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Autism spectrum disorder (ASD) is associated with disrupted brain networks.

Neuroimaging techniques provide noninvasive methods of investigating abnormal

connectivity patterns in ASD. In the present study, we compare functional connectivity

networks in people with ASD with those in typical controls, using neuroimaging data from

the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the

characteristics of intrinsic functional connectivity based on data collected by resting-state

functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted

brain connectivity patterns across all networks, instead of in individual edges, by using

advanced statistical methods. Unlike many brain connectome studies, in which networks

are prespecified before the edge connectivity in each network is compared between

clinical groups, we detected the latent differentially expressed networks automatically.

Our network-level analysis identified abnormal connectome networks that (i) included a

high proportion of edges that were differentially expressed between people with ASD and

typical controls; and (ii) showed highly-organized graph topology. These findings provide

new insight into the study of the underlying neuropsychiatric mechanism of ASD.

Keywords: Autism spectrum disorder, biomarker, brain connectivity, fMRI, graph topology, network

1. INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose clinical symptoms
include impaired social communication and language abilities, and repetitive behaviors (American
Psychiatric Association, 2013). Its prevalence is increasing; one in 68 children were diagnosed with
ASD in the United States in 2014 (CDC reports, 2014). However, the etiology of ASD remains
unclear. Many recent studies have focused on the neural pathophysiology of brain structures and
functions associated with ASD symptoms.

Neuroimaging techniques provide noninvasive methods of studying the neuropathology of
ASD by learning about abnormal connectivity patterns. Mounting evidence suggests that ASD is
associated with disturbances of neural connectivity rather than solely local neural activities (Di
Martino et al., 2014; Hahamy et al., 2015). Resting-state functional magnetic resonance imaging
(rs-fMRI) has become widely used to measure the functional connectivity between brain regions
by calculating the correlations between time series of spontaneous low-frequency fluctuations
in cerebral blood flow. The Autism Brain Imaging Data Exchange (ABIDE) consortium has
contributed a publicly available set of existing rs-fMRI data frommore than 1000 subjects, with the
aim of improving the quality and reliability of functional connectivity research in ASD (Di Martino
et al., 2014; Cheng et al., 2015). Many studies have yielded interesting, yet controversial, findings
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of altered connectivity patterns (Shih et al., 2010; Vissers et al.,
2012; Chen et al., 2015a; Ecker et al., 2015; Ha et al., 2015;
Hahamy et al., 2015). For example, hypoconnectivity is associated
with ASD, particularly in long-range and cross-hemispheric
connections, such as those between the left and right insula and
left and right parieto-occipital regions, which are known as the
default mode network (DMN) (Broyd et al., 2009; Anderson
et al., 2010; Schipul et al., 2011; Just et al., 2012; Di Martino
et al., 2014). However, these claims have been challenged by
findings reporting hyperconnectivity within networks (including
the DMN, and frontostriatal, frontotemporal, motor, visual, and
salience networks), as well as between the striatum, insula, and
superior temporal gyrus, in children with ASD compared with
typical children (Di Martino et al., 2011; Müller et al., 2011;
Keown et al., 2013; Lynch et al., 2013; Supekar et al., 2013; Uddin
et al., 2013).

The conflicting evidence regarding differentially expressed
connectome features may arise for many possible reasons, such as
demographic variation between subjects recruited in the studies,
preprocessing steps, network selection methods, and statistical
analysis methods. Recently, Cheng et al. (2015) report reduced
connectivity in ASD based on the ABIDE data (418 autism
and 509 matched healthy controls) using a voxel-wise meta-
analysis, and more importantly they also report that the reduced
connectivity is significantly correlated with symptom severity.
Building on these findings, we aim to further investigate whether
the disrupted brain connections in ASD are systematically
organized from a network perspective. However, the disrupted
networks in ASD are not known prior to the experiment, making
it even more challenging to examine them with statistical rigor.

