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When exploring potential treatments for spinal cord injury (SCI), functional recovery
is deemed the most relevant outcome measure when it comes to translational
considerations. Yet, assessing such recovery and potential treatment effects is challenging
and the pitfalls are frequently underestimated. The consequences are that in many cases
positive results cannot be reliably replicated, and likely treatments that appear to lack
effects have been dismissed prematurely. In this article we review the relationships
between lesion location/severity and functional outcomes with specific consideration
given to floor and ceiling effects. The roles of compensatory strategies, the challenges
of distinguishing them from bona fide recovery, and of comparing function to pre-injury
levels given the variability inherent in animal testing are discussed. Ultimately, we offer
a series of considerations to enhance the power of functional analysis in animal models
of SCI.
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Over the last several decades a plethora of studies have been
conducted in animal models of spinal cord injury (SCI). A simple
PubMed search identifies over 10,000 publications in rats and
mice. Many of these studies were targeted to understand and to
overcome the mechanisms that inhibit neurite (out) growth in the
adult mammalian central nervous system (CNS). Others explored
possible strategies to reduce secondary damage following spinal
insult or investigated the adaptive changes occurring in response
to SCI. Ultimately, all this research has one common goal: to
discover ways of promoting functional recovery following SCI.
Despite the increasingly apparent realization that direct trans-
lation of functional recovery from feline and rodent models to
human is difficult (Rosenzweig et al., 2009; Kwon et al., 2010,
2013), recovery remains the strongest incentive to translate a
treatment from any animal model to clinical trials. In this review
we define “recovery” as the combination of functional restoration
and functional compensation or the use of alternative approaches
to perform a task.

Within the vastly expanding field of SCI research, a variety of
animal models have been utilized. These models have involved
different species (focusing on rodents, felines and primates) and
have employed different lesion methods (including contusion,
compression and laceration) at different locations of the spinal
cord with varying severities. As a logical consequence, these dif-
ferent approaches resulted in very different functional outcomes
that necessitated the development of a variety of behavioral tests.
Many of these tests were similar to each other (e.g., Montoya
staircase test and single pellet reaching, horizontal ladder test and
grid walk), others were very different from each other, although
used for similar lesion models (e.g., incline plane, foot placing,

kinematics). The interpretation of this array of tests has been fur-
ther complicated by laboratory-dependent modifications, result-
ing in data sets that are difficult to compare between laboratories
and treatments. An important breakthrough was achieved when
the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale
was introduced (Basso et al., 1995). The BBB is a scale that was
designed to evaluate open field locomotion following moderate
contusion injuries in rats. Personnel from many laboratories have
been trained to utilize this outcome measure and the BBB now
provides a “universal language” of hindlimb recovery in rat mod-
els and, more recently in mouse models using the Basso Mouse
Scale (Basso et al., 2006). Reporting hindlimb function using
the BBB Scale has become an “unwritten” requirement for any
publication or grant application that uses a rat model of SCI. The
enthusiasm for, and widespread use of, the BBB Scale has unfortu-
nately also resulted in frequent misuse and/or miss-interpretation
of results. The BBB Scale was developed based on a standard T9
contusion injury in adult rats, however its popularity has lead to
its being used for a huge variety of lesion models and therapeutic
approaches, including excitotoxic and ischemic lesions (Magnu-
son et al., 1999; Takeda et al., 2011). The inappropriateness of the
BBB for a variety of lesion models is not the only issue with the
scale; it has also been shown that the scale is not linear (Schucht
et al., 2002). In other words, animals are not distributed evenly
along the scale when lesion severity is applied randomly. Instead,
there are a few points on the scale where rats have been shown to
“cluster”, namely at ratings of 8 and 14. This is an issue when com-
paring the effectiveness of potential treatments because this clus-
tering reduces the resolution and sensitivity of the scale to assess
recovery. In addition, the functional differences between points
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on the scale are very minor for some and are critical for others. For
example, the change from 3 to 5 involves “extensive movement of
two joints” to “slight movement of two joints and extensive move-
ment of the third”, while a change from 8 to 10 involves “sweeping
with no weight support or plantar placement of the paw with no
weight support” to “occasional weight-supported plantar steps;
no FL-HL coordination”. In summary, despite the tremendous
value that the BBB Scale has provided to the field, there is no
standard procedure to judge and quantify recovery in the wide
variety of animal models and therapeutic approaches currently
being studied. The variety of models and outcome measures are
a constant source of discussion, disagreement and misinterpreta-
tion. Thus, an answer to the common question (asked not only
in the field of SCI), of why many treatments that work in animal
models do not in the clinic, may be the “inappropriateness” of
our animal models. But the answer is not that simple, and there is
more to the story. Considering that variability is an even greater
challenge in the clinical setting than in animal models, it is often
suggested that it contributes to the modest translational success in
treatments for SCI. Significant results in well-controlled animal
models might not be strong enough to show statistical effects
in a clinic trial. When a successful treatment is identified, the
variability in the patient population could be used to advantage
by helping to delineate which injured population, based on age,
gender, injury severity and location, is most likely to benefit
from a treatment. This would be important information because
treatment-induced recovery in a rodent model does not necessar-
ily mean that primates and individuals with SCI will recover to a
similar degree (or to any degree) given the same therapy.

