is adaptively maintained internally.

system that must adapt to a changing environment. Accordingly,
the ability of non-autonomous neural circuits (i.e., ones that
receive external inputs) to discriminate patterns tends to be
increased for systems near edge-of-chaos states (Legenstein and
Maass, 2007). In a recent work by our group (Srinivasa and Cho,
2014), we described a spiking neural model that can learn to
discriminate patterns in an unsupervised manner. This can be
construed as an adaptive behavior. For this network to exhibit
proper function, we must have inhibitory plasticity, because
it enables a dynamic balance of network currents between
excitation and inhibition. It is during the transient imbalances
in the currents that the network adapts its synaptic weights via
STDP and thus learns patterns. The ability of the network to
perform pattern discrimination (adaptive behavior) is impaired
when inhibitory synaptic plasticity is shut off. A recent further
study of this work (unpublished work) shows that this network
exhibits avalanche dynamics when its spiking activity is evaluated
based on the methods described in Stepp et al. (2015). Avalanche
dynamics along with balanced inhibitory and excitatory currents
strongly suggest that this network is critical. If implemented
in neuromorphic hardware, it is then expected that it would
function well in a configuration that seeks criticality, without
needing an application-specific configuration. Adaptive behavior,
to be truly adaptive, must also have some element of permanence.
There is evidence that criticality could be a crucial ingredient
for learning (de arcangelis and Herrmann, 2010). As such,
the same feature appears to support both quick and lasting
change, apropos for a phenomenonmarked by a balance between
opposing tendencies.

3. NEUROMORPHIC HARDWARE

There has been a recent interest in developing large
scale neuromorphic electronics systems (DARPA SyNAPSE:
http://en.wikipedia.org/wiki/SyNAPSE; Human Brain Project:
http://www.humanbrainproject.eu/neuromorphic-computing-pl
atform) to enable a new generation of computing platforms
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FIGURE 2 | (A) A typical configuration for interacting with the neuromorphic hardware, for instance when conducting a parameter search. Test software runs on a

general purpose computer, which communicates with an FPGA over a USB connection. The connection allows software to upload networks to the chip, set hardware

parameters, and perform spike-based input and output. (B) Flow chart detailing the parameter search process and its relation to each system component.
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with energy efficiencies that compare to biological systems
while being capable of learning from its interaction with its
environment. For example, at the HRL Laboratories LLC, the
multidisciplinary project funded by DARPA SyNAPSE (Srinivasa
and Cruz-Albrecht, 2012) attempts to develop a theoretical
foundation inspired by neuroscience to engineer electronic
systems that exhibit intelligence. The ultimate goal of the project
is to build neuromorphic electronics at large scales (for example
with 108 neurons and 1011 synapses) to realize autonomous
systems that exhibit high combinatorial complexity in adapting
to a large variety of environments.

A major problem recognized by the field in developing such
large scale systems is the need for monitoring its dynamics for
debugging purposes as well as to be able to tune the parameters
of such a massive chip, which is currently not feasible due to
inherent limitations in accessibility to all the chip components as
well as the lack of a clear understanding how to design such self-
tuning complex systems. In integrated circuit implementations of
large neural networks it is useful, or even necessary, not to have
the requirement tomonitor all the internal signals of the network.
The internal signals could include, for example, spiking signals
produced by internal neurons (Cruz-Albrecht et al., 2013), and
digital or analog weights of the synapses located between neurons
(Cruz-Albrecht et al., 2012, 2013). Tomonitor the internal signals
of the chip requires the use of circuitry connecting internal
neurons and synapses to the terminals, or pads, of the chip.
The monitoring circuits are detrimental to the density of the
network, reducing the number of neurons and synapses that can
be implemented for a given area of the chip. It is also detrimental
to the efficiency of the network, reducing the number of neural
operations per unit of time that can be performed by a given
amount of electrical power consumed by the chip. As CMOS
technology scales to smaller features, the number of neurons and
synapses that can be implemented in a chip grows faster than
the number of chip terminals. Similarly the internal bandwidth
(Zorian, 1999) of the chips is expected to increase faster than the
interface bandwidth (Scholze et al., 2011) with scaling. Therefore,
as technology scales it is expected that a smaller portion of all the
internal signals of large chips can be monitored simultaneously
in real time. If the neural chip is more analog in nature (Cruz-
Albrecht et al., 2012), these problems described above are further
exacerbated.

These deficiencies may be addressed if the chip can be set
up to operate with criticality as a set-point. To achieve this, a
high-level parameter search similar to the one described in Stepp
et al. (2015) can be run on the hardware itself. Figure 2 depicts
a typical setup, where a neuromorphic chip is installed on a
test board, along with a supporting FPGA. A general purpose

computer communicates with the FPGA via a USB connection,
which enables software to configure the chip as well as send and
receive spikes. Once a network is uploaded, parameters can be
quickly set and re-set by modifying on-chip registers. A typical
search requires less than 100 iterations of 300 s each, amounting
to a worst-case runtime of approximately 8 h. This search
would result in a configuration that could be set once, without
requiring access to low-level parameters such as synaptic weights.
Self-tuning criticality, again as shown in Stepp et al. (2015),

would then ensure that the network maintained a useful level of
activity without input-specific tuning. If parts of the hardware
break or begin to function differently, we expect an amount of
fault tolerance. Without respect to self-tuning criticality, neural
networks of this sort are already relatively tolerant (Srinivasa and
Cho, 2012). Beyond this intrinsic fault tolerance, the self-tuning
aspect described here extends this capability. At some point,
however, the network dynamics will become too different and the
search will have to be repeated. The nature of this breaking point
is not well understood, and is a subject for further study.

We believe that this will result in a novel paradigm for
computing and enable the design of a wide range of systems
from small to large scales that exhibit robust adaptive behavior
in the face of uncertainties. This may also lead to large scale
neuromorphic system designs that more accurately account for
brain-like dynamics compared to current designs (Eliasmith
et al., 2012). Finally, it could also enable the design of truly
scalable intelligent systems, since there will not be a need for
manual tuning of model or chip parameters by constructing
self-tuning critical networks that in turn will enable adaptive
behaviors.
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