
MOLECULAR NEUROSCIENCE
REVIEW ARTICLE

published: 14 September 2011
doi: 10.3389/fnmol.2011.00019

Interactions of AChE with Aβ aggregates in Alzheimer’s
brain: therapeutic relevance of IDN 5706
Francisco J. Carvajal and Nibaldo C. Inestrosa*

Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de
Chile, Santiago, Chile

Edited by:

Hermona Soreq, The Hebrew
University of Jerusalem, Israel

Reviewed by:

Javier Saez-Valero, Universidad
Miguel Hernandez, Spain
Diego Muñoz-Torrero, Universitat de
Barcelona, Spain
Stephen Brimijoin, Mayo Clinic, USA

*Correspondence:

Nibaldo C. Inestrosa, Basal CARE
Center, P. Catholic University of Chile,
8331150 Santiago, Chile.
e-mail: ninestrosa@bio.puc.cl

Acetylcholinesterase (AChE; EC 3.1.1.7) plays a crucial role in the rapid hydrolysis of the
neurotransmitter acetylcholine, in the central and peripheral nervous system and might
also participate in non-cholinergic mechanism related to neurodegenerative diseases.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a progressive
deterioration of cognitive abilities, amyloid-β (Aβ) peptide accumulation and synaptic alter-
ations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly
into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity
is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid
plaques changes its enzymatic and pharmacological properties, as well as, increases its
resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of
IDN 5706, a hyperforin derivative that has potential preventive effects on the development
of AD. Our results show that treatment with IDN 5706 for 10 weeks increases brain AChE
activity in 7-month-old double transgenic mice (APPSWE–PS1) and decreases the content
of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We
concluded that early treatment with IDN 5706 decreases AChE–Aβ interaction and this
effect might be of therapeutic interest in the treatment of AD.
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INTRODUCTION
Alzheimer’s disease (AD) is characterized by progressive mem-
ory and cognitive impairment and the cerebral accumulation of
extracellular amyloid plaques and intra-neuronal neurofibrillary
tangles (NFTs) in areas of brain involved in learning and memory
(Ballard et al., 2011). Amyloid plaques are extracellular deposits
of aggregated amyloid-β (Aβ) peptide, surrounded by dystrophic
neurites and reactive glial cells. Aβ peptide is the main con-
stituent of senile plaques and the major neurotoxic agent (Li et al.,
2010). Intra-neuronal NFTs consist largely of hyper phosphory-
lated twisted filaments of the microtubule-associated protein tau
(Lee et al., 2001). Synaptic pathology is an early marker of both,
AD and aging, with decreased dendritic spine density, degener-
ation of neurites, neuronal loss, and cortical atrophy (Knobloch
and Mansuy, 2008).

Original neurochemical findings in AD brains pointed out
to disturbances of acetylcholine metabolism and led to the for-
mulation of the “cholinergic hypothesis” of AD. This hypoth-
esis suggests that there is a loss of cholinergic neurons in the
basal forebrain of AD patients (Bartus et al., 1982; Bartus, 2000).
The deficiency of cholinergic projections in AD has been linked
to the buildup of Aβ and tau. Acetylcholinesterase (AChE; EC
3.1.1.7) and choline acetyltransferase activities decreases, while
Na+-dependent high-affinity choline uptake increases, perhaps
due to compensatory mechanisms (Slotkin et al., 1994; Bissette
et al., 1996; Shinotoh et al., 2000; DeKosky et al., 2002). Presynap-
tic α7 nicotinic acetylcholine receptors are essential for cognitive