Behavioral testing in animal models can produce false positive,
non-repeatable or false negative findings. In this review we will
address some of the challenges of functional testing in rats with
cervical or thoracic spinal cord injuries, a difficult task even
without testing the effects of potential therapeutic treatments.

LESION SIZE AND RECOVERY
It is not necessarily surprising, but frequently ignored, that spinal
lesions with increasing severity do not always result in comparable
decreases in function. In other words, the percentage of spared
spinal tissue, or even spared white matter, is not linearly related
to an inverse decline in functional recovery. Such non-linear
relations between injury and recovery can be found following
thoracic injuries and locomotor function (Schucht et al., 2002)
as well as following cervical lesions and paw function (Hurd
et al., 2013; Figure 1). A typical picture that arises is that lesions
sparing greater than 30–40% of tissue at the epicenter (area of
white matter in a cross-section) affect motor function very little,
but with increasing lesion severity a substantial drop in function
occurs along with a considerable increase in variability. This has
a huge impact on the evaluation of function and of treatments.
For example, recovery might not be detectable regardless of
the mechanism of action of a potential treatment, whether by
restoring conduction across the lesion site, promoting plasticity,
or by facilitating tissue sparing. Tests might not be sensitive
enough throughout the entire range of lesion severity.

There are many reasons for a non-linear relationship between
lesion size and recovery. Tracts are not evenly distributed within

FIGURE 1 | Nonlinearity of lesion severity and functional recovery. (A)

Clustering of animals in the BBB locomotor score. Although T8 lesion
severity and location (dorsal versus ventral) were applied randomly, two
scoring points were assigned most frequently, indicating thresholds in the
BBB scale. Adapted from Schucht et al. (2002). (B) Correlations of lesion
and reaching success. Total lesioned area at C4 was not correlated with
final single pellet reaching success. Success is consistently high with small
lesions and low with extensive lesions, however, when approximately
14–38% of the dorsolateral spinal cross section is lesioned, there is
substantial variability in reaching recovery (grey area). Adapted from Hurd
et al. (2013).

the spinal cord, there appears to be a threshold proportion of a
particular tract that can be lost before detectable deficits occur
or before function is not able to be recovered (Figure 1B; Loy
et al., 2002; Hurd et al., 2013). Most importantly, motor function
is not controlled by a single, or even a few tracts, but by an
adaptive network of descending tracts with overlapping function
and by spinal networks including reflex pathways, short and
long propriospinal pathways and pattern generating (rhythmic)
circuitry. This constellation allows for a high degree of neural
circuitry-based compensation after injury of the nervous system,
contributing greatly to the non-linearity of recovery. Moreover,
compensation is also observed on a behavioral level and might
well be linked to activity-driven plasticity in the entire CNS.