Conventionally, seed voxel analysis, descriptive statistics
and mass univariate analysis are used for group-level brain
connectivity analyses (Yeo et al., 2011; Craddock et al., 2013;
Sporns, 2014; Smith et al., 2015). Descriptive graph metrics
denote brain regions as nodes, and connections between them
as edges, and have yielded many interesting findings (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010; Biswal et al., 2010;
Achard et al., 2012; Crossley et al., 2013, 2014; Fornito et al., 2013,
2015; van den Heuvel and Sporns, 2013; Stam, 2014). However,
such metrics (i.e., modularity, clustering coefficients, and rich-
club coefficients) summarize all edges as individual measures
and lose localized connectivity (edge-specific) information. Thus,
they may lack specificity and sensitivity, making it difficult
to interpret such data clinically (Simpson et al., 2015). Mass
univariate analysis (e.g., network-based statistics—NBS and
family-wise error control; Zalesky et al., 2010), based on the
connectome of the whole brain or prespecified brain regions,
retains localized information about differentially expressed
features but is subject to the trade-off between false positives and
a lack of statistical power, and does not account for organized or
complex network properties.

Our goal is to detect the latent and abnormal networks
that (i) exhibit well-organized topology; and (ii) have a high
proportion of differentially expressed edges (hypo- and/or
hyperconnections). This approach integrates topological,
differentially expressed, and localized edge features, to identify
altered connectivity patterns. Recently, network object-oriented

algorithms have been developed to detect and test these hidden
disease-related brain connectivity networks (Chen et al., 2015b,
2016).

Here, we apply these recently developed statistical techniques
to the ABIDE rs-fMRI data sets. Using these new statistical graph
methods, our aim was to ASD related abnormal connectivity
networks by automatically detecting latent networks with
well-organized topological structures. Our resulting edgewise
findings converge with previous studies using ABIDE data sets
(Cheng et al., 2015). Moreover, we detect networks showing
idiosyncratic distortion (Hahamy et al., 2015), which may
help uncover the underlying mechanisms responsible for the
joint hypo- and hyperconnectivity observed in ASD in many
topological organization studies. Our findings may improve
the understanding of neuropathological machinery and identify
biomarkers that assist with disease diagnosis and treatment
selection.

2. MATERIALS AND METHODS

2.1. Data Sets and Preprocessing
The data set was collected at the University of Michigan, one of
the ABIDE data collection sites (Monk et al., 2009; Weng et al.,
2010; Di Martino et al., 2014). The publicly available data set
comprises data from 48 people with ASD and 65 TCs, with no
significant differences in demographics between the two groups.
For example, the mean age of the people with ASD at scan
was 13.85 years (standard deviation (sd) = 2.31; range, 9.2–
18.6); the mean age of the TCs was 15.03 (sd = 3.66; range,
8.2–28.8). Thirty-nine of the 48 people in the ASD group were
male, compared with 49 of the 65 TCs. The p values from the
Wilcoxon rank sum test (age) and Pearson χ

2 test (sex) were
both greater than the α level at 0.05. The study was approved
by the local institutional review boards, and data were fully de-
identified by removing all 18 Health Insurance Portability and
Accountability (HIPAA)-protected health information identifiers
as well as facial information from structural images, and data
were carefully examined before release to the public (Di Martino
et al., 2014). TCs had no behavioral or mental concerns; inclusion
and exclusion criteria for TCs are described on the ABIDE project
website (http://fcon_1000.projects.nitrc.org/indi/abide/), Typical
controls (TCs) were included by the criteria that either verbal or
non-verbal IQ was ≥ 85 and were aged at least 7 years, whereas
TCs were excluded for those who received a score of 10 or higher
on the Social Communication Questionnaire 14 or a score of 6
or higher on the Obsessive/Compulsive subscale of the Spence
Children’s Anxiety Scale (SCAS) 16.

Imaging was performed on a 3 Tesla GE Signa scanner.
Data were obtained using a gradient echo T2∗-weighted echo
planar imaging sequence, echo time = 30ms, repetition time
= 2,000ms, 64 × 64 matrix with 40 slices, each 4.0mm thick,
no skip, resulting in whole brain coverage with a voxel size of
3.4× 3.4× 3.0mm. During the scan, all subjects were asked to lie
as still as possible, keep their eyes open, look at a fixation cross,
and to try not to think about anything in particular.

