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So far, Brain-Machine Interfaces (BMIs) have been mainly used to study brain potentials

during movement-free conditions. Recently, due to the emerging concern of improving

rehabilitation therapies, these systems are also being used during gait experiments.

Under this new condition, the evaluation of motion artifacts has become a critical

point to assure the validity of the results obtained. Due to the high signal to noise

ratio provided, the use of wet electrodes is a widely accepted technic to acquire

electroencephalographic (EEG signals). To perform these recordings it is necessary to

apply a conductive gel between the scalp and the electrodes. This work is focused

on the study of gel displacements produced during ambulation and how they affect

the amplitude of EEG signals. Data recorded during three ambulation conditions (gait

training) and one movement-free condition (BMI motor imagery task) are compared to

perform this study. Two phenomenons, manifested as unusual increases of the signals’

amplitude, have been identified and characterized during this work. Results suggest that

they are caused by abrupt changes on the conductivity between the electrode and the

scalp due to gel displacement produced during ambulation and head movements. These

artifacts significantly increase the Power Spectral Density (PSD) of EEG recordings at all

frequencies from 5 to 90Hz, corresponding to the main bandwidth of electrocortical

potentials. They should be taken into consideration before performing EEG recordings

in order to asses the correct gel allocation and to avoid the use of electrodes on certain

scalp areas depending on the experimental conditions.

Keywords: artifact, human gait, brain-machine interface, conductive gel, electroencephalography, rehabilitation

1. INTRODUCTION

Non-invasive Brain-Machine Interface (BMI) technologies have become very popular during the
last decade. These technologies are based on the measurement of brainwaves using electrodes
located over the scalp. Since it is based on passive sensors, this placement does not require surgery
and has no other medical implications. By analysing brain potentials it is possible to decode
several parameters related to the mental state of the subject. Biologically, this process is mainly
performed (in a complex way) in the cerebral cortex, in the cerebellum and in the basal ganglia
(Cisek and Kalaska, 2010; Mirabella, 2014). Normally motor commands are sent to the peripheral
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nerves and muscles through the spinal cord. However, in Spinal
Cord Injured (SCI) patients, these communication pathways
are interrupted at different levels depending on the severity of
the injury. BMIs provide an alternative way to communicate
the brain with external devices or even, indirectly, with the
rest of the body using exoskeletons. In Carlson and Millán
(2013) a BMI is used to control a wheelchair. In Escolano
et al. (2012) a telepresence mobile robot is BMI-controlled
allowing handicapped people to perform daily tasks. Currently,
many works based on this technology have been oriented to
rehabilitation. Classic rehabilitation techniques are based on
therapist-patient interaction (O’Sullivan et al., 2013). Recent
techniques are trying to obtain more natural movement patterns
introducing exoskeletons in the rehabilitation process (Chen
et al., 2013; Metzger et al., 2014). As these emerging systems
are controllable devices , BMIs have been proposed by several
researchers (Daly and Wolpaw, 2008; Pfurtscheller et al., 2008;
King et al., 2013) as a method for increasing the level of the
patients’ involvement in the rehabilitation process. In the last
30 years it has been demonstrated that, both in humans (e.g.,
Elbert et al., 1995) and animal models (e.g., Lebedev et al., 2000),
a wide range of experiences promotes physical changes of the
brain structure. This brain plasticity represents the neural basis of
learning and memory (for a review see Kolb and Gibb, 2014). It
has been hypothesized that neuroplasticity could help functional
recovery following brain injury by maximizing the use of the
spared circuitry. In fact, some works have shown an increase in
plastic changes in patients when they experience higher levels of
involvement on their rehabilitations (Dimyan and Cohen, 2011;
Kaneko et al., 2014). In Ang et al. (2014), a BMI based on motor
imagery tasks is used to control a Haptic Knob robot providing
patients a way to be involved with their rehabilitation.

Notwithstanding the remarkable results achieved with BMIs
(Nicolelis and Lebedev, 2009), this approach still have limitations
which explain why we are still far from approximating
voluntary behavior using external devices. For instance, the
speed of information transfer rates is currently not high enough
(Baranauskas, 2014). Another problem is that the current
understanding of brain processes underlying motor decision-
making is not accurate enough. For example, volitional inhibition
or the ability to cancel pending actions (Logan, 1994) has
been disregarded several times by the BCI scientific community
(Mirabella, 2012). Although there have been attempts to face this
issue (Ifft et al., 2012), the current understanding of volitional
control is not enough to properly adapt behavior to unattended
changes either in the external environment or in our thoughts.
In addition in the last few years, BMIs have been applied on
lower limb rehabilitation. These studies involve the acquisition of
data during gait processes and other body movements produced
during ambulation (Chéron et al., 2012; Duvinage et al., 2012).
The use of BMIs on these conditions involve several issues
that should be addressed. The volume conduction of the scalp
and the consequent smearing of signals produce a poor signal
spatial resolution (da Silva, 2004) during electroencephalografic
(EEG) acquisition. This scalp property produces the appearance
of redundant information on nearby scalp areas. Due to volume
conduction, several signals from other sources (artifacts) can be

coupled to the EEG signals of interest. Usually, BMI research
is performed on movement-free conditions where only electro-
ocular and facial artifacts (Fatourechi et al., 2007) need to be
taken into account. However, when a subject is walking, artifacts
must be properly studied to know if there are new sources of noise
affecting the recorded signals. To understand the importance of
this study it is necessary to have a global view of the possible
noises affecting EEG signals and knowledge of the state of the art
techniques or methods developed to detect, reduce and removal
of such artifacts. Depending on their source, EEG artifacts can be
divided into three large groups: biological artifacts, environment
artifacts, and equipment artifacts.