processes, and their levels increase in early AD, decreasing later
on (Ikonomovic et al., 2009). The levels of muscarinic acetyl-
choline receptors, or receptor coupling, are reduced in the brains
of patients with AD. However, pharmacological stimulation of the
postsynaptic muscarinic type 1 acetylcholine receptors activates
protein kinase C, favoring the processing of amyloid precursor
protein (APP) that does not yield an amyloidogenic fragment
(Nitsch, 1996; Farias et al., 2004). According to the cholinergic
hypothesis, the impairment of cognitive functions and the behav-
ioral disturbances that affect patients with AD are in part due,
to cortical deficiencies in cholinergic neurotransmission (Bartus
et al., 1982; Dumas and Newhouse, 2011). AD is associated with
an early and severe depletion of cholinergic innervations. AChE
activity is lower in most regions of AD brains, but it is increased
within and around amyloid plaques (Geula and Mesulam, 1989b;
Beach et al., 2000). The different molecular forms of AChE are
altered in AD, showing a decrease in the tetrameric AChE G4 iso-
form localized at central synapses (Xie et al., 2010), while the minor
light forms (dimers G2 and monomers G1) increase (Atack et al.,
1983; Saez-Valero et al., 1999). Interestingly, the activity of the
light forms appears to increase in the most severely affected cases
(Arendt et al., 1992). Some studies indicate that the level of an
amphiphilic monomeric form of AChE is increased in the brains
of transgenic mice which produce the human Aβ protein (Sberna
et al., 1998), and in the brain and cerebrospinal fluid (CSF) of
rats which received intra-cerebral-ventricular injections of the Aβ

peptide (Saez-Valero et al., 2002). So far, the precise nature of
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this subset of G1 species which increase in AD brains remains
unclear, however this minor species can be distinguished from
other brain AChE forms (including tetramers but also from other
monomeric AChE isoforms), by its unusual lectin-binding pattern
and the lack of binding to anti-AChE antibodies (Saez-Valero et al.,
2000; Garcia-Ayllon et al., 2007). Some cholinergic deficits have
been shown to appear in transgenic mouse model reproducing
preclinical and early stages of amyloid pathology. Region-specific
modifications in AChE activity were reported in APP696LD (Lon-
don V642I mutation) transgenic mice with Aβ plaques, being
decreased in subiculum but increased in the dentate gyrus, a
CA1 sub-region of the hippocampal formation (Bronfman et al.,
2000). AChE activity was unchanged in APP751SWE and APP695SWE

transgenic mice despite extensive Aβ plaques (Apelt et al., 2002;
Boncristiano et al., 2002). However, when specific AChE isoforms
were taken into account, the activity of an abnormally glycosy-
lated G1 version increased in cortical extracts of APP695SWE mice,
whereas the activity of the tetrameric G4 AChE was unchanged
(Fodero et al., 2002).

AChE activity in the blood and plasma has also been measured
to assess the pathophysiology of AD. Plasma AChE activity levels
are increased in AD patients, which correlates with an increase in
the light AChE species (G1 + G2) which are the major species in
human plasma, whereas tetramers, that are normally only presents
in trace amounts, are slightly decreased in AD plasma (Garcia-
Ayllon et al., 2010). Plasma AChE is likely to have multiple cellular
origins including cells from the brain. Thus, we can hypothesize
that the increase observed in AD plasma may be associated with the
particular increase in the light AChE species characterized in AD
brain (Arendt et al., 1992; Saez-Valero et al., 1999). Blood AChE
and butyrylcholinesterase (BuChE) activities have been studied as
markers for Alzheimer’s. AD patients have lower AChE activity in
lymphocytes compared to control subjects. In contrast, erythro-
cyte AChE activity is higher in patients with vascular dementia
and is reduced in sporadic AD. Low ChE activity in lymphocytes
is the best discriminator for AD. Both globular forms are subnor-
mal. Because it is already low at very early stages of AD, AChE
could be helpful as an early biomarker of differential diagnosis
for the follow-up of patients during their early stages of cognitive
impairment before a clinical dementia is established (Inestrosa
et al., 1994; Von Bernhardi et al., 2005). Blood and plasma are
easily accessible in comparison to CSF, together with specific and
sensitive assays for AChE detection, therefore this enzyme could be
used as clinical marker in the development of AD (Garcia-Ayllon
et al., 2010).