On these rs-fMRI data we performed preprocessing based
on the Configurable Pipeline for the Analysis of Connectomes
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(C-PAC, http://fcp-indi.github.io). The images were slice-time
and motion corrected. The data were then registered to a
standardMontreal Neurological Institute (MNI) space with voxel
size 2mm3 and converted to percent signal change. Masks of
white matter, gray matter and cerebrospinal fluid (CSF) were
created in the standard MNI space. The mean time series of
the white matter, CSF and the six movement parameters were
regressed from the gray matter. The linear trend was removed
from the signal, and the fMRI time series were bandpass filtered
(0.009–0.08Hz) and spatially smoothed with a 6mm full width
at half maximum Gaussian kernel. Using automated anatomical
labeling (AAL), we then used the first 90 regions of interest
(ROIs) as nodes (Tzourio-Mazoyer et al., 2002), and took the
weighted average of the temporal profiles of all voxels within
each ROI as the region level signal for all subjects. The Pearson
correlation coefficients were calculated between the 90 nodes
and then Fisher’s Z transformation was performed on each
correlation. In our analysis, we focused on detecting and testing
alterations in connectivity networks by comparing connectivity
matrices between TCs and people with ASD.

2.2. Group Level Analysis
The goal of group-level functional connectivity analysis is
to examine whether different groups (or individuals) show
differences in connectivity. Conventional brain connectivity and
network methods are conducted from two distinct perspectives:
testing which edges are differentially expressed, or whether the
global graph descriptive metrics differ (Simpson and Laurienti,
2016). Hybrid analyses are more attractive because they
enable the identification of well-organized (systematic) networks
(subgraphs) where most contained edges are differentially
expressed. Such findings may provide insight into systematic
disruptions of the brain connectome in people with ASD. To
achieve this goal, we used network object-oriented algorithms
(Chen et al., 2015b, 2016).

We first compared the TC and ASD data by performing two-
sample t tests on each of the 4005 edges.Whole-brain results were
denoted as a graph, G = (V ,E), where the node set V represents
a brain region, and an edge eij ∈ E connects regions i and j.
For each edge (eij) we assigned the weight as Wij = − log(pij).
The greater the Wij value, the greater the difference in this edge
between the TC and ASD data. Thus, the weighted adjacency
matrixW is our input data for the detection of altered networks.

Next, we applied parsimonious differential brain connectivity
network detection (Pard, for community detection) and k-partite
algorithms (Chen et al., 2015b, 2016). The joint use of these
algorithms enabled the automatic detection of latent abnormal
networks with organized clique and k-partite graph topology. For
each altered network detected, we performed a permutation test
to obtain the statistical significance (network-level p-value).

We specified null and alternative hypotheses for testing
differentially expressed connectivity networks (Chen et al., 2016).
H0: There is no altered connectivity network when comparing
the connectivity matrices across clinical subpopulations; this
is equivalent to: (i) there are no differentially expressed edges
(C1), or (ii) there are differentially expressed edges but they
are randomly distributed in the graph G (C2). H1: There are

altered connectivity networks; this is equivalent to: (i) there are
differentially expressed edges, or (ii) the differentially expressed
edges are not distributed randomly in the graph G, but in an
organized pattern.

Therefore, the statistical significance of an altered connectivity
network is determined by two factors: (1) the significance
levels of all individual edges within the network; (2) the
distribution of the differentially expressed edges in G. If C2 in
the null hypothesis is true and differentially expressed edges are
distributed randomly in G, then the detected network/subgraph
Gk ⊂ G is expected to contain a similar proportion
of differentially expressed edges in G. Thus, based on the
combinatorics and graph theory, the probability that the detected
subgraph includes a much larger proportion of differentially
expressed edges is extremely low, so we reject the null hypothesis.
In theory, there are numerous possible subgraphs with various
topological structures in G and thus testing detected networks
is subject to multiplicity. We accounted for this multiple
testing issue by using permutation testing techniques (Nichols
and Holmes, 2002). In each permutation, we recorded the
detected network with the maximum test statistic, and then
calculated the percentiles of observed networks among the
maximum test statistics from all permutations. We collected the
suprathreshold networks as our resulting object-oriented altered
connectivity networks. We set the α level of the permutation test
as 0.05.

3. RESULTS

We applied the above network analysis procedure to the ABIDE
data sets. Below is a summary of the latent differentially expressed
networks we identified.