Biological artifacts are signals from biological sources that
distort the EEG activity. Some of these signals come from
physiological sources like blood pressure or skin tension. They
have low and constant influence on EEG signals so the usual
way of correcting them is by using a reference electrode. Others
have an electrical source like electrooculographic (EOG) signals,
electromyographic (EMG) signals or even other EEG potentials
that mask the signals of interest. The appearance of these artifacts
can lead to misleading results and to the development of systems
that are really not studying the targeted phenomena. For that
reason, there are lots of studies focused on understanding the
nature of these signals in order to learn how to detect and
reduce them. There are studies characterizing the influence of
EMG signals and the scalp areas affected by them (Goncharova
et al., 2003). There are several methods oriented to reduce EOG
artifacts, from their removal by visual inspection to the use of
linear regression techniques (Schlögl et al., 2007). More complex
studies use independent component analysis (ICA) to decompose
the signals into independent components and remove those
related to artifacts (Gwin et al., 2010; Akhtar et al., 2012).

Environment artifacts are produced by the surrounding
conditions of the experimental environment. Loud noises,
flashlights and other visual stimuli can produce the appearance
of evoked EEG potentials (Mitzdorf, 1985) that contaminate
the EEG phenomena under research. Other factors like floor
vibrations or electromagnetic fields produced by external devices
can affect the subject and the equipment devices adding
undesired signals coupled to the recorded data. These artifacts
can be avoided by performing the experiment in a controlled
isolated environment.

Finally, equipment artifacts are produced by those devices
and methods included in the experiment. The most common
is the power line interference which is a 50/60 Hz (depending
on the world region) signal affecting the electrical network that
gets coupled with the recorded data. Current systems include
a 50/60Hz notch filter to remove this interference. It can also
be removed by connecting all the equipment to an isolation
transformer. Most of these artifacts depend on the specific
conditions of each experiment and they should be characterized
to develop a systematic protocol that contribute to their removal
or reduction. Also, current studies (Castermans et al., 2014;
Kline et al., 2015) have found motion artifacts focalized on
low-delta and high-gamma bands on the EEG signals during
ambulation and head movements. In non-invasive BMI systems
based on wet electrodes there is a common source of noise
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shared by many experiments. This technology is based on the
placement of electrodes over the scalp applying a conductive
gel between both surfaces. To easily place the electrodes over
the scalp, an elastic cap that fits the subject’s head is used.
When an experiment does not require head movements, the
conductive gel and the electrodes do not experience changes by
settlement. However, when the experiment is performed during
ambulation, due to the elasticity of the cap, the electrodes and
the gel present displacements that induce undesired changes
of the signals’ amplitude. Both electrode and gel are not fully
fixed elements of the acquisition system, electrode movements
induce gel displacement and viceversa. As a consequence, the
conductivity between the scalp and the electrode change during
these movements producing changes in the signals’ amplitude.
For simplification reasons, hereafter, conductivity changes are
going to be referred as gel movements as they could be seen
like relative changes of position between the three elements that
conform the acquisition system: scalp, gel and electrode. These
artifacts have been considered on other works as artifacts from
unknown sources. To remove them, data rejection techniques are
usually used producing, in some cases, a significant decrease in
the amount of data available for each study. This problem has
become the main motivation to evaluate and understand these
artifacts. Having these artifacts characterized, makes possible
the development of experimental protocols focused on their
avoidance.

The main goal of this work is to characterize, during EEG
recordings, two types of noise produced by the displacement
of conductive gel comparing ambulation vs. non-ambulation
(thereafter referred to as movement free) conditions. These
artifacts can be easily identified by measuring the electrodes’
impedance, unfortunately, not all acquisition devices allow the
computation of this parameter. To obtain the optimal signal, both
noises should be evaluated. The first noise identified is produced
by an initial misplacement of gel, producing a significant increase
in the signals’ amplitude and standard deviation over a whole run.
The second noise is manifested as a sudden amplitude increase in
a long segment of one run. To perform this study, EEG data from
four experiments (three performed during ambulation and one
performed movement-free) are used. To understand the nature
of these artifacts, noisy channels are identified after evaluating
parameters related to the signal’s amplitude. Noisy channels
are isolated and divided into groups depending on the type of
noise, the experimental conditions and the scalp areas evaluated.
The characterization of these noises is necessary to properly
understand how they affect the EEG recordings and to develop
experimental protocols oriented to avoid them in experiments
involving human gait. To our knowledge this is the first study
to carry out the characterization of this artifacts. Current works
usually discard noisy electrodes and signal trials affected by these
artifacts to perform their analysis. This could be a valid approach
for offline analysis but not valid to perform online studies. In
addition, the amount of information loss after applying data
rejection techniques from gait experiments is a factor to take
into account. If the scalp areas affected by these artifacts are
known, it is possible to avoid them during experiments. It will be
also possible to develop gel allocation protocols that reduce their

influence. This approach is also helpful for avoiding unnecessary
trial rejections and the consequent loss of information.