IS THERE A ROLE FOR AChE IN THE PATHOGENESIS OF
NEURODEGENERATIVE DISEASES?
Previous studies have demonstrated that AChE and BuChE are
present in amyloid plaques in vivo and are associated to a cholin-
ergic deficit (Mesulam and Geula, 1994; Geula and Mesulam, 1995;
Figure 1). Moreover, AChE promotes Aβ1–40 fibril formation, in
fact, AChE forms macromolecular complexes with the growing
amyloid fibrils, and is incorporated into senile-like plaques in vitro
(Alvarez et al., 1997, 1998). In this context, studies with synthetic
Aβ1–40 in vitro have shown that this peptide aggregates and forms
amyloid fibrils similar to the filaments found in the brains of AD

FIGURE 1 | AChE activity in amyloid plaques in the brain of APP–PS1

mice. Studies carried out in the presence of iso-OMPA, an inhibitor of
BuChE, in the mouse cerebral cortex. A single amyloid plaque shows its
association to AChE activity.

patients (Morgan et al., 2004). Different mutations of Aβ were
used to see its effect in the formation of aggregates. For example,
the single mutation Val18 → Ala induces a significant increase on
α-helical content in Aβ, and dramatically diminishes fibrillogene-
sis (Soto et al., 1995). However, the substitution of Glu22 → Gln
found in hereditary cerebral hemorrhage with amyloidosis of the
Dutch type, yields a peptide with increased ability to form amy-
loid fibrils (Soto et al., 1995). In fact, AChE had little effect on the
aggregation of the highly amyloidogenic Dutch variant (Inestrosa
et al., 1996). However, when the Aβval118 → Ala was incubated with
AChE, a significant increase in the amyloid fibrils was observed
(Inestrosa et al., 1996; Inestrosa and Alarcon, 1998). Previous
investigations have shown that wild-type Aβ1 → 40 is able to bind
AChE, while the Dutch variant AβGlu22 → Gln is not (Muñoz and
Inestrosa, 1999). These data are correlated with previous obser-
vations that indicate that the presence of different types of Aβ

peptide differentially affects AChE–Aβ interactions (Inestrosa and
Alarcon, 1998). These studies indicated that AChE, but not BuChE
increases the final yield of Aβ fibrils. In this context, an in vitro
study, demonstrated that BuChE acts as a negative modifier of
the Aβ aggregation process, and it is also capable of suppressing
the facilitation of amyloid fibril-formation enhanced by AChE. So,
BuChE may has acquired an inverse role to that of AChE in the
pathogenesis of AD (Diamant et al., 2006).

AChE A NUCLEATION FACTOR FOR Aβ AGGREGATION, AND THE ROLE
OF ITS PERIPHERAL ANIONIC SITE ON Aβ AGGREGATION
In 1996, we discovered that AChE was able to accelerate the assem-
bly of Aβ1–40 into Alzheimer’s fibrils by decreasing the lag phase of
the peptide aggregation, suggesting a role of AChE as a chaperone
for Aβ1–40 assembly into oligomers of a high structural complexity
(Inestrosa et al., 1996). These results suggested that the enzyme was
acting through two possible mechanisms. First, it might increase
the seeds necessary for the nucleation step and second, it may
stimulate fibril elongation (Harper et al., 1997; Inestrosa et al.,
2005a,b; Figure 2). When the formed amyloid was evaluated with
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FIGURE 2 | AChE acts on the Aβ aggregation and then in the formation of

amyloid fibrils. The incorporation of AChE occurs at early steps of Aβ

aggregation, acting as a nucleation factor or seed, then it acts in the
elongation of the amyloid fibrils. Evidence for the tight binding of the enzyme

with the formed amyloid fibrils was obtained using biochemical as well as
immunocytochemical techniques, using an anti-AChE antibody conjugated
with gold and examined using a transmission electron microscope. The
original data was published by Alvarez et al. (1998).

thioflavin-S (ThS) plus AChE activity, it became apparent that the
enzyme was strongly associated with amyloid deposits, exactly as
described by Mesulam and Geula, for the senile plaques in AD
patients (Geula and Mesulam, 1989a). In this case, at least part of
the enzyme became tightly associated to the amyloid fibril, as it was
shown by electron microscopy, using a monoclonal antibody con-
jugated with gold particles that nicely decorated growing amyloid
fibrils (Reyes et al., 1997). To test this idea in vivo a double trans-
genic mice which express both human APPSWE and human AChE
was generated by Brimijoin, Younkin, and Soreq. In these hybrid
transgenic mice, AChE promotes plaque accumulation support-
ing the notion of its causal involvement with the fibril-formation
process (Rees et al., 2003, 2005).