We compared the connectivity metrics (i.e., Fisher’s Z-
transformed correlation coefficients) on each edge between TC
and ASD data using two-sample t tests, and stored the p value as
Wij = − log(pij) where i and j were the first 90 AAL brain region
indices (i 6= j ∈ {1, · · · , 90}). Figure 1A displays the input data: a
90 × 90 pairwise connectivity testing result matrix (W) with the
entry Wij = − log(pij). The ROIs in the heatmap of Figure 1B
are listed in ascending order of regions in the AAL atlas.
Next, we applied the Pard algorithm to determine whether the
informative edges were distributed in communities, to capture
the most differentially expressed edges in parsimonious (clique)
networks. We then implemented the k-partite graph detection
algorithm to obtain multi-partite subgraphs. In the heatmap of
Figure 1B, we list the ROIs in order of identified networks and
highlight three diagonal blocks, each representing one network.
We then performed the permutation test on these networks,
which revealed that the first two were significantly different (both
p < 0.001) whereas the third was not (p = 0.068). Therefore,
the differentially expressed edges were not randomly distributed
in the 90 × 90 graph, but instead they were clustered within
well-organized subgraphs.

Next, we investigated the two significant networks in detail.
Figure 2 shows the altered connections in the first network in
an enlarged heatmap and as 3D images. The region names and
corresponding information are listed in Tables 1, 2. The heatmap

Frontiers in Neuroscience | www.frontiersin.org 3 March 2017 | Volume 11 | Article 125

http://fcp-indi.github.io
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Chen et al. Latent ASD Related Connectivity Networks

FIGURE 1 | (A) Heatmap of − log(pij ) values in the original order of the first 90 AAL regions; (B) heatmap of − log(pij ) values reordered to list the detected networks

first.

FIGURE 2 | (A) Enlarged heatmap showing altered connections between brain regions. (B–D) 3D images showing altered connections within the identified network.

Yellow edge, TC > ASD; green edge, ASD > TC. The width of an edge reflects the statistical significance of the difference between TC and ASD data.
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TABLE 1 | Altered network 1 with clique topology.

AAL region name Abbreviation Index x y z

Superior frontal gyrus, orbital part Right ORBsup.R 6 18 48 −14

Middle frontal gyrus, orbital part, Left ORBmid.L 9 −31 50 −10

Inferior frontal gyrus, triangular part,Left IFGtriang.L 13 −46 30 14

Rolandic operculum,Right ROL.R 18 53 −6 15

Olfactory cortex, Left OLF.L 21 −8 15 −11

Superior frontal gyrus, medial, Left SFGmed.L 23 −5 49 31

Superior frontal gyrus, medial, Right SFGmed.R 24 9 51 30

Superior frontal gyrus, medial orbital, Left ORBsupmed.L 25 −5 54 −7

Superior frontal gyrus, medial orbital, Right ORBsupmed.R 26 8 52 −7

Gyrus rectus, Left REC.L 27 −5 37 −18

Anterior cingulate and paracingulate gyri, Left ACG.L 31 −4 35 14

Anterior cingulate and paracingulate gyri, Right ACG.R 32 8 37 16

Supramarginal gyrus, Left SMG.L 63 −56 −34 30

Supramarginal gyrus, Right SMG.R 64 58 −32 34

Angular gyrus, Right ANG.R 66 46 −60 39

Precuneus, Left PCUN.L 67 −7 −56 48

Precuneus, Right PCUN.R 68 10 −56 44

Superior temporal gyrus, Right STG.R 82 58 −22 7

Temporal pole: middle temporal gyrus, Left TPOmid.L 87 −36 15 −34

Temporal pole: middle temporal gyrus, Right TPOmid.R 88 44 15 −32

TABLE 2 | Altered network 2 with bipartite topology.

AAL region name Abbreviation Index x y z set

Precentral gyrus, Left PreCG.L 1 −39 −6 51 2

Olfactory cortex, Right OLF.R 22 10 16 −11 2

Median cingulate and paracingulate gyri, Left DCG.L 33 −5 −15 42 1

Median cingulate and paracingulate gyri, Right DCG.R 34 8 −9 40 1

Posterior cingulate gyrus, Left PCG.L 35 −5 −43 25 1

Posterior cingulate gyrus, Right PCG.R 36 7 −42 22 1

Superior occipital gyrus, Left SOG.L 49 −17 −84 28 2

Superior occipital gyrus, Right SOG.R 50 24 −81 31 2

Middle occipital gyrus, Left MOG.L 51 −32 −81 16 2

Middle occipital gyrus, Right MOG.R 52 37 −80 19 2

Inferior occipital gyrus, Left IOG.L 53 −36 −78 −8 1

Inferior occipital gyrus, Left IOG.R 54 38 −82 −8 1

Postcentral gyrus, Right PoCG.R 58 41 −25 53 2

Superior parietal gyrus, Left SPG.L 59 −23 −60 59 2

Superior parietal gyrus, Right SPG.R 60 26 −59 62 2

Inferior parietal, but supramarginal and angular gyri, Left IPL.L 61 −43 −46 47 2

Angular gyrus, Left ANG.L 65 −44 −61 36 1

Paracentral lobule, Right PCL.R 70 7 −32 68 2

Inferior temporal gyrus, Right ITG.R 90 54 −31 −22 1

(Figure 2A) shows the symmetric brain regions related to the
altered connections; these include the left and right precuneus
(involved in self-consciousness; Margulies et al., 2009), middle
temporal gyri (face recognition; Acheson and Hagoort, 2013),
supramarginal gyri (empathy; Silani, 2013), superior frontal gyri
(self-awareness; Goldberg et al., 2006), and anterior cingulate
cortices (emotion Decety and Jackson, 2004). Therefore, the

systematic differences may provide a more comprehensive image
for us to compare connectomes between TCs and people
with ASD. Generally, there are more over-connections across
hemispheres in TCs than in people with ASD. Patients with
ASD have hypoconnections for most edges linked with right and
left middle temporal gyri and precuneus, consistent with that
reported by Cherkassky et al. (2006), Anderson et al. (2010),

Frontiers in Neuroscience | www.frontiersin.org 5 March 2017 | Volume 11 | Article 125

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Chen et al. Latent ASD Related Connectivity Networks

and Lynch et al. (2013). Edgewise comparisons are shown in
Supplementary Table 1.

We further validate the detected subnetwork features by
performing classification analysis. We employ the support vector
machine with radial basis function kernel and linear kernel as our
classifier. The leave-one-out cross-validation results show that
the accuracy rates are 89 and 84% correspondingly.

By implementing network detection and testing algorithms,
we were able to conclude that the differentially expressed edges
in the second abnormal connectivity network exhibited a k-
partite topological structure (the algorithm selected k = 2
for this data set). The abnormal connectivity network is shown
with a bipartite graph topological structure in Figure 3. In a
bipartite graph there two disjoint sets of nodes; edges within
each set are less differentially expressed than those between the
two sets (Figure 3A). The first set of nodes includes lingual
gyri, cingulate gyri, and the left angular gyrus, whereas the
second set contains regions from the occipital, parietal, and
frontal lobes. Interestingly, the brain regions in the second

network are also fairly symmetric. The results suggest that people
with ASD have hyperconnections for edges associated with the
posterior cingulate gyrus (left and right), and hypoconnections
for edges associated with the inferior occipital gyrus (left and
right). In addition, all hyperconnections in our ASD group were
associated with the angular and cingulate gyrus nodes. The hypo-
and hyperconnected edges are in a well-organized topological
structure and these results seem to be consistent with those of
Monk et al. (2009), Just et al. (2012), Supekar et al. (2013), Uddin
et al. (2013), Keown et al. (2013), and Di Martino et al. (2014).
Overall, the findings may suggest that the coordination between
the visual network (set two) and part of the DMN (set one) may
be disrupted. A detailed edgewise comparison table and 3D video
are presented as Supplementary Material.

4. DISCUSSION

Evidence of abnormal functional connectivity patterns in
people with ASD has, to date, been inconsistent. The aim

FIGURE 3 | (A) Enlarged heatmap showing altered connections between brain regions. (B–D) 3D images showing altered connections within the detected network.

Yellow edge, TC > ASD; green edge: ASD > TC. The width of an edge reflects the statistical significance of the difference between the TC and ASD groups. Blue

nodes, first disjoint set; red nodes, second disjoint set.

Frontiers in Neuroscience | www.frontiersin.org 6 March 2017 | Volume 11 | Article 125

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Chen et al. Latent ASD Related Connectivity Networks

of the present study was to provide a novel strategy for
brain connectivity analysis: to simultaneously uncover altered
connectivity metrics and network structures. The findings
of the present study suggest that unknown, systematic, and
organized brain connectivity networks are disrupted in people
with ASD. Within these aberrant networks, most edges
are differentially expressed between TCs and people with
ASD, and these differentially expressed edges show highly
organized graph topology. Therefore, in the present study,
we consider the altered connectivity as a network unit,
rather than as individual edges or global graph summary
metrics. This approach has several advantages: (i) the new
statistical methods reveal specific nodes and edges within the
abnormal networks; (ii) the statistical power is greatly increased
while carefully controlling for multiple testing; and (iii) the
topology of hypo- and hyperconnections in the abnormal
networks could provide insight into the complex machinery
underlying ASD. We used advanced graphical statistical
methods to detect these hidden disease-related connectivity
networks, and performed statistical tests to provide formal
inferences.