2. MATERIALS AND METHODS

2.1. Experiments and Data Sets
To perform this study, EEG data from four experiments are
analyzed. Data sets 1, 2, and 3 are registers from experiments
performed under the framework of BioMot (Smart Wearable
Robots with Bioinspired Sensory-Motor Skills), an European
project oriented to the development of an exoskeleton controlled
by physiological signals for lower limb rehabilitation. These
experiments were oriented to evaluate several parameters
associated to the human gait. In them, EEG signals were recorded
during treadmill walk. On the other hand, data set 4 is composed
of EEG data related to motor imagery tasks where participants
were not moving. Below, each set of recordings is presented with
the relevant information related to the experiments performance,
the environmental conditions and the procedure.

The evaluated recordings have been acquired from two
different experimental conditions. Figure 1A shows the
experimental condition of data sets 1, 2, and 3. In this case,
participants carried the equipment and walked on a treadmill.
On the other hand, Figure 1B shows the second condition, where
participants sat in front of a computer screen performing motor
imagery tasks. Human data presented in this article have been
acquired under an experimental protocol approved by the ethics
committee for experimental research of the Miguel Hernández
University of Elche, Spain. Written consent according to the
Helsinki declaration was obtained from each participant. Table 1
shows specific participant and run features regarding each
experiment. The specific conditions of the experiments were
defined to fit the main goals of different studies. In the current
study, these data sets are used to evaluate the observed artifacts
produced by gel displacement.

2.1.1. Data Set 1 (Speed and Tilt Changes during Gait)
The participants were asked to change several times their speed
and tilt level. The sequence of tasks was: walk at 2 km/h and 10◦

of tilt, walk at 2 km/h and 5◦ of tilt, walk at 2 km/h and 0◦ of
tilt, walk at 3 km/h and 0◦ of tilt, and walk 4 km/h and 0◦ of tilt.
Each condition was performed for 60 s. Tilts positive values refer
to positive inclinations. During a whole run participants were
always looking forward.

2.1.2. Data Set 2 (Gait Attention Changes)
Participants were asked to walk over the treadmill at a constant
velocity of 2 km/h and 0◦ of tilt. During a run, the participant
performed four activities: normal walk looking to a white screen,
walking while performing mathematical operations shown on a
screen, walking while watching a video, and walking following
some adhesive marks on the treadmill. The duration of each
activity was fixed by the experimenter to 60 s periods each. In
the last activity the adhesive marks were placed to provide an
irregular gait cycle, so the participant had to look down to follow
them.
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2.1.3. Data Set 3 (Obstacle Appearance during Gait)
During this experiment the participants walked while several
visual stimuli were presented simulating the appearance of
unexpected obstacles. The walking was performed at 2 km/h with
0◦ of tilt. Each run was composed of two different tasks. In the
first task, the participants were asked to stop their gait for a
second when a laser projection appeared over the treadmill. In
the second one, they were asked to stop their gait for a second
when they saw a change of the screen color. Each condition
lasts for 90 s. During the laser projection task, participants were
looking down to see the laser appearance.

2.1.4. Data Set 4 (Motor Imagery Task)
The participants were asked to sit in front of a screen and
imagine the performance of different motor tasks. In each run
the participant were instructed to imagine four specific motor
movements related to right and left limbs. During the whole
experiment participants remained seated in a movement-free
condition.

FIGURE 1 | Experimental conditions. Panel (A) shows the experimental

conditions of the experiment performed during ambulation: amplifiers are on

the desk connected by cable to the preamplifiers. Electrodes are placed over

the subject who is walking on a treadmill. A computer screen is placed in front

of the subject to provide, if needed, visual feedback. All unnecessary electronic

devices were disconnected during experiments and signals were visually

analyzed prior to the experiment performance to confirm the absence of

environmental noises affecting the recordings. Panel (B) shows the

experimental conditions of motor imagery experiments: the subject sits in front

of a screen that provides feedback about the experimental procedure. Signals

are acquired using the electrodes placed over the scalp before the

preamplification and digitalization stage.

2.2. Data Acquisition
Data acquisition conditions were similar over all the data sets.
The only appreciable changes were in the number of electrodes
used. Thirty-two electrodes were used on ambulation recordings
(data sets 1, 2, and 3) and 16 electrodes were used during
movement-free recodings (data set 4). The spatial distribution of
the electrodes was the same for all data sets, being smaller the
spatial resolution on data set 4, as shown in Figure 2.