The kinetic and pharmacological properties of AChE–amyloid
complex have been examined, and the data show that the kinetic
parameters of the enzyme change (Geula and Mesulam, 1989a).
The K m and V max values for AChE associated to amyloid were
higher than those for the free enzyme. Similarly, for the AChE–
AβGlu22 → Gln complex and AChE–AβVal18 → Ala complex, the K m

values were elevated compared with the enzyme alone. When
kinetic studies were carried out under varying pH conditions,
AChE associated to either the wild-type or the mutant Aβ pep-
tides was more resistant to low pH. Similarly, AChE associated
in AChE–Aβ complexes was more resistant to the incubation at
high substrate concentrations (Alvarez et al., 1998; Inestrosa and
Alarcon, 1998; Inestrosa et al., 2005b). Furthermore, biochemical
studies have indicated that senile-plaque-associated AChE is only
partially extracted using collagenase digestion, heparin, or high-
salt buffers plus detergents (Nakamura et al., 1990; Kalaria et al.,
1992; Alvarez et al., 1998), indicating that either different molec-
ular forms are involved, or alternative some changes occur in the
biochemical properties of the globular subunit.

Pharmacological studies of AChE associated to amyloid showed
that AChE in these conditions also appears more resistant to inhi-
bition by anti-AChE agents as observed with both active site
inhibitors such as tacrine, edrophonium, and BW284c51, and
with peripheral anionic site blockers, such as propidium and
gallamine (Inestrosa and Alarcon, 1998). In almost all cases, a
higher inhibitor concentration was required to obtain the same
level of inhibition observed with the free enzyme. Overall, the
AChE–AβVal18 → Ala complex showed the largest differences with
respect to the free enzyme, suggesting that it has greater degree
of interaction with AChE than the other more amyloidogenic Aβ

peptides. Contrastingly the complexes AChE–AβGlu22 → Gln and
AChE–Aβ1–42 were the least affected of all complexes studied.
These data are consistent with the idea that the association of
AChE with Aβ fibrils leads to changes in its enzymatic proper-
ties, in the absence of any pathological alteration of the enzyme
(Inestrosa and Alarcon, 1998).

It is well know that AChE possesses two binding sites for the
neurotransmitter acetylcholine, the active center site that is located
at the bottom of a 20-Å gorge and the peripheral anionic binding
site (PAS) that is rich in hydrophobic residues and is located at
the rim of the gorge on the surface of the enzyme (Sussman et al.,
1991). When aggregation experiments were carried and repeated
in the presence of AChE inhibitors (AChEIs) directed against the
two different sites, it turned out that only the PAS inhibitors were
able to block the effect of AChE on amyloid formation (Alvarez
et al., 1998). The PAS inhibitors, propidium and fasciculin, were
able to prevent the effect of AChE on Aβ aggregation process (Bar-
tolini et al., 2003; Inestrosa et al., 2008). On the other hand, the
amyloid aggregation in the presence of edrophonium, an active
site inhibitor of AChE, showed no effect on the role of AChE
in this capacity to accelerate Aβ assembly into Alzheimer’s fibrils
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(Inestrosa et al., 2008). Further studies, we were able to iden-
tify a 3.5-kDa peptide located close the PAS region which was
able to mimic effect of the whole AChE enzyme in its capacity to
stimulate the Aβ aggregation (De Ferrari et al., 2001). Moreover,
structural studies of AChE showed how the regulation of catal-
ysis by PAS ligands (propidium, decidium, and gallamine) offers
information on the residues that interact with other molecules
and which could participate in the nucleation process of amyloid
fibrils (Bartolini et al., 2003; Inestrosa et al., 2008). To understand
the mechanism of the AChE–Aβ interaction Vaux and co-workers
have studied a 14 residue peptide named AChE586–599, which
corresponds to a region within the C-terminal oligomerization
domain of human AChE (Jean et al., 2008). The region encom-
passing AChE586–599 shares homology with Aβ and possesses high
propensity for conversion to non-native β-strand, a property asso-
ciated to amyloidogenicity (Cottingham et al., 2002; Greenfield
et al., 2008; Belli et al., 2011). Analysis of stabilizing or destabi-
lizing effects of residue substitutions on the amyloid assembly of
AChE586–599 has provided evidence for the critical role of specific
side-chain interactions in the stabilization of nascent aggregates
and for the position dependence of these side-chains upon poly-
merization and fibril formation. Consistently with the experimen-
tal observations and assembly models for other amyloid systems,
they have proposed a model for AChE586–599 assembly in which
a steric-zipper formed through specific interactions (hydropho-
bic, electrostatic, cation-π, SH-aromatic, metal chelation, and
polar–polar) would maintain the β-sheets together. The dissec-
tion of the specific molecular recognition driving AChE586–599