COMPENSATION AND MOTOR RECOVERY
Functional recovery following various injuries to the nervous
system includes compensatory behavior. Animals may recover
function in motor behaviors such as walking, swimming, reaching
and ladder walking, but they tend to accomplish the task or
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behavior using different strategies than they used before an injury.
In other words, animals may compensate and/or relearn the task
or behavior. Since behaviors such as single pellet grasping and
locomotion are characterized by stereotypic movement patterns,
post-injury adaptations in these patterns can be assessed and have
been shown to contribute to recovery (e.g., Ballermann et al.,
2006; Gharbawie et al., 2006; Smith et al., 2006a). However, “true”
restoration/recovery following SCI would require restoring the
pre injury motor pattern. Thus, compensation would allow the
detection of recovery in quantitative outcome measures (e.g., how
fast can a rat walk or how many pellets can it grasp over a period
of time) but not necessarily in sensitive qualitative outcome
measures (e.g., scores).

Compensation can take many forms, ranging from slight
modifications to a complete replacement of a motor process. For
example, uninjured rats swim bipedally, relying completely on
their hindlimbs for propulsion and using their forelimbs only for
steering and obstacle avoidance. Acutely after a SCI, rats again
swim bipedally, however they compensate for hindlimb plegia by
relying completely on their forelimbs for forward motion (Smith
et al., 2006a). Thus, if deficits are significant, compensatory
strategies must be acquired to succeed in a given task. While
many of these compensations are obvious, as in the example of
swimming, many are subtler and may not be accurately charac-
terized by the functional assessments being used. In such cases
additional outcome measures such as electrophysiological and/or
kinematic approaches are needed to assess compensatory mecha-
nisms (Ballermann et al., 2006). Using swimming as the example
again, if motor recovery is assessed using only the number of pool
laps completed, compensation with their forelimbs will allow even
severely injured rats to complete 20–30% of “normal” without the
use of their hindlimbs at all (Smith et al., 2006b; and unpublished
observations).

A well-established example where a modification of a motor
function following SCI can be observed is grasping. It has been
described for many years that cortical input is needed for pre-
cision grip in primates (Muir and Lemon, 1983). Similarly, in
rodents with cervical SCIs that ablate the Corticospinal and/or
Rubrospinal tract fibers, reaching and grasping is compromised
in that precise grasping of small objects is hindered (Kanagal
and Muir, 2007; Stackhouse et al., 2008; Morris et al., 2011).
In the case of skilled reaching, compensation may occur at any
point in the reaching sequence. When rats are tested following
CNS injury, for example by presenting small sucrose pellets, they
can perform this task quite well by adopting a compensatory
raking or scooping strategy when unable to flex and close their
digits (Gharbawie et al., 2006). This strategy is used throughout
a large spectrum of lesion severities and can contribute to the
nonlinear relation between lesion size and success rate in pellet
retrieval (Hurd et al., 2013). For example, if reaching success is
quantified as the number of pellets retrieved as a percent of the
total number of pellets presented, a rat that adopts a new reaching
strategy such as scooping may appear more successful than a
rat that maintains their pre-injury reaching strategy following
a lesion. Interestingly, rats from the same breeding colony have
been shown to adopt different compensatory reaching strategies,
naturally contributing to variability in reaching performance

(Gholamrezaei and Whishaw, 2009). The use of such gestures or
compensatory strategies suggests that these movements should be
scored in order to be able to illustrate and quantify possible lesion
or treatment effects. The advantages and limitations of scores and
qualitative analyses in general will be discussed in the next section.