The EEG data were acquired using 32/16 pseudo-active
electrodes to improve the signal to noise ratio with the
distributions shown in Figure 2 according to the International
System 10/10 (Klem et al., 1999) with a monoauricular reference
in the right earlobe using AFZ electrode as ground. The scalp
is measured to place the electrodes on the same anatomic areas
for all participants (Towle et al., 1993). The conductive gel used
to reduce the impedance between the electrodes and the scalp is
a salt-base electrolyte gel (SignaGel, Parker Laboratories, USA).
The electrical signals were preamplified (g.GAMMAbox, g.Tec,
GmbH, Austria) and digitalized at 1200Hz using two commercial
amplifiers (g.USBamp, g.Tec, GmbH, Austria). These devices
were also configured to apply a hardware low pass filter from
0.5 to 100Hz, and a 50Hz notch filter to remove the power line
interference.

2.3. Analysis Procedure
The presented data sets were studied and compared throughout
this section in order to characterize the equipment and set up
artifacts produced on EEG signals during both conditions. In

FIGURE 2 | Electrode distributions. Thirty-two electrode scalp distribution

corresponding to gait experiments and 16 electrode scalp distribution

corresponding to motor imagery experiments. Both distributions cover the

same spatial area with different spatial resolutions.

TABLE 1 | Experiment specifications.

Number of participants Run duration

Data set Male Female Ages(mean ± STD) Sessions Runs per session (min) Total number of runs Condition

1 3 0 26.66 ± 4.04 1 8 5 24 Ambulation

2 8 2 26.60 ± 3.94 2 8 4 160 Ambulation

3 3 0 25.66 ± 2.88 1 16 3 48 Ambulation

4 12 0 27.33 ± 4.67 1 12 4 144 Movement-Free

Specific values of each data set regarding the number of participants, age, number of sessions, runs, and duration. All subjects were right-handed.
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Figure 3, the 16 channels recorded from data set 4 (movement-
free experiment) and the same 16 channels from data set 2
(ambulation experiment) are shown. By comparing both signals,
two phenomenons mostly associated to ambulation data are
described as follows:

1. A sudden amplitude change (hereafter, we call it as SA noise)
as it is seen in electrodes FC5 and CP6.

2. A higher amplitude (hereafter, we call it as HA noise) during
the whole run like those shown in C3 and CP5.

The run shown in Figure 3 has been selected for noise definition
purposes. Not all the runs of ambulation data present both kind
of noises and when they appear, they are not always associated to
the same electrodes. Furthermore, the HA noise appears in some
runs of data set 4 (movement-free). Regardless of their origin,
all visible noise sources are associated to an unusual increase

in the signal’s amplitude. aAccording to literature, typical EEG
amplitudes ranges differ throughout studies a(between 0.5 and
100 µV; Teplan, 2002 or between 50 and 200 µV; Srinivasan,
2007). It is important to characterize the typical amplitude of
the recorded EEG signals in specific experimental and equipment
conditions. In our case, it is clear that the increase of amplitude
presented in electrodes FC5 and CP6, and the amplitude in C3
and CP5 are not produced just by EEG variations. In order
to remove or reduce the appearance of these phenomena, it is
necessary to know their origin. For that purpose, in this paper,
both phenomenons are going to be studied using the four data
sets previously introduced. To study and compare the signals,
three parameters related to the amplitude of the signals are
described:

1. Standard Deviation that measures the amount of variation or
dispersion of a signal.

FIGURE 3 | EEG recordings during ambulation and movement-free conditions. Top left shows EEG ambulation graphs with the data registered on channels

from experiments performed during ambulation. Bottom left shows 2-s trials with detailed amplitudes and vibration of two not noisy channels (FC5 and FC3), two HA

noise affected channels (C4 and CP2) and two SA noise affected channels (PO3 and PO4). Top right shows EEG movement-free graphs with the data registered on

channels from the movement-free experiment. Bottom right shows 2-s trials with detailed amplitudes and vibration of all channels of EEG movement-free. Only the

16 electrodes shared on both distribution are shown to keep the figure dimensionality
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2. Segments Maximum Average (SMA) which is a parameter
developed for this work that obtains the average of the
maximum values of the signal once it has been divided into
smaller segments. This parameter is related to the averaged
maximum amplitudes of the signal during a run. The value
obtained is similar to the average of the signal’s envelope.
The method followed to obtain this value is explained in the
following sections.

3. Power Spectral Density (PSD) which provide a measurement
of the power distribution across each frequency component.

2.3.1. Analysis of the Standard Deviation
The standard deviation of EEG signals is a widely used parameter
due to the statistical properties of this waves. High pass filtered
EEG signals follow a normal distribution with mean zero (Blanco
et al., 1995). Also all channels are referred to a free of noise
electrode consistently gripped to the right earlobe. Under this
circumstances, the standard deviation can be considered constant
for long trials. For that reason this parameter is commonly used
for normalization purposes (Cincotti et al., 2008). Cortical signals
recorded from different scalp areas have similar amplitudes and
constant standard deviations. If a high amplitude noise appears
in a channel during EEG recording, it can be easily detected by
evaluating outliers standard deviation values from an electrode
distribution. This method has been widely used in literature
as data rejection technique (Gwin et al., 2010, 2011; Salazar-
Varas et al., 2015). By studying the standard deviation of EEG
recordings, it is possible to select the noisy electrodes in each run.
Figure 4 shows the standard deviation values for each electrode
of ambulation and movement-free runs from Figure 3. From this
representation it is easy to distinguish the noisy electrodes. To
perform an automatic labeling of the noisy electrodes of a run,

two fixed thresholds and one variable threshold are applied to the
values of standard deviation computed for each run (Figure 4):