From a statistical point of view, brain connectivity matrices
are intercorrelated, high-throughput data. However, established
statistical methods, including multiple-testing adjustment
techniques (such as family error and false-positive discovery
rate control) and shrinkage techniques (such as least absolute
shrinkage and selection operator (Lasso) and elastic net) may not
be directly applicable to connectivity analysis. The main reason
is that connectivity edges are subject to spatial constraints and
are thus dependent on each other in a highly complex, organized,
yet unknown, topological structure. Without appropriately
accounting for such a dependency structure, we risk a loss of
statistical power and possible masking of significant findings.
These new network-level connectivity analysis methods (Chen
et al., 2015b, 2016) avoid the long-term trade-off between
false positive findings and statistical power that arises from
the universal cut-off in conventional statistical methods,
because the edges borrow statistical strengths from each other
through the topological structure. The latent topology provides
additional information for statistical modeling and as a result
we gain statistical power without increasing false positive error
rates.

The topology of detected networks may reveal important
underlying neuropathological mechanisms and provide valuable
insight for future biological studies. In the networks we identified,
most nodes were symmetric across hemispheres, and edges of
hypo- and hyperconnections also seemed to be well organized.
If we were to perform individual edge statistical analysis, only
a small proportion of differentially expressed edges would pass
the multiple testing adjustment threshold and no topological
patterns would be detected. Interestingly, the two networks we
identified include the functional hub nodes of the DMN, such
as the posterior cingulate cortex, medial prefrontal cortex, and
angular gyri, and the nodes from the dorsomedial subsystem,
such as the temporoparietal junction (e.g., inferior parietal
lobule and superior temporal gyrus; STG), lateral temporal

cortex (e.g., inferior temporal gyrus), and anterior temporal pole
(e.g., left and right middle temporal gyri). The first network
also involved bilateral anterior, median, and posterior cingulate
gyri and the occipital lobes. Our findings largely overlap with
previously reported abnormalities in DMN, visual, and motor
networks (Di Martino et al., 2011; Just et al., 2012; Uddin et
al., 2013; Lynch et al., 2013; Ha et al., 2015; Cheng et al.,
2015). The first network is mainly involved in the functional
hubs of the DMN and is related to self-consciousness and
emotion. The second network reflects the abnormal pattern
of connections between parts of the DMN and the visual
network. The first and second networks are jointly involved
in many features of ASD including those related to receptive
language, social cognition, joint attention, action observation,
and empathy/emotion. The networks do not identify any
consistent hypo- or hyperconnectivity in ASD; instead, the
(significant) aberrant connectivities are organized systematically
in topological structures. The organized topology of the
altered connectivity networks identified here provides further
evidence that these findings are promising clinical biomarker
candidates.

Throughout this study, we limited our topological structure
detection methods to clique and multipartite subgraphs. We are
extending these methods to identify various other organized
topological structures. We also focused on cross-sectional
imaging data and did not address developmental changes of
the brain connectome. Although we applied our methods
only to fMRI data here, we may further extend these new
network-based connectivity analysis tools to various other
types of data including functional connectivity data (e.g.,
from EEG and fMRI) and structural connectivity data (e.g.,
from diffusion-weighted imaging) to investigate multimodal
altered connectivity networks in ASD. The only requirements
of the input data are an undirected graph, and that there is
no restriction by the choice of connectivity metrics (such as
in functional connectivity analysis correlation coefficients,
maximum information coefficient, or spectral coherence). In
addition, we only utilize a subset of ABIDE data base, and
we plan to compare results from different study sites and
perform meta-analysis in future work. We also plan to perform
multivariate regression analysis to investigate association
between brain connectivity and symptom severity at the network
level.

We plan to develop more sophisticated algorithms for the
automatic detection of complex latent topological structures
that have explicit neurological significance, such as rich-club
and hyper-graph topology. These new topological structure
detection and statistical testing tools have the potential to
become important research techniques for understanding the
human connectome and its association with neuropsychiatric
disorders.
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