amyloid assembly has provided further knowledge on such poorly
understood and complicated process, which could be applied to
protein folding and the targeting of amyloid diseases (Belli et al.,
2011).

DIMERIC TYPE OF AChE INHIBITORS DIRECTED AGAINST THE ACTIVE
AND THE Aβ SITE OF THE ENZYME
The current standard of care for mild to moderate AD includes
treatment with AChEIs to improve cognitive function (Hardy
and Selkoe, 2002; Terry and Buccafusco, 2003; Ballard et al.,
2011). Several classes of AChEIs such as donepezil, rivastigmine,
and galantamine were developed to treat AD (Colombres et al.,
2004), and currently constitute the only FDA approved therapeu-
tic approach. The NMDA antagonist memantine, has also been
shown to improve cognitive function and reached the market in
2004 (Cummings et al., 2006). Nevertheless AChEIs, even valu-
able in improving the patient’s quality of life, represent only
symptomatic and palliative tools that slow down the progres-
sion of the disease. Blockade of PAS by specific inhibitors has
emerged as promising disease-modifying therapeutic strategies
for AD. Based on these assumptions, the dual binding AChEIs,
that are molecules able to interact simultaneously with both,
the catalytic and the peripheral binding sites of the enzyme,
emerged as valuable tools to pursue a disease-modifying approach
(Colombres et al., 2004; Muñoz-Torrero, 2008). In this regard,
several classes of dual binding site AChEIs have been devel-
oped and proved to be endowed with a strong inhibitory activity
due to the increased capability to interact with both bindings

sites of the target (Muñoz-Torrero and Camps, 2006). Some
recent examples include benzophenone-based derivatives bear-
ing a [benzyl(methyl)amino]methyl moiety (Belluti et al., 2009),
Xanthostigmine derivatives (Belluti et al., 2005) and novel huprine
derivatives with inhibitory activity toward Aβ aggregation and for-
mation (Viayna et al., 2010). Owing to the simultaneous activity
against AChE and amyloid formation and aggregation, dimeric
type of AChEIs might attack AD on multiple fronts, with a better
therapeutic outcome. Together with coumarin derivatives (Piazzi
et al., 2008), and tacrine based heterobivalent ligands (Camps
et al., 2009) they are able to act both at the acetylcholine site
and at the amyloid formation triggering site. To further sup-
port this strategy, Shen and co-workers reported the discovery of
novel dual inhibitors of AChE and BACE-1, which demonstrated
not only in vitro enzyme inhibitory potency and cellular activ-
ity, but, more importantly, in vivo functional efficacy (Zhu et al.,
2009). This strategy, embodied by single chemical entities able
to simultaneously modulate multiple targets involved in the neu-
rodegenerative cascade, has proven particularly fruitful in recent
years and has led to the discovery of several promising anti-AD
drug candidates.