• Variable Threshold: It is computed for each run as:

Variable Threshold=SDAverage+(SDAverage−SDmin) (1)

where SDAverage is the average value of the standard deviation
of all the electrodes of one run, and SDMin is the minimum
standard deviation value of all the electrodes of one run.
Standard deviation values above this threshold are labeled as
noisy electrodes and those under it are labeled as not noisy.
This method performs correct classification during runs where
just a few channels present noise contribution.

• High Threshold: It is fixed at 15µV . Standard deviation values
above this threshold are classified as noisy. Its purpose is to
avoid bad classification in the case that all electrodes present
noise contribution. This is an uncommon scenario usually
associated to abrupt conductivity changes on the ground
electrode due to a bad allocation of the conductive gel.

• Low Threshold: It is fixed at 5 µV . Standard deviation values
under this threshold are classified as not noisy. Its purpose is
to avoid bad classification in the case that all electrodes present
not noise contribution. This is a common scenario where all
channels show stable conductivity values between the scalp
and the electrodes.

The range between both fixed thresholds (5 and 15 µV)
correspond to the typical values of standard deviations observed
throughout runs of the 4 data sets. The variable threshold is
defined to select noisy electrodes with standard deviation within
this range.

In Figure 3, only electrodes FC5, C3, CP5, and CP6 from the
ambulation data are labeled as noisy. This labeling is applied to

FIGURE 4 | Standard deviation thresholds. Standard deviations for electrodes FC5 to PO4 from a run of ambulation and movement-free data. High threshold and

low threshold are fixed. Electrodes above high threshold are classified as noisy, and electrodes under low threshold are classified as not noisy. For middle standard

deviation values, the variable threshold is defined dynamically. Electrodes are classified noisy and not noisy depending on if they exceed or not this threshold.
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each run for all data sets. The length of labeled vectors differs
between data sets as they are recorded using different number
of electrodes. Both kind of noises are recognized following this
method. They share similar statistical parameters and the only
difference between them is the moment where the amplitude
changes. For that reason, once a channel is identified as noisy, it is
classified as HA or SA by visual inspection. After performing this
labeling over a set of runs and updating the value of the vector,
it is possible to see which electrodes are more sensitive to the
phenomena under research.

2.3.2. Analysis of the Segments Maximum Average

(SMA) Related with HA Noise
This parameter provides a measure about the average of the
maximum values of the signal amplitudes once a run is divided
into segments (the segmentation is trying to emulate real time
conditions). On each run, the SMA is calculated for each channel.
Figure 5 illustrates how this parameter is computed and the
results provided in a random run and electrode. The length of
the consecutive and non-overlapped segments used (500 ms) has
been selected to fit the usual requirement of real time systems
used in other works performed by our group (Hortal et al., 2015).
This parameter is used to evaluate the evolution of the channel’s
amplitude across consecutive runs.

2.3.3. Analysis of the Noise Power Spectral

Distribution
The PSD of each run and electrode of all data sets is computed
from 5 to 90 Hz with a spectral resolution of 1 Hz using
the pwelch method (Welch, 1967). The output of this process
provides 86 values vector per run and electrode (a total of 9728
frequency vectors counting all channels of all runs for the four
data sets). Using the standard deviation previously described,
these vectors are divided into two groups corresponding to noisy
and not noisy signals. A Wilcoxon Sum-Rank test is performed
with a confidence interval of 95% and applying a Bonferroni
correction for multiple comparisons (Cabin and Mitchell, 2000)

to validate the significance between noisy and not noisy signals at
each frequency (86 statistical comparisons).

2.3.4. Noise Significance between Ambulation and

Movement-Free Data
After dividing between HA and SA (see Section 2.2.1 ), noisy
data are associated to the data set and channel where they were
found. From this classification several parameters related to the
distribution of noise are obtained: The number of HA noises
(HA-N), the number of SA noises (SA-N), the total number
of noises (Total-N = HA-N + SA-N) and the total number of
channels evaluated (Total-R = Total-N + Not noisy channels).
These parameters are used to compute the ratio of each noise
against the total amount of noise (HA-N vs.Total-N and SA-N vs.
Total-N) and against the total amount of channels analyzed (HA-
N vs. Total-R and SA-N vs. Total-R). This ratios are computed
for complete data sets (three values per ratio for ambulation
data from data set 1–3 and one value per ratio for movement-
free data from data set 4) and also for single channels of each
data set (32 × 3 values per ratio for ambulation data and
16 × 1 values per ratio for movement-free data). These last
vectors are used to test the significance in the apparition of the
noises described between ambulation and movement-free data
running aWilcoxon Sum-Rank test (Wilcoxon et al., 1970) with a
confidence interval of 95% and applying a Bonferroni correction
for multiple comparisons.