Drastic examples where a function is completely replaced can
be seen during walking or swimming following complete SCI.
For example, when locomotion is defined as a task to get from
point A to B, rats show a great ability to recover by compensating.
Assuming that the floor surface offers sufficient traction, rats
can reach surprising speeds by just using their forelimbs. As
mentioned earlier, during swimming uninjured rats rely on their
hindlimbs only, while post-injury propulsion is taken over by the
forelimbs. In the clinic we see a similar picture, with assistive
devices being part of compensatory strategies. Wheelchairs can
completely compensate for the loss of leg function and can even
allow a wheelchair athlete to finish a marathon significantly faster
than any running athlete. Thus, compensation allows for tasks to
be accomplished, but this also introduces a major challenge. Stud-
ies into functional recovery following stroke and more recently
also following SCI have shown that in order to maximize recovery,
extensive use of affected neural circuitry is essential (Nudo et al.,
1996; Bareyre et al., 2004). It also appears that this needs to be
accomplished relatively early after injury due to a perceived period
of increased neuroplasticity, a “window of opportunity”, present
following injuries to the CNS, allowing a level of “rewiring”
and optimization of spared circuitry (Taub et al., 2006; Krajacic
et al., 2009). In the field of stroke research, constraint-induced
movement therapy, where compensation using the less-affected
arm/paw is restricted by restraint, is a commonly used and suc-
cessful rehabilitative strategy that has been translated from animal
models to the clinic (DeBow et al., 2003; Taub, 2012; Zhao et al.,
2013). In conclusion, if compensatory mechanisms are quickly
introduced or allowed following CNS injury, “true” restoration
of lost function may be limited. Activation of spared circuitry is
essential to recover as much “original” function (i.e., restoration)
as possible.

SCORING RECOVERY
The prominent role of compensation in the recovery of function
raises important issues when considering how recovery should
be evaluated. Two main approaches could be chosen: qualitative
or quantitative testing. As discussed earlier, qualitative scores of
movement patterns are popular approaches that have been used
for evaluating locomotion (Wrathall et al., 1985; Basso et al.,
1995) and grasping (Whishaw and Pellis, 1990) in rats with
various injuries to the CNS. These scoring systems normally
compare a movement pattern to that of normal animals. An obvi-
ous challenge with this approach is that one cannot necessarily
determine whether compensation occurred and if the “abnormal”
execution of a movement pattern is actually beneficial to task
performance. For example, rats with an abnormal reaching score
might still achieve success rates of pellet retrieval similar to pre-
injury.

Evaluating recovery quantitatively (e.g., speed of walking,
reaching success) can also be deceiving, as rats might walk well
and fast with forelimbs only, walk better on an elevated narrow
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beam without hind leg movements (uncoordinated movements
tend to push the animal off the beam), or reach better by using a
compensatory grasping strategy such as scooping. In conclusion,
it is necessary to evaluate recovery both qualitatively and quan-
titatively, evaluating both changes in how the task or behavior
is executed and the ultimate success in the task, in order to
accurately and sensitively determine the influence of a treatment
on recovery.

HANDS ON CHALLENGES OF ANIMAL TESTING
Accurate and sensitive quantification of functional recovery fol-
lowing SCI is difficult due to the relatively high variability
observed even when biomechanically similar injuries are gener-
ated. In this section we explore some of the factors that may be
responsible for that variability.

LESION VARIABILITY
Although it is thought that lesions can be reliably reproduced in
animal models, significant variability can be found throughout
lesion models/approaches. Even the use of devices engineered to
deliver impacts that are mechanically identical can result in a wide
range of lesion severities. Differences in the arrangement of the
vasculature relative to the impact site and very minor changes in
positioning of the device can contribute to variability. The hor-
mone status of the animals, their level of hydration and even the
blood sugar level could influence aspects of the acute injury (Kwo
et al., 1989; Gruner, 1992). Anesthesia is also critically important,
both in terms of inducing variable levels of neuroprotection, for
example if Ketamine is used, as well as by adding variability in
neuronal responses to the physical component of the impact.
Furthermore, because secondary damage is a process involving
inflammation, the immune status of the individual animals could
contribute to variability in lesion size.