AChE INDUCES THE AGGREGATION OF THE CELLULAR PRION PROTEIN
Prion disease, such as the Creutzfeldt–Jakob disease (CJD) in
human and bovine spongiform encephalopathy (BSE), can be
transmitted by an infectious process which involves the prion
protein (PrP). The most remarkable feature of PrP is its ability
to be folded into two isoforms, PrPC (C, cellular form) being
the native protein and PrPSc (Sc, scrapie form) being the patho-
logical conformation (Prusiner, 1998; Varela-Nallar et al., 2006).
During the pathogenesis of prion disease there is a conforma-
tional conversion from PrPC to PrPSc consisting of a drastic
alteration of the structure, as well as of the biochemical prop-
erties of the protein. Aβ-positive senile plaques in AD brains
commonly contain PrP deposits; while sporadically Aβ-positive
senile plaques have also been identified in prion diseases such as
CJD and Gerstmann–Sträussler–Scheinker (GSS) disease (Miya-
zono et al., 1992; Hainfellner et al., 1998). On the other hand, a
decrease in the in CFS levels of AChE from patients with CJD has
been demonstrated, suggesting that an alteration in the cholin-
ergic system also occurs in some prion diseases (Silveyra et al.,
2006). Based on the common features between PrP and Aβ, it
has been shown that AChE is able to induce the aggregation
of the peptide deduced from PrP sequence spanning residues
106–126 (PrP106–126), the hydrophobic segment involved in PrP
protein aggregation as has been previously described in a sim-
ilar way for Aβ protein (Pera et al., 2006), through the PAS
region of AChE (Inestrosa et al., 2008). The role of the periph-
eral site of AChE accelerating the assembly of PrP82–146 was
demonstrated using propidium iodide (Pera et al., 2009), a spe-
cific inhibitor of the PAS region of AChE (Inestrosa et al., 1996;
Bartolini et al., 2003). It has been extensively demonstrated that
propidium iodide can also inhibits the AChE-induced Aβ aggre-
gation. This study showed that AChE acts as a nucleating factor
increasing not only the formation of new oligomers, but also fib-
ril formation. A similar effect has been observed with huprine
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derivatives X, Y, and Z (Clos et al., 2006; Pera et al., 2006), which
is spite of being active site AChEIs have been shown to interfere
with the binding of ligands to the peripheral site of the enzyme
(Camps et al., 2000). Therefore, inhibitors of the PAS region of
AChE could be relevant as potential anti-Aβ and PrP aggregation
drugs.

AChE INCREASES THE NEUROTOXICITY OF Aβ AGGREGATES
Considering that the presence of senile plaques in the brain of
aging individuals does not necessarily lead to symptoms of AD
(Katzman et al., 1988), the presence of AChE in some critically
located amyloid plaques could play a key role in triggering the
cytotoxic events that occur around mature plaques in AD (Mesu-
lam, 2004). In vitro assays on PC12 cells showed that aggregates
of AChE–Aβ1–40 complexes were more toxic than those of Aβ1–40

and that neurotoxicity depends on the amount of AChE bound to
the complexes, suggesting that AChE may play a key role in the
neurodegenerative changes observed in Alzheimer brain (Muñoz
and Inestrosa, 1999). In this context, previous results showed that
Aβ–AChE complexes are more toxic than the Aβ fibrils alone on
rat hippocampal neurons. In fact, neurons treated with Aβ–AChE
complexes showed a much disrupted neurite network compared
to neurons treated with Aβ (Alvarez et al., 1998). Other in vivo
study showed that the hippocampal injection of AChE–Aβ com-
plexes results in the appearance of some features reminiscent of
Alzheimer-like lesions in rat brain (Reyes et al., 2004). The early
events triggered in neurons in response to Aβ peptide have been
largely studied. Aβ oligomers/fibrils induce intracellular calcium
deregulation that leads to apoptosis through mitochondrial dys-
function, by direct interaction with isolated mitochondria or by
indirect association with the neuronal membrane (Kim et al., 2002;
Abramov et al., 2004). One of the earliest effect of Aβ–AChE com-
plexes was the increase in intracellular calcium, which leads to
the loss of the mitochondrial membrane potential (Dinamarca
et al., 2010). Disruption of intracellular homeostasis of Ca2+ by
channels opening has been extensively proposed as a mechanism
of Aβ neurotoxicity (Mattson et al., 1992; Laferla, 2002). Aβ–
AChE complexes and Aβ treatment have different effects over
the mitochondrial membrane potential. Our studies indicated
that Aβ–AChE complexes affected ΔΨmit more than Aβ alone;
also, we observed that the mitochondrial membrane potential was
compromised in a non-reversible manner even when the calcium
increase was reversed after wash out. On the other hand, previous
studies from our laboratory indicated that lithium (a pharmaco-
logical activator of Wnt signaling) protects hippocampal neurons
against Aβ peptide and Aβ–AChE complex neurotoxicity (Dina-
marca et al., 2010). Additionally, we found that pre-incubation
with the Wnt-7a ligand prevents the increase in cytosolic calcium
induced by Aβ (Quintanilla et al., 2005). These studies suggest
that the activation of Wnt signaling prevent the toxic effects of
Aβ–AChE complexes (Inestrosa et al., 2008), consistent with this
possibility a “synaptic form” of AChE induces tau phosphory-
lation and activation of glycogen synthase kinase-3β (GSK-3β,
a component of the Wnt/β-catenin signaling pathway). These
effects were prevented by GSK-3β and AChE inhibition (Toiber
et al., 2008). In this context it is interesting to mention that

Huperzine A, a lycopodium alkaloid extracted from the chinese
folk medicine, Huperzia serrata, a reversible and selective inhibitor
of AChE, activates Wnt/β-catenin signaling and enhances the non-
amyloidogenic pathway in a transgenic mouse model of AD (Wang
et al., 2011).

IDN 5706 A POTENTIAL DRUG AGAINST AD
Previously, we have shown that hyperforin, the active molecule
for the anti-depressant activity of St. John’s Wort (Hypericum per-
foratum; Griffith et al., 2010), reduces the behavioral alteration
induced by intra-hippocampal injection of Aβ aggregates, an acute
rat model of AD (Dinamarca et al., 2006). Tetrahydrohyperforin
(IDN 5706), a semi synthetic derivative of hyperforin with higher
stability and increased oral bioavailability (Cerpa et al., 2010) also
shown some neuroprotective properties. Previous studies in our
laboratory indicated that IDN 5706 was able to reduce memory
impairments, as well as neuropathological markers in 12-month-
old APP–PS1 mice treated with 2 mg/kg IDN 5706 for 1 month
(Cerpa et al., 2010). Even more, a reduction in the size of ThS
positive plaques was observed by this treatment. Interestingly, we
have previously demonstrated that IDN 5706: (a) releases AChE
from the Aβ aggregates, and (b) inhibits AChE–Aβ interaction
in vitro and in vivo (12-month-old APP–PS1 mice treated with
2 mg/kg IDN 5706; Cerpa et al., 2010). In young APP–PS1 mice,
IDN 5706 improves memory and prevents the impairment of
synaptic plasticity, inducing a recovery of long-term potentiation,
prevented the decrease in synaptic proteins in hippocampus and
cortex, decreased levels of tau hyperphosphorylation, astrogliosis
and total forms of Aβ (Inestrosa et al., 2011). Moreover, we have
shown that in vitro, hyperforin is able to disaggregate pre-formed
fibrils into protofibrils and amorphous material (Dinamarca et al.,
2006). Taking in consideration our previous study in AD aged and
young mice (Cerpa et al., 2010; Inestrosa et al., 2011), it is apparent
that IDN 5706 has anti-amyloidogenic actions in vitro and in vivo.

EFFECT OF IDN 5706 ON THE ESTERASE ACTIVITY PRESENT IN Aβ

PLAQUES IN A MOUSE MODEL OF AD
A major issue in AD research is to find some new therapeutic drugs
which decrease Aβ aggregation and inhibit AChE with dual speci-
ficity, being directed to both the active and “peripheral” sites (De
Ferrari et al., 2001; Inestrosa et al., 2008). For these reasons, we
investigate the effect of IDN 5706, in those activities. IDN 5706
also inhibits the aggregation of Aβ1–40, delaying the nucleation
phase. When we checked the amount of soluble Aβ peptide after
the aggregation assay, IDN 5706 decreased the amount of Aβ pep-
tide in the sediment fraction increasing the amount of soluble Aβ.
Furthermore, we evaluated whether the anti-aggregation property
of IDN 5706 was stronger or weaker than the pro-aggregating
effect of the AChE. To explore this point we evaluated the stability
of the Aβ fibrils formed in the absence or the presence of the AChE
incubated with IDN 5706. The hyperforