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The exponential increase in data over the last decade presents a significant challenge to

analytics efforts that seek to process and interpret such data for various applications.

Neural-inspired computing approaches are being developed in order to leverage

the computational properties of the analog, low-power data processing observed in

biological systems. Analog resistive memory crossbars can perform a parallel read

or a vector-matrix multiplication as well as a parallel write or a rank-1 update with

high computational efficiency. For an N × N crossbar, these two kernels can be O(N)

more energy efficient than a conventional digital memory-based architecture. If the read

operation is noise limited, the energy to read a column can be independent of the

crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms

such as image, text, and speech recognition. For instance, these kernels can be applied

to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire

algorithm when run with finite precision. Sparse coding is a rich problem with a host of

applications including computer vision, object tracking, and more generally unsupervised

learning.

Keywords: resistive memory, memristor, sparse coding, energy, neuromorphic computing

INTRODUCTION

As transistors start to approach fundamental physical limits and Moore’s law slows down,
new devices and architectures are needed to enable continued computing performance gains
(Theis and Solomon, 2010). The computational ability of current microprocessors is limited
by the power they consume. For data intensive applications, the computational energy is
dominated by moving data between the processor, SRAM (static random access memory),
and DRAM (dynamic random access memory). New approaches based on memristor or
resistive memory (Chua, 1971; Waser and Aono, 2007; Strukov et al., 2008; Kim et al., 2012)
crossbars can enable the processing of large amounts of data by significantly reducing data
movement. One of the most promising applications for resistive memory crossbars is brain-
inspired or neuromorphic computing (Jo et al., 2010; Ting et al., 2013; Hasan and Taha,
2014; Chen et al., 2015; Kim et al., 2015). The brain is perhaps the most energy-efficient
computational system known, requiring only 1–100 femtoJoules per synaptic event (Merkle,
1989; Laughlin et al., 1998), efficiently solving complex problems such as pattern recognition on
which conventional computers struggle. Consequently, there has been great interest in making
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neuromorphic hardware (Cruz-Albrecht et al., 2013; Merolla
et al., 2014). Resistive memories can effectively model some
properties of neural synapses and the crossbar structure allows
for high-density interconnectivity as found in the brain. For
example, individual neurons in the cerebral cortex can receive
roughly 10,000 input synapses from other neurons (Schüz and
Palm, 1989).

Resistive memories are essentially programmable two
terminal resistors. If a higher write voltage is applied to the
device, the resistance will increase or decrease based on the
sign of the voltage, allowing the resistance to be programmed.
Consequently, it can be used to model a synapse. Its resistance
acts like a weight that modulates the voltage applied to it. This
has resulted in a large interest in developing neuromorphic
systems based on it (Jo et al., 2010; Ting et al., 2013; Hasan and
Taha, 2014; Kim et al., 2015). Each cell also has a very small
area and the memory can be stacked in 3d when arranged in a
crossbar structure. Therefore, industry is developing resistive
memories to use as a digital replacement for flash memory (Jo
et al., 2009; Chen, 2013; Chen et al., 2014; Cong et al., 2015).

A pressing question is whether neural-inspired computing
systems are able to offer any resource advantage over more
conventional digital computing systems. Neural-inspired systems
are likely to take the form of a massively parallel collection
of neuromorphic computing elements or cores that are each
much simpler than conventional CPUs (Merolla et al., 2014).
Conventionally, each neuromorphic core is based on a local
SRAM memory array. This allows for data to be locally stored
where it is used, eliminating the need to move large amounts of
data. Simply organizing the computing system in this manner can
provide 4–5 orders of magnitude reduction in computing energy
(Cassidy et al., 2014). To get further benefits, the neuromorphic
core should be based on an analog resistive memory crossbar
array. Both digital and analog neuromorphic cores will have
an execution-time advantage as parallelism is easier to leverage
in a neuromorphic computational model where communication
latency is drastically decreased. Nevertheless, in this work we
avoid focusing on a new parallel architecture and instead focus
on demonstrating a more fundamental advantage in energy.

We will show that performing certain computations on an
analog resistive memory crossbar provides fundamental energy
scaling advantages over a digital memory based implementation
for finite precision computations. This is true for any architecture
that uses a conventional digital memory array, even a digital
resistive memory crossbar. In addition we give a concrete neural-
inspired application, sparse coding, which can be implemented
entirely in analog and reap the aforementioned energy advantage.
A rich neural-inspired problem is sparse coding (Olshausen,
1996; Lee et al., 2008; Arora et al., 2015), where one seeks to use
an overcomplete basis set to represent data with a sparse code. It
is used in many applications including computer vision, object
tracking, and more generally unsupervised learning. We will
show that analog neural-inspired architectures are ideally suited
for algorithms like sparse coding, and outline an implementation
of a specific sparse coding algorithm.

Specifically, there are two key computational kernels that are
more efficient on a crossbar. First, the crossbar can perform a

FIGURE 1 | Analog resistive memories can be used to reduce the

energy of a vector-matrix multiply. The conductance of each resistive

memory represents a weight. Analog input values are represented by the input

voltages or input pulse lengths, and outputs are represented by current values.

This allows all the read operations, multiplication operations, and sum

operations to occur in a single step. A conventional architecture must perform

these operations sequentially for each weight resulting in a higher energy and

delay.

parallel read or a vector-matrix multiplication as illustrated in
Figure 1. Second, the crossbar can perform a parallel write or a
rank-1 update where every weight is programmed based on the
outer product of the row and column inputs. These two kernels
form the basis of many neuromorphic algorithms.

In this paper we analyze the energy required to perform
a parallel read and show that for a fixed finite precision, the
noise limited energy to compute a vector dot product can
be independent of the size of the vector, O(1), giving the
analog resistive memory based dot product a significant scaling
advantage over a digital approach. In the more likely situation
of a capacitance limited energy, an N × N crossbar still has a
factor of N scaling advantage over a digital memory. Similarly,
writing a rank-1 update to a crossbar will also have a factor
of N scaling advantage over a digital memory. We also analyze
the energy cost of precision, energy scaling for communications,
energy for accessing one row of the crossbar at a time and energy
for accessing one element.

Next, we show that these computational kernels can be used
with a sparse coding algorithm to make executing the algorithm
O(N) times more energy efficient.

RESULTS

Noise-Limited Parallel Read
A resistive memory crossbar can be used to perform a parallel
analog vector-matrix multiplication as illustrated in Figure 1.
Each column of the crossbar performs a vector dot product:
∑

i xiwij for column j. The inputs, xi, are represented by either an
analog voltage value or the length of a voltage pulse. The weights,
wij, are represented by the resistive memory conductances. The
multiplication is performed by leveraging I = G × V, and the
sum is performed by simply summing currents (or integrating the
total current if the input, xi, is encoded in the length of a pulse).
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The absolute minimum energy to read the crossbar will be
determined by the thermal noise in each resistor. For many
computations we only need to know the result with some finite
precision. Taking advantage of this allows the minimum energy
to compute the vector dot product to be independent of the size
of the vector, O(1), when all the inputs and weights are positive.

To understand the tradeoff between precision and energy
scaling, consider the minimum energy required to measure the
current through N resistors with some signal to noise ratio
(SNR). The signal strength we need to detect is dependent
on the problem. If we want to keep the full precision of a
digital computation, the minimum detectable signal must be
proportional to the current through one resistor, Io. On the
other hand, in many computations we only need to know the
final result to some precision. The minimum detectable signal
for positive inputs/weights will be proportional to N × Io. This
means that we are throwing away extra information and no
longer want to detect the change in a single input, Io. Effectively,
we have a signal loss, α, of N, relative to a digital signal.

In many situations we will want negative weights or negative
inputs. In this case the average signal might be zero. Nevertheless,
the strength of the signal we want to detect will be given by
the standard deviation of the signal. Consider inputs that have
some distribution centered on zero, such as a Gaussian, and that
have a variance proportional to I2o . The variance of N inputs will
be proportional to N × I2o . The strength of the signal we are
detecting will be given by

√
N×Io and the loss relative to digital is√

N. Overall, the signal strength we want to detect is α× Io where
α is between 1 and N.

The energy to read the resistors is given by:

Energy = Power per resistor × N resistors × time

= V2Go × N ×
1

1f
(1)

Go is the conductance of each resistor and V is the voltage used
to read the resistors. The operation speed, 1f , is determined by
the thermal noise and the signal strength. We need to integrate
the current for long enough to get the SNR we want. The thermal
noise in N resistors is:

Noise =
〈

1I2
〉

= N ×
(

4kbT × Go × 1f
)

(2)

The SNR is the signal strength divided by the noise:

SNR2 =
(αIo)

2

〈

1I2
〉 =

α2 × I2o
4kbT × N × Go × 1f

(3)

The current in a single resistor is given by Io = V × Go. Using
this and solving for time gives:

1

1f
= SNR2 ×

4kbT × N × Go

α2I2o
= SNR2 ×

N

α2

4kbT

V2Go
(4)

Plugging this back into Equation (1) gives:

Energy = V2Go × N × SNR2 ×
N

α2
×

4kbT

V2Go

= 4kbT ×
N2

α2
× SNR2 (5)

For digital accuracy, α = 1, and the vector dot product energy is
O(N2) and is O(N3) for the full crossbar.

For finite output precision with positive inputs/weights, α =
N and so the vector dot product energy isO(1) and isO(N) for the
full crossbar. Thus, the total noise limited dot product energy is the
same regardless of the crossbar size. As we increase the number
of resistors and therefore signal strength, we can measure each
device faster and with less precision and energy per device to get
the same precision on the output. This is summarized in Table 1.

Capacitance-Limited Read
The previous analysis is only valid when the read energy is
limited by the noise and not the capacitance. In particular, for
fixed output precision with positive inputs/weights (α = N), this
is when Equation (5) is greater than the energy to charge the
resistive memory and wire capacitance:

4kbT × SNR2 > N × Cper RRAMV
2 (6)

If we assume we have a 1000 × 1000 crossbar, want a SNR of
100, and a resistive memory dominated capacitance of 18 aF
(20×20 nm area, 5 nm thick capacitor with a relative permittivity,
εr, of 25) we would need to perform the read at 100mV or less to
be noise limited. If a higher voltage is needed due to access devices
or a larger crossbar is used, the energy will instead be capacitance
limited.

For a capacitance-limited read energy, the crossbar will still
be O(N) times more energy efficient than an SRAM memory.
The scaling advantage occurs because in a conventional SRAM
memory, each row or wordline must be read or written one
at a time. This means that the columns/bitlines and associated
circuitry will need to be charged N times for N rows. In an
analog crossbar, everything can be done in parallel and so the
columns/bitlines and associated circuitry are only charged once.
Thus, the crossbar is O(N) times more energy efficient.

The most energy efficient way to organize a digital memory
for performing vector-matrix multiplication is to have the matrix
stored in an SRAM (or even a digital resistive memory) array.
The energy increases by orders of magnitude if the weights are
stored off chip. A typical SRAM cache is illustrated in Figure 2.
To perform a vector-matrix multiply, at best we can read out one
row/wordline at a time. For an N × N array, there will be N
memory cells along each row/wordline. To read each memory
cell along a row, we need to charge each bitline/column and

TABLE 1 | Energy scaling for different precision requirements.

Minimum detectable

signal

Loss

relative to

digital (α)

Full crossbar noise

limited read energy

Digital Accuracy Io 1 N× 4kbT × N2 × SNR2

Fixed Output

Precision

√
N× Io

√
N N × 4kbT × N× SNR2

Fixed Output

Precision, only

positive

inputs/weights

N× Io N N × 4kbT × SNR2

Frontiers in Neuroscience | www.frontiersin.org 3 January 2016 | Volume 9 | Article 484

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Agarwal et al. Energy Scaling Advantages of Crossbars

run the read electronics/sense amp for each cell. Thus, the total
energy is:

Energy = N rows × N cells per row× Edigital bitline

= N2 × Edigital bitline = O(N3) (7)

The energy to charge each bitline, Edigital bitline, is proportional
to the capacitance and therefore the length of the bitline:
Edigital bitline = NCcellV

2 where Ccell is the line capacitance
across a single resistive memory cell. Thus, the energy scales
as N3.

In an analog resistive memory crossbar, all of the rows are
charged in parallel and so the total energy is the sum of the energy
to drive N rows and N columns:

Energy = N rows × Eanalog row + N columns × Eanalog column

= N × (Eanalog row + Eanalog column) = O(N2) (8)

The energy to charge each line also scales as the length of each line
and therefore as N. Thus, the total energy for a crossbar scales as
N2 and is therefore is O(N) times more energy efficient than an
SRAMmemory.

When engineering memory systems, there are a number of
tricks that can be used to try to engineer around the scaling limits.
If on-chip optical communications become feasible, the entire
scaling tradeoff will be far better as the communication energy
will effectively become independent of energy. Unfortunately, the
energy and area overhead in converting from electrical to optical
is currently orders of magnitude too high (Miller, 2009). 3d
stacked memories will also scale better. In that case, this analysis
would apply to a single layer of a 3d stacked memory. Digital
memories can be broken into smaller subarrays with a processing
unit near each sub-array. This is the principle behind processing
inmemory architectures. Nevertheless, even aminimalmultiplier
and adder logic block takes up a significant amount of area,
limiting the minimum memory array size required to amortize
the logic cost. If logic blocks are not placed next to each subarray,
the bus capacitance to each sub array will cause the same scaling
limits. Adiabatic computing can be used to tradeoff speed for
the capacitance limited energy for both the digital and analog
approaches.

FIGURE 2 | A typical SRAM array. Each row/wordline must be accessed

sequentially.

Parallel Write Energy
The energy scaling to write a SRAM cell will be identical to the
energy to read the cell, Equation (7).N rows must each be written
one at a time, and each row has N cells. When writing each
cell, the energy to charge the bitline will be proportional to N.
Consequently, the energy to write the array will scale as O(N3).

On an analog crossbar, we can perform a “parallel write” or a
rank-1 update where every weight is programmed based on the
outer product of the row and column inputs. An example of a
parallel write is illustrated in Figure 3. The goal is to adjust the
weight, Wij, by the product of the inputs on the row, xi, and
column, yj, of the weight:

W′
ij = Wij + xi × yj (9)

An analog value for the row inputs, xi, can be encoded by the
length of the pulse. The longer the pulse the more the weight
will change. The analog column inputs, yj, can be encoded in
the height of the pulse in order to achieve a multiplicative effect.
The larger the voltage the more the weight will change for a given
pulse duration. The exact write voltages will need to be adjusted
to account for any non-linearities in the device. A parallel write
can be done entirely in time as well (Kadetotad et al., 2015).

If the write is energy limited by the capacitance for the lines,
the energy formula will be the same as in the read case and will
be given by Equation (8). It will scale as O(N2) and is therefore
is O(N) times more energy efficient than an SRAM memory.
However, each resistive memory will also typically require a fixed
amount of current to program. If the energy is limited by the
program current, the total energy will be given by number of
resistive memories times the energy to program one:

Ewrite = N2IwriteVwriteτwrite (10)

Iwrite andVwrite are the current and voltage, respectively, required
to write a resistive memory. τwrite is the time required to write

FIGURE 3 | A parallel write is illustrated. Weight Wij is updated by xi × yj .

In order to achieve a multiplicative effect the xi are encoded in time while the yi
are encoded in the height of a voltage pulse. The resistive memory will only

train when xi is non-zero. The height of yi determines the strength of training

when xi is non-zero.
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the resistive memory. In this case the energy still scales as O(N2)
and so it still is O(N) times more energy efficient than an SRAM
memory.

If the write current or time is too large, it is possible that
there will be a large constant factor that would make the energy
scaling irrelevant. Fortunately, energies to fully write a resistive
memory cell as low as 6 fJ have been demonstrated (Cheng et al.,
2010). Furthermore, since we are operating the resistive memory
as an analog memory with many levels, we do not want to
fully write the cell. Rather, we only want to change the state by
1% or less, resulting in a corresponding reduction in the write
energy per resistive memory. In this case the resistive memory
energy will be on the same order of magnitude as the energy to
charge the wires. (1% of 6 fJ is 60 aJ. The wire capacitance per
resistive memory in a scaled technology node is likely to be on the
order of 10’s of attofarads [International Technology Roadmap
for Semiconductors (ITRS, 2013)]. At 1V, that corresponds to 10’s
of attojoules as well).

Energy Cost of Precision
So far we have ignored the energy cost of computing at high
precision. Analog crossbars are best at low to moderate precision
as seen below. There are three values that can each have a
different level of precision. Let the inputs, xi, have a precisions
in bits of bin, the outputs have a precision of bout, and the weights
have a precision of bw. Consider the noise-limited parallel read
energy. The energy per column is given by Equation (5) and is
proportional to the SNR2 of the output. If we want 2bout levels on
the output, the SNR must increase by 2bout . This means that to
create N outputs, at a precision of bout bits, the crossbar energy
will be on the order of the O(N ×22bout ). If the crossbar is limited
by the capacitance, the computation will already have sufficient
precision and so the read/write energy will still be O(N2).

The thermal noise limited energy to process the output of the
crossbar in analog at a certain precision will also scale as the
voltage signal to noise ratio squared and therefore the number of
output levels squared: 22bout (Enz and Vittoz, 1996). If the output
is converted from analog to digital, the D/A energy typically
scales as the number of levels, 2bout (Murmann and Boser, 2007).
Similarly, to convert a digital input to analog will scale as the
number of input levels: 2bin . Thus, we see that in the capacitance
limited regime the total energy to read the crossbar is on the order
of:

AnalogCapacitance Limited Energy = O(N× (N+22bout +2bin ))
(11)

or in the noise limited regime with positive inputs and weights it
is:

AnalogNoise Limited Energy = O(N× (22bout + 22bout + 2bin ))

= O(N× (22bout + 2bin )) (12)

If we use a digital memory, we will need to store bw bits for each
weight. Consequently, we will need to multiply the energy by bw:
E ∼ O(N3bw). We will also need to multiply each weight by its
input and then sum the result. Assuming bw > bin, A single
multiplication scales worse than O(bw × log(bw)) (Fürer, 2009)

and so an entire crossbar with N2 weights is at least O(N2 × bw
× log(bw)). The sum operation will scale slower. Assuming bout
< bw × log(bw) any neuron operations will also scale slower than
the multiply operations. Thus, the digital energy is:

Digital Energy = O(N2 × bw × (N + log(bw))) (13)

We see that for finite precision, analog is better, but if high
floating point precision is required, digital is likely to be better.

Communications Energy
So far we have considered the energy of performing individual
operations on a resistive memory crossbar. If we consider making
a full system of multiple crossbars, the energy to communicate
between crossbars can also be a significant component of the
total energy. Consider the system shown in Figure 4. Each
crossbar (or SRAM memory Merolla et al., 2014) is part of a
neural core and each core communicates with the others over a
communications bus. The energy to communicate between cores
will be determined by the energy to charge the capacitance of
the wire connecting two cores. Consequently the energy will be
proportional to the capacitance and therefore the length of the
wires. Assume that each core will communicate on average to a
core that is fixed number of cores away. The size of each core will
be determined by the size of the crossbar and so for an N × N
crossbar, the length of an edge of a core will be ofO(N). Similarly,
the length of wire to go a fixed number of cores away is of O(N)
and thus the energy is O(N).

The key kernels discussed so far assume that a single operation
drives an N × N matrix with N inputs and has N outputs. That
means that each operation will haveO(N) communication events
called spikes. Thus, we have O(N) spikes and O(N) energy cost
per spike giving a total energy cost of O(N2). The energy to drive
an SRAM based memory is ofO(N3) and so the communications
costs will be irrelevant for a large array. Indeed this is exactly the
case in the IBM TrueNorth Architecture (Merolla et al., 2014).
IBM projects that for an SRAM based system with a 256 × 256
core in a 10 nm technology the energy to communicate five

FIGURE 4 | A system would consist of individual crossbar based cores

that communicate with each other through a communications bus and

routing system.
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cores away is 30 times lower than the energy to write the array.
On the other hand, if we take advantage of an analog resistive
memory crossbar, both the energy to read or write it and the
energy to communicate will scale with O(N2). In this case, either
the crossbar energy or the communication energy can dominate
depending on the system architecture.

For algorithms that require cores that are far apart to
communicate, the constant factor in the communication energy
(the average communication distance) can be quite large and
cause the communications energy to dominate. In this case,
resistive memories can still provide a large constant factor
reduction in the communication energy. Resistive memory
potentially allows for terabytes of memory to be integrated onto
a chip, while a chip using SRAM cannot hold more than 100 MB.
This means that resistive memory can be >10,000X denser than
SRAM. Consequently, the edge length of a core can be reduced
by

√
10,000 = 100X. This would reduce the wire length and

therefore communications energy by 100X or more. This is true
regardless of whether the resistive memory is used as a digital or
an analog memory.

Sparse Communications Algorithms
So far we have only considered kernels that operate on the entire
N × N core at once. Some algorithms only operate on 1 row or
even 1 element at a time. In these cases the energy scaling is very
different.

First, consider an algorithm that operates on a single row at a
time. Assume that in a given step a core receives an input, reads
and writes one row and then sends out one communication spike
to another core. We assume that on average the number of input
spikes is the same as the number of output spikes so that the
system remains stable (the spikes don’t die off over time or blow
up so that everything is spiking all the time). In this case, both
the digital and the analog energy to read/write the crossbar scale
as O(N2). This is because N bitlines need to be charged for one
row and the energy per bitline scales as O(N). Whether a digital
or analog implementation is better will depend to the constant
factors and exact system design. In both cases, using resistive
memory for the memory reduces the wire lengths and therefore
the power. The communications energy will scale as O(N) for a
single spike in/out since the core edge length scales as O(N). This
means the read/write energy will dominate as it scales as O(N2)
and the communication scales as O(N).

Next, consider an algorithm that operates on only a single
element. In a given step, a core receives an input, reads a
single memory element and sends a single output. In both
the analog and digital cases we will charge one bitline and
one wordline and so the energy will be proportional to the
length of the line and will be O(N). The communication energy
for a single spike will also scale as O(N), proportional to the
core edge length. Both the communications energy and core
energy need to be simultaneously optimized as they both scale
as O(N).

Rectangular Vs. Square Memory Arrays
So far we have assumed all our memory arrays are square N ×
N arrays. Let’s consider an N × M array with N rows and

M columns. For an analog resistive memory, the capacitance-
limited read/write energy will still scale as the length of each
column times the number of columns, O(N ×M).

For a digital memory each row must be accessed sequentially
and so the energy will scale as the number of rows times the
length of each column times the number of columns: O(N2×
M). If N<<M, a digital rectangular array can be more efficient
than a digital square array. Nevertheless, this is only true for
a read if we only want output data along the M columns; i.e.,
we only perform the following multiplication,

∑

i xiwij, where i
represents the rows. If we also need to output data along the rows,
i.e., perform the transpose operation:

∑

j wijxj, the energy for that

operation will scale as O(N ×M2), which would be worse than a
square matrix.

In both cases, we have assumed that the data has the same
shape, N × M, as the memory. This allows us to perform the
sum operation at the edge of each array and minimize the data
movement. If the data is not the same shape as the array, the
energy will be worse. Consider the situation shown in Figure 5.
When the data is not the same shape as the array, we will need
to move the data to a computational unit at a single location. The
average wire length going to that unit (including both the wires in
the array and outside of it) will be O[max(N,M)]. Consequently,
the energy will scale as the number of bits (N ×M) times the total
wire lengthO[max(N,M)] which is:O[(N ×M)×max(N,M)]. In
this case a square array with an edge length of sqrt(N ×M) would
be the most efficient with an efficiency of O(N3/2× M3/2). The
same energy scaling applies to a write operation: the value to be
written to the array depends on both row and column inputs and
so it must be computed in one location and then communicated
to the bitlines/columns in the array.

Sparse Coding Using a Resistive Memory
Array
The energy efficiency of a resistive memory array can directly
translate to making an algorithm more energy efficient. Consider

FIGURE 5 | If the data is not the same shape as the array, the input

data will come from a single router, and the output data will need to go

to a single computation unit. At best, the extra wire length to go to the

input/output units plus the row/column wire length will be O[max(N,M)].
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the problem of sparse coding. Sparse coding finds a set of basis
vectors such that the linear combination of a few of these vectors
is sufficient to explain each observation. Specifically, sparse
coding finds matrix A that minimizes the following objective
function (Olshausen, 1996; Lee et al., 2008):

p
∑

k=1

∥

∥yk − Axk
∥

∥

2 +
p

∑

k=1

S(xk) (14)

where A is an M by N matrix, M<<N, of basis vectors, p is the
number of observations, yk, (of size M) is observation k, xk (of
size N) is the sparse representation of yk, and S is a sparsity cost
such as the L1 norm.

This problem is non-convex, but an approximate solution
with guaranteed error bounds can be efficiently obtained via a
recent algorithm by Arora et al. (2015) that extends the seminal
gradient descent approach of Olshausen and Field (1997). In
particular, we run t iterations or batches where we draw p samples
and solve the following for each sample k:

xk = thresholdC

(

A(t)Tyk

)

(15)

where A(t) is the sparse coding matrix at iteration t. thresholdC(.)
is a thresholding function that keeps coordinates whose
magnitude is at least C and zeros out the rest ensuring the code
x is sparse. Next we compute a matrix update, 1gk, which is the
outer-product of two vectors:

1gk =
(

yk − A(t)xk
)

× sgn(xk)
T (16)

where sgn(.) is the sign function. All p updates need to be
summed over a batch:

g(t) =
p

∑

k=1

1gk (17)

At the end of each batch, t, we update the sparse coding matrix:

A(t + 1) = A(t)−
η

p
g(t) (18)

where η is the learning rate.
This sparse coding algorithm can be implemented efficiently

with two resistive memory arrays. One array stores the sparse
coding matrix A(t) while the second one stores the updates 1gk
during each batch. (Separate arrays should be used to minimize
the wire length in each array) The arrays should be arranged
to limit the wire length of the most frequent communication,
sgn(xk), to be ofO(M). This ensures that communications are not
the limiting energy factor.

To analyze the energy efficiency, let’s first consider all the
operations performed for each sample k: For Equation (15), there
are two operations being performed, the vector-matrix multiply,
A(t)Tyk, and the threshold function. In Equation (16), the
resulting vector, xk, is multiplied by the matrix again, but without
the transpose: A(t)xk. Then a vector subtraction is performed:

yk − A(t)xk. Next, a sign operation sgn(xk) is performed.
Finally, we have two vectors that need to be multiplied in
an outer product and added to second matrix that stores the
weight update. Moving data to the second matrix will incur a
communications cost. After p samples, the summed updates in
the second matrix, g(t), need to be copied, multiplied by η/p
and written back to the original matrix, A(t). This operation
can only operate a single row at a time as each weight needs to
be read, communicated and written independently. This means
analog will not have benefit over digital for this operation.
Fortunately, it is only performed once every p samples. All the
operations and their energy scaling are summarized in Table 2.
In analog all the matrix operations will cost O(N × M). To
maximize the digital energy efficiency, we assume we arrange
a digital memory to be a square giving and energy cost of
O(N3/2×M3/2).

Let the inputs and outputs, have a precision in bits of b,
and the weights have a precision of bw. We consider finite
precision such that 2b < M. This allows us to simplify Equation
(11), the analog square matrix energy to be E ∼ O(N2) and
Equation (13) the digital energy to be E ∼ O(N3). Here we are
assuming that sparse coding algorithm will converge with a finite
precision on the inputs and outputs. Neural-inspired algorithms
like sparse coding tend to tolerate large amounts of noise, but
the exact precision requirements should be studied for a practical
implementation.

We can sum the energy scaling over all the operations listed
in Table 2. Using the fact that 2b<M<N<p (Arora et al., 2015)
gives an overall analog energy scaling of: O(N × M × p) and an
overall digital energy scaling of O(N3/2×M3/2× p). Thus, we see
that analog has an overall energy advantage of O[(N ×M)1/2] or
O(N) if N =M.

TABLE 2 | The energy scaling for all the operations is given.

Operation Analog energy

scaling

Digital energy

scaling

Repetitions

per batch

MATRIX OPERATIONS

Multiplication: A(t)T× yk O(N × M) O(N3/2× M3/2) p

Multiplication: A(t)×xk O(N × M) O(N3/2× M3/2) p

Multiplication/Training:
(

yk − A(t)xk
)

× sgn(xk )
T

O(N × M) O(N3/2× M3/2) p

VECTOR OPERATIONS

Threshold: thresholdC
(

A(t)Tyk

)

O(N × 2b) O(N × b) p

Subtraction: yk − A(t)xk O(M × 2b) O(M × b) p

Sign function: sgn(xk ) O(N × 2b) O(N × b) P

COMMUNICATION

Vector:
(

yk − A(t)xk
)

O(N × M) O(N1/2× M3/2) P

Vector: sgn(xk )
T O(M × N) O(N3/2× M1/2) P

Matrix: g(t) O(N2× M) O(N3/2× M3/2) 1

SERIAL OPERATIONS

Read: g(t) O(N2× M) O(N3/2× M3/2) 1

Write: A(t+ 1) = A(t)− η

pg(t) O(N2× M) O(N3/2× M3/2) 1

We consider the finite precision case such that 2b < M.
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DISCUSSION

In this analysis we have deliberately avoided specifying constant
factors as they can vary by orders of magnitude depending on
the technology and design tradeoffs. Particular multiplicative
constants apply only to today’s hardware, but the big O remains
whether new devices change these constants. For instance, the
energy to write a resistive memory can be as low as 6 fJ (Cheng
et al., 2010) or higher than 100 nJ (Mahalanabis et al., 2014). The
energy for analog driving circuitry around a crossbar can also
vary by orders of magnitude depending on the speed and circuit
area tradeoffs. Depending on the algorithm, new semiconductor
devices such as a spin based neuron (Sharad et al., 2014) could
also drastically change the energy tradeoff.

Nevertheless, it is still useful to consider some specific
numbers to understand what is plausible. In running an
algorithm on a resistive memory array there are three key
components to the energy, the parallel read energy, the parallel
write energy and the energy for the driving circuitry. To find the
capacitance limited read or write energy we need the capacitance
per resistive memory element. The capacitance per element (wire
+ resistive memory) in an array for a 14 nm process as specified
by ITRS will be around 50 aF. If we need to charge the wires to
1V, that corresponds to 50 aJ per element. For an N × N array
the total capacitance limited read or write energy would be 50
× N2 aJ. As discussed at the end of the Parallel Write Energy
section, the current limited write energy could plausibly be on
the same order of magnitude. The energy of the driving circuitry
depends greatly on what computations are performed, but we can
get an order of magnitude estimate by considering one of the
most expensive analog operations, an analog to digital converter
(ADC). ADCs that require only 0.85 fJ/level (or conversion
step) have been demonstrated at 200 kHz (Tai et al., 2014). This
means that for a 1000 × 1000 crossbar, the energy to run a
six bit ADC is roughly the same as the energy to read/write a
column of the crossbar. For higher precision ADCs, the ADC
will dominate the energy, while for lower precision ADCs the
crossbar will dominate the energy. In general, we see that the
potential constant factors are on the same order of magnitude
and consequently will be very technology dependent.

In order to understand the theoretical benefits of a crossbar,
we have assumed ideal linear resistive memories. In practice there
are many effects that can limit the performance of a resistive
memory crossbar in a real algorithm. Access devices are required
to be able to individually write a given resistive memory. This
limits how low of a voltage can be used. Non-linearities in the
resistive memories as well as those introduced by the access
device mean that the amount a resistive memory writes will
be dependent on its current state. Read and write noise limit
the accuracy with which the resistive memories can be read or
written. Parasitic voltage drops mean that devices far away from
the drivers see a smaller voltage. Despite all of these effects,
recent studies are indicating that iterative learning algorithms
can tolerate and learn around moderate non-idealities (Burr
et al., 2015; Chen et al., 2015; Cong et al., 2015). Given the
potential energy scaling benefits of resistive memory crossbars,

more work is need to design devices with fewer non-idealities and
to better understand how various algorithms can perform given
the non-idealities.

Overall, we have shown that the energy to perform a
parallel read or parallel rank-1 write on an analog N ×
N resistive memory crossbar typically scales as O(N2) while
a digital implementation scales as O(N3). Consequently, the
analog crossbar has a scaling advantage of O(N) in energy. The
communications energy between neighboring crossbars scales as
O(N2). Thus, communications are not as important for digital
approaches, but once we take advantage of an analog approach
the communication energy and computation energy are equally
important. For algorithms that operate on only one row of a
matrix at a time, both the digital and analog energy scales as
O(N2) per row. Therefore, the better approach will depend on
the specifics of a given system. Algorithms such as sparse coding
can directly take advantage of the parallel write and parallel read
to get an O(N) energy savings.

Thus, we have shown that performing certain computations
on an analog resistive memory crossbar provides fundamental
energy scaling advantages over a conventional digital memory
based implementation for low precision computations. This is
true for any architecture that uses a conventional digital memory
array, even a digital resistive memory crossbar. Fundamentally, a
digital memory array must be accessed sequentially, one row at
a time, while an entire analog memory crossbar can be accessed
in parallel. Analog crossbars perform a multiply and accumulate
at each crosspoint, while digital memories need to move the data
to the edge of the array before it can be processed. In principle, a
digital system could be organized to process data at every cell, but
the area cost would become prohibitive. Alternatively, optimized
digital neural systems will have a processing in memory (PIM;
Gokhale et al., 1995) type architecture where simple operations
are performed near a moderately sized memory array (Merolla
et al., 2014).While this will give orders of magnitude reduction in
energy compared to a CPU (Cassidy et al., 2014), the fundamental
scaling advantages of an analog crossbar array can further reduce
the energy by a few orders of magnitude.
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