ANIMALS
It is now well documented that different rodent strains show dif-
ferent specific behavioral trademarks, including wide differences
in motor control (Webb et al., 2003). Reaching for food pellets is
a great example of strain-dependent differences in motor skills.
Hooded long Evans are superior to all other strains on the single
pellet skilled reaching task, and Lewis rats appear to perform even
worse than the most inbred of experimental rat strains, the Fischer
(Nikkhah et al., 1998; VandenBerg et al., 2002). An additional
concern is that differences in the rate of learning a motor task and
in levels of final success can be found even within a single strain
of rats. For example, when rats of the same strain are purchased
from a different supplier but trained by the same experimenter at
the same time (O’Bryant et al., 2011).

VARIABLES INFLUENCING BEHAVIOR
Animal behavior is influenced by many variables that have to be
controlled and/or assessed whenever possible. For example, ani-
mals are very stress sensitive and precautions should be taken to
avoid stress-inducing factors such as changing the experimenter,
irregular activities including testing at different times of the day
as well as excessive noise during testing. A case in point: In one
of our studies, rats were tested daily in a single pellet reaching

task and when a second (independent) group of rats housed in
the same room underwent surgeries, the resulting stress caused a
substantial drop in reaching performance that lasted over a week
(Figure 2). This troubling observation suggests that the animals
undergoing surgery expose the non-surgical animals to stress-
inducing sounds (Kurejova et al., 2010) or smells (Valenta and
Rigby, 1968; Stevens and Köster, 1972; Mackay-Sim and Laing,
1980) that can influence their reaching behavior.

Circadian rhythms and the day-night cycle can also strongly
influence stress levels (Dauchy et al., 2010), and therefore perfor-
mance of rats in behavioral testing, to the point that many groups
invert the day/night cycle of their colony to examine rodents
during the dark cycle when they are most active and alert. A case
in point: Several years ago we experienced an unexpected example
of how critical housing conditions are to behavioral recovery. At
this time our animal housing facility was using electromechanical
devices to control the lighting in the room where post-injury
animals were maintained. This device malfunctioned and we
believe the animals were housed in constant light for the first
five weeks of the study (24:0 light:dark cycle; we don’t know
when the malfunction occurred). When this was noticed by a
graduate student the device was replaced and the animals were
immediately switched to a 12:12 light:dark cycle. The BBB scores
of these young female SD rats rose dramatically over the next
several weeks, despite having already plateaued, albeit at lower
than anticipated scores (Figure 3). These animals were 175 g
at the time of injury and received 12.5 g-cm NYU injuries at
T10 under Nembutal anesthesia. We hypothesized that this jump
in hindlimb function was due to decreased stress and increased
in-cage activity when the light:dark cycle was returned to
normal.

Less influential than the circadian rhythms but still a con-
tributor to variability in experimental outcome is the time
of the year when an experiment is performed. For example,
O’Bryant et al. (2011) found that animals shipped in the summer

FIGURE 2 | Decreased performance in behavioral tests by rats in the

vicinity of stress. Reaching performance dropped substantially when a
second (independent) group of rats housed in the same room underwent
surgery (as indicated by the arrow), an intus cella effect. Reaching
performance remained low for over a week. Data is shown as mean ±
SEM, n = 12.
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FIGURE 3 | Abnormal light: dark cycle impairs locomotor recovery.

Graph shows BBB scores over time for a group of eight female SD rats
housed in pairs. Due to a malfunction, we believe that the animals were in
constant light (24:0, light:dark) starting 1 day post-injury until the 12:12,
light:dark cycle was restored at 5 weeks post-injury. Data is shown as
mean ± SD.

and trained in the fall had lower rates of reaching success com-
pared to rats trained in other seasons.