3. RESULTS

Figure 6 shows the labeled vector of each data set after applying
the thresholds defined on the standard deviation of each run.
Each vector is followed by a spatial representation of the
electrodes in the scalp with different shades of red. The shades are
assigned to each electrode depending on the following coefficient:

Number of noisy classified runs

Total number of runs analyzed
(2)

FIGURE 5 | Segments maximum average (SMA) calculus. The time signal is divided into 500 ms consecutive non-overlapped epochs. The absolute value of the

epoch is computed. The five maximum values for each epoch are averaged and the result is added to a variable called “total value.” This process is repeated on every

epoch. The final value of “total value” is divided into the total number of epochs providing as a result the SMA parameter represented with a red line over the blue time

signal. This value is calculated for all the electrodes and runs.
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where the 0 is represented as white and 1 as black. This coefficient
works as a standardization parameter to compensate the variable
number of runs of each data set.

The addition of both numbers represented inside each
electrode is the total number of noisy runs detected per electrode.
The first factor (green) is the number of noisy runs produced by a
high amplitude (HA) during the whole run, and the second factor
(red) is the number of noisy electrodes produced by a sudden
amplitude (SA) change. A deeper analysis of Figure 6 shows
that data sets related to ambulation present higher numbers
of noisy runs, being the noisiest electrodes those located on
posterior peripheral scalp areas. In addition, ambulation data are
principally contaminated by SA noises while movement-free data
are only contaminated by HA noises.

To appreciate the influence of each noise, Figure 7 shows
the spatial distribution of both noises separately. For each noise
there are two representations. The first one (Figures 7A,B)
is referenced to the total number of runs of ambulation data

(24 from data set 1 + 160 from data set 2 + 48 from data
set 3 = 232 runs). This representation highlight the level of
contamination that each noise produces in the data. The second
one (Figures 7C,D) is referenced to the highest number of noisy
runs (21 in the case of HA noise vector and 121 for SA noise
vector) to emphasize the most affected areas of each noise.
Figure 7 also shows how SA noise is very focused on peripheral
areas, while HA noise affects most of the scalp with a lower
ratio of occurrence. In the case of data set 4, all the noises
detected are HA noises, suggesting that SA noises are caused by
performing EEG recordings during ambulation. Table 2 shows
the percentage of SA and HA noises against the total number
of noisy electrodes and against the total number of channels in
each data set. On ambulation experiments, HA noise represents
the 21.49% of the noises and the 1.65% of the total amount of
data. On the other hand, SA noises represents the 78.51% of
the noises and the 6.11% of all the data evaluated. Moreover,
on movement-free experiment, the only noise identified (100%)

FIGURE 6 | Noises spatial distribution. Each cell of the vector on the top of each scalp represents the number of times an electrode has been classified as noisy

after the analysis of all runs. Each number is divided into two values. Green and red values correspond to the number of HA and SA noises identified, respectively. The

total number of noisy runs per electrode are spatially represented over each scalp in red shade colors between white and black. (A) Spatial distribution of noisy

channels for runs of data set 1. (B) Spatial distribution of noisy channels for runs of data set 2. (C) Spatial distribution of noisy channels for runs of data set 3. (D)

Spatial distribution of noisy channels for runs of data set 4.
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FIGURE 7 | HA and SA noises emphasizing level and areas of influence. HA and SA noises from data sets 1, 2, and 3 are separately analyzed. On the first

column, the sum of HA noises from data sets 1, 2, and 3 are represented. The same representation is shown on column two with SA noises. In the first row, noises

are represented over the total number of runs analyzed, showing that way the level of influence of the noise along all the runs. In the second row, noises are

represented over the maximum number in the classification vector, emphasizing that way the areas affected by each noise. (A) Spatial distribution of channels with HA

noise referred to the total amount of runs evaluated. (B) Spatial distribution of channels with SA noise referred to the total amount of runs evaluated. (C) Spatial

distribution of channels with HA noise referred to the maximum number of HA noisy channels identified. (D) Spatial distribution of channels with SA noise referred to

the maximum number of SA noisy channels identified.

TABLE 2 | SA and HA noises vs. total number of noisy channels and total number of channels analyzed.

Ambulation Movement-Free Significance (p)

Data set 1 Data set 2 Data set 3 Average data set 4 Ambulation vs. Movement-Free

HA-N (number of channels) 11 107 22 – 66 –

SA-N (number of channels) 39 302 113 – 0 –

Total-N (number of channels) 50 409 135 – 66 –

Total-R (number of channels) 768 5120 1536 – 2304 –

HA-N vs. Total-N (%) 22.00 26.16 16.30 21.49 100.00 4.74 · 10−59

SA-N vs. Total-N (%) 78.00 73.84 83.70 78.51 0.00 4.74 · 10−59

HA-N vs. Total-R (%) 1.43 2.09 1.43 1.65 2.86 5.58 · 10−8

SA-N vs. Total-R (%) 5.08 5.90 7.36 6.11 0.00 3.28 · 10−63

Total-N vs. Total-R (%) 6.51 7.99 8.79 7.76 2.86 1.09 · 10−35

SA-N and HA-N are the number of noisy channels affected by each kind of noise, Total-N is the sum of SA-N and HA-N and Total-R is the total number of channels analyzed. Each
cell shows the relation between the parameters specified in the first column for each data set. Average values for all data sets related to the performed experiments during ambulation
are also shown. In the last column, the confidence p-values provided by the Wilcoxon Sum-Rank Test, validate the significant differences between ambulation and movement-free
experiments in terms of the comparisons performed.
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is the HA, representing the 2.86% of the total amount of data
acquired under this condition. This table is useful to compare
the HA noise results from movement-free data (Figure 6D)
and the noise results from ambulation data (Figure 7A). In the
last column, the confidence p-values provided by the Wilcoxon
Sum-Rank Test, validate the significant differences between
ambulation and movement-free experiments in terms of the
comparisons performed.

As shown in Figure 6, HA noise does not appear in a specific
scalp area neither from ambulation nor from movement-free
data. However, it has higher influence in movement-free data. To
understand this phenomenon, the evolution of the amplitude of
noisy electrodes is measured during a whole session. For each
data set, a session where the HA noise phenomenon appears
is selected and the SMAs of all electrodes are computed and
represented for all the runs as shown in Figure 8. Each line

corresponds to a EEG channel as shown in the legend. Runs of
electrodes affected by HA noise (related to an unexpected high
value of the SMA) are in the highlighted areas. Figures 8A–C
corresponding to ambulation data (data sets 1–3) presents a
similar behavior on their respective noisy electrodes. The noise
decreases after the performance of several consecutive runs. On
the other hand, Figure 8D, corresponding tomovement-free data
(data set 4), shows noisy electrodes presenting an erratic behavior
during the whole session.

Figure 9 shows the average value of the spectral distribution
of noisy signals (670 values per frequency corresponding to
runs labeled as noisy) and not noisy signals (9058 values per
frequency corresponding to runs labeled as not noisy). For
each group, the 25 and 75% of each frequency is represented
showing a clear PSD dominance of noisy signals over not noisy
signals. The Wilcoxon Sum-Rank test is used to compare both

FIGURE 8 | SMA evolution. On each graph, the X-axis represents the number of runs of a single session and the Y-axis represents the value of the SMA. This

parameter is represented from all the runs of a session from data sets 1, 2, 3, and 4 (graphs (A–D), respectively). The SMA values for all the electrodes and runs are

represented. The number of runs on a session depends on the experiment/data set represented (8 runs for data sets 1 and 2, 16 runs for data set 3, and 12 runs for

data set 4). Also, the number of channels is different (32 for data sets 1, 2, and 3 and 16 for data set 4). The orange shadow marks SMAs for electrodes and runs

identified as noisy.
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FIGURE 9 | Noisy vs. not noisy signals spectral distribution. The green and blue straight lines are the average value of the noisy and not noisy signals (from all

data sets), respectively. Green and blue dashed lines represent the 25 and 75% of each distribution. The power spectral distribution is computed from 5 to 90 Hz with

a resolution of 1 Hz.

groups (670 values for noisy signals and 9058 values for not
noisy signals) at each frequency (86 frequencies). All confidence
levels fulfill the confidence interval after applying a Bonferroni
correction showing significance results between noisy and not
noisy electrodes at all frequencies. The power decrease on 50 Hz
is dued to the notch filter applied during the amplification stage.

4. DISCUSSION

We identify two kind of noises (HA and SA) which are
related to equipment artifacts. Interestingly, the main source of
noises in EEG recordings performed during ambulation are SA
noises appearing only during ambulation and representing the
predominant type of noise presented in the EEG signal recorded.
Moreover, this noise is focused on peripheral areas corresponding
to those scalp locations more sensitive to conductivity changes
during head reorientations. These findings are further supported
after comparing the spatial distributions of the noises from data
sets 1, 2, and 3 with the typical head movements from the three
experiments performed during ambulation. The clearest example
can be seen on experiment three. During this experiment
participants were asked several times to keep a normal walk
while they reoriented their heads to the ground in order to see
the appearance of visual stimulus. This reorientation produced
gel displacements on occipital areas of the scalp inducing the
appearance of this noise. The experiment two has a close
relationship with experiment three. In this case, participants are
also asked to look down but this time in order to follow some
marks (with a non-periodic step length) placed over the treadmill
which produce an unsteady gait pattern with the consequent
left and right head movements. These movements also provoked
electrodes displacement over the lateral areas. Experiment one

does not imply any specific head reorientation but it includes
changes on the ambulation speed producing in this case a
different pattern of head movement. Occipital areas are not so
affected as participants do not look down. The appearance of
noise on occipital and frontal areas was probably caused by the
increase of the backward and forward movement of the head
during fast ambulation.

On the other hand, HA noises appear in both ambulation
and movement-free data. They represent, approximately, one
fifth of the noises evaluated. In the case of movement-free data,
they are the only kind of noise appearing in the signal. In
this case, the HA noise has significant and greater effect in
movement-free data than in ambulation data. In addition, this
noise present low intensity affecting all scalp areas. These two
facts support the hypothesized idea that this noise is produced
by a bad gel allocation during the set up of the equipment.
This error is committed in random electrodes when the control
population is big and its effects are gradually reduced on each
run of ambulation experiments. A possible explanation of these
effects is that ambulation provokes gel settlement improving
the conductivity between the scalp and the electrodes. During
movement-free experiment, noisy electrodes present an erratic
behavior during the full session suggesting that the gel was bad
allocated during the first run and it did not settle along runs.
This behavior is supported by the fact that participants kept their
heads still during movement-free experiment.

Finally, the spectral power of the noisy trials shows significant
values (at all frequencies) against not noisy trials. This suggest
that the artifact measured are not directly related to the motion
artifacts described on (Kline et al., 2015; affecting mainly low
frequencies) nor to the delta and high-gamma band rhythms
observed on (Castermans et al., 2014)
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5. CONCLUSION

An analysis of set up artifacts produced by conductivity variations
between the scalp and the electrodes has been performed. During
this work, data from four different experiments have been used:
three of them performed during ambulation, and the fourth one
performed movement-free. Two different phenomena have been
characterized.

An unusual increase in the signal amplitude of some
electrodes (referred as HA noise in the paper) appears in both
ambulation and movement-free data with a low apparition rate
(1.68% in ambulation and 2.86% in movement-free) and a
random scalp distribution. Results suggest that they are provoked
by gel bad allocation during the electrode’s set up. This unusual
amplitude is presented in complete sessions frommovement-free
experiments. On the other hand, in ambulation experiments, the
amplitude experiences a reduction throughout runs of the same
session converging to typical amplitudes.

A sudden change in the signals’ amplitude of some electrodes
(referred as SA noise) appears only in ambulation data with a
higher rate of apparition (21.49%) and focused on peripheral
areas. Results suggest that they are provoked by gel displacements
produced by head movements on areas of the scalp where the
cap presents critical movements due to its elasticity. These areas
change depending on the head movements performed. Looking
down triggers this change on occipital areas, moving the head
forward and backward on occipital and frontal areas, and right
and left head movements affect lateral areas.

These noises can be easily distinguished from other
physiological noises like EOG, EMG or cardiac rhythms.
Contribution of EOG artifacts is only noticeable in a single
trial basis (Elbert et al., 1985) and EMG due to arms and legs
movements and cardiac rhythms do not change the amplitude
of the signal as much as the artifacts described in this work
(Freeman et al., 2003; Moretti et al., 2003). Only EMG signals
produced by continuous jaw clenching or heavy headmovements
have similar effects in the EEG signals but, in this case, these
effects hugely affect all the electrodes and not just a random set
of them as it was found during this work.

So far, most of works related to BMI do not require
the performance of movements. Most studies present artifacts
produced by physiological factors, sometimes unavoidable
during recordings, like blinks. To deal with them, there are
methods like linear regression that allow their removal during
real time analysis. Still, many studies apply data rejection
techniques in offline analysis suggesting that there are equipment
and set up artifacts affecting the electrodes during recordings.
Data rejected is usually discarded. In these studies the amount
of data rejected represents a small percentage of the total data
recorded and it is mostly produced by the noises described
in this work. With the appearance of a relatively new branch
of research where EEG signals are measured during gait,
the amount of equipment and set up artifacts significantly
increases. In Gwin et al. (2011) the electrocortical activity
during the gait cycle is studied, using 248 electrodes array to

measure EEG signals during treadmill ambulation. After an
electrode rejection technique, an average of 117.6 electrodes were
discarded, meaning that the 47.41% of the recorded data was
unused. The same data (again with this 47.41% of rejection)
was used in Gwin et al. (2010) to implement a real time
artifact removal during walking and running. This research is
focused on the study of physiological artifacts (like electrical
muscles activation) providing really useful findings and removal
methods based on independent component analysis (ICA). Even
so, a previous analysis like the one presented in this paper
could help to reduce the number of rejected electrodes and
to avoid the register of noisy areas of the scalp depending
on the kind of movements performed. Future works that
intend to acquire EEG signals during ambulation should take
into consideration the problems addressed on this work to
avoid the processing and storage complications coming from
contaminated data.

As mentioned in the introduction, there are many potential
noise sources during EEG recordings. This paper is focused on
the study of a kind of noise produced by conductivity changes
due to gel displacements which are, at the same time, specific
equipment noises. This study is helpful to design efficient
experiments but it is not enough to ensure the absence of
artifacts from other sources. Many studies have proved the
appearance of EMG contributions in EEG signals during muscle
activation (Brown et al., 1999; Hansen and Nielsen, 2004). These
physiological noises are usually not avoidable during recordings,
however there are studies focussed on removing them with
specific mathematical techniques (Schlögl et al., 2007; Gwin
et al., 2010). Research oriented to evaluate EEG phenomena
should take into account all kind of potential noise sources
and deal with each one of them on the correct stage of the
experimental procedure.
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