SPONTANEOUS ACTIVITY
Activity in the home cage is an essential contributor to recovery
following SCI. In the case of locomotion it has been proposed that
walking in the home cage promotes recovery and may maximize
recovery (ceiling effect), the likely cause for the frequently under-
whelming results of treadmill training in rats (Fouad et al., 2000;
Heng and de Leon, 2009; Kuerzi et al., 2010). Similarly, in-cage
forelimb use can influence reaching performance and/or the effect
of reaching training Under normal circumstances single pellet
reaching training improves pellet reaching performance following
cervical spinal cord injuries (Girgis et al., 2007; Krajacic et al.,
2009). However, we found that supplying sunflower seeds to the
animals in their home cages, no training induced recovery could
be observed (unpublished observations).

Prompted by our many observations that suggest in-cage
retraining (for locomotion), we recently developed a system to
monitor distance traveled using overhead video cameras running
at 4 Hz and infrared lighting. We record activity for 1 min every
10 min and discovered that uninjured female Sprague Dawley
rats walk more than 250 m each night when housed in pairs
and that both cage size and single/double housing dramatically
influences in-cage distance walked. These differences continue
after injury as can be seen in Figure 4 showing the results for
three animals that received 12.5 g-cm NYU contusion injuries at
T10. Recordings were made for 3 days in each 10 day bin and
animals were housed in standard 19” × 8” (48 cm × 20 cm)
cages. Individually housed animals walk less despite having more
room on a per animal basis. We have also found that cage size
influences distance walked, but not to the same extent as having a
cage mate. It should also be considered that the presence/absence
of a cage-mate and/or an enriched environment might alter not
only the distance walked and subsequent locomotor recovery
(Lankhorst et al., 2001), but also might expose animals to different

FIGURE 4 | Rats traverse a significantly greater distance when housed

in pairs as compared to single housed. Graph shows total distance
traveled for female SD rats with 12.5 g-cm NYU contusive injuries at T10 in
standard 10” × 18” cages. Digital video was made of 1 min for every 10
min throughout the dark (12 h) period. Video was made a 4 Hz using a
Basler 602f camera and custom-built IR lighting. Distance was determined
using MaxTraq by Innovision Systems for three nights from each 10 day bin.
Data is shown as mean ± SD.

motor tasks like those associated with play or grooming another
animal.

Lastly, activity can be influenced by pharmacological treat-
ment, thus indirectly influencing functional outcome. A classical
example is the administration of Rolipram, which is commonly
used to increase intracellular cAMP levels. The fact that Rolipram
also acutely decreases an animal’s activity level is frequently
ignored (Wachtel, 1982; Silvestre et al., 1999).

VARIABILITY BETWEEN TESTING DAYS
Significant variability in outcome measures is not only found
between animals but also for individual animals tested on differ-
ent days. This is especially significant for tests that are sensitive
to factors such as stress, motivation, appetite etc. A good example
is reaching for food items, whereas behaviors such as open field
locomotion are less affected. A case in point: we have observed
that performance in a skilled reaching task seems to vary depend-
ing on the day of the week. We have found that reaching attempts
as well as reaching success are often lowest on Mondays, after rats
are not trained for 2 days (Figure 5A). The reasons for this still
remain unclear but may involve changes in the daily routine of
the animals, how the weekend and weekday routines change in the
animal facility, or in the variation in the motivation of the trainers
throughout the week.

When testing single pellet reaching, the variability between
testing days can easily exceed possible treatment effects (or result
in false positive outcomes). Consistent with this possibility is the
fact that we have observed extremely high variability over 5 days
of single pellet training among individual rats (Figure 5B). To
reduce variability, one could average the data over a few days or
use the best result out of three or more measurements. Either
of these approaches can be justified because an animal’s best
performance still indicates their true ability, but there are plenty
of reasons why performance might decline, including motivation,
stress or time of testing.
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FIGURE 5 | Variability in reaching success throughout the week. (A)

Reaching recovery was assessed following a C4 dorsolateral quadrant
spinal cord lesion. Success during rehabilitative training was found to be
lowest on Mondays. Data is shown as mean ± SEM, n = 10. (B) Reaching
success varied throughout the week among individual rats. Graph shows
the pre-injury reaching performance for two different rats over the course of
one week.

FLOOR AND CEILING EFFECTS
Before behavioral tests are chosen to quantify recovery for a
specific experiment, the functional consequences of the chosen
lesion should be examined. If the behavioral tests are too
challenging they might not allow sufficient success in the task,
resulting in a floor effect. In this situation the control group
data will not be normally distributed and the true ability of the
animals will not be assessed. As a consequence, any treatment-
induced recovery will be underestimated. The other extreme is a
test that is too easy resulting in a ceiling effect, where resolution
is not possible because the animals are not easily distinguished
from pre-injury performance. This is particularly problematic
if untreated animals get close to pre-injury performance levels
allowing only a small margin for recovery. In such a scenario,
treatment effects are unlikely to be revealed due to the commonly
observed variability. However, a ceiling effect can also be found
when non-linear scores or scales are used resulting in functional
barriers (recovery plateaus at these points in the scale because

the difference between two points on the scale are drastic).
Sometimes, results are reported where a treated group initially
improves more rapidly than the control group, however, over
time the two groups plateau at a similar level. In such a case it
remains unclear whether a functional, mid-scale ceiling effect
limited the ability to detect recovery.

In conclusion, detecting a treatment effect following SCI in
animal models is not as straightforward as it appears. There is a
delicate interplay between lesion characteristics and the chosen
behavioral tests that will allow the detection of a treatment effect.

REHABILITATIVE TRAINING VERSUS REGULAR TESTING
Following SCI in the clinical setting, rehabilitative training is (and
likely will remain) an inherent part of any treatment regimen.
In animal models, evidence has accumulated to suggest that task
specific training is also an essential part of rehabilitation in order
to translate treatments designed to promote axonal regeneration
or neuroplasticity into recovery. This triggers the question
whether rehabilitative training should also be a fundamental
component of functional testing in animal models, and at
what point regular testing turns into rehabilitative training. For
example, in a study by Raineteau et al. (2001), rats were tested 3–4
times a week, which resulted in one of the strongest treatment
effects of the IN-1 antibody. Training could possibly also affect
a pharmacological treatment (or the other way around) and
the timing of training could be critical to the overall outcome
(Maier et al., 2009). The opposite has also been reported where
training was essential to unravel a drug effect on functional
recovery (García-Alías et al., 2009; Weishaupt et al., 2013). Lastly,
the current assumption is that training effects after SCI are task
specific, which has implications for pharmacological treatments
in that their effectiveness may be limited to certain trained tasks,
rather than allowing a “broader” recovery. Thus, using a battery
of tests might not necessarily reflect the benefits of a treatment.

CONCLUSION
From a clinical aspect, functional recovery is the most important
outcome measure of any SCI treatment. However, the evaluation
of recovery in animal models is not as straightforward as is
often believed, likely resulting in the frequent occurrence of false
positive and negative treatment effects. Lesion models, outcome
measures and the hypothesized effect size of potential treatments
have to be carefully chosen, and the reduction of variability has to
be a high priority.

So, how do we address all these challenges in behavioral testing
in animal models of SCI? Here are a few suggestions:

1. Choose lesion models according to many factors including rat
strain, the available tests, the potential treatment effect size,
and mechanism of the treatment.

2. Perform pilot experiments to allow adjustments to be made
(lesion and tests including training/testing intensity) for suc-
cessful testing for each given question. Avoid ceiling and floor
effects.

3. Reduce variability, use a single tester, remove animals to
secluded environment, use best performance over more than
one testing day.

Frontiers in Integrative Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 85 | 6

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


Fouad et al. Testing in animal models of SCI

4. Add regular testing/training in one task, but perform final
testing in a larger set of tasks evaluating different aspects of
recovery and possible side effects.

5. Involve qualitative and quantitative approaches to understand
the mechanisms of the observed recovery.

6. Observe your animals for changes that are not captured in your
test(s). Obtain an all-encompassing picture of the recovery
beyond motor function. The pattern of recovery may well be
as important as the amount of recovery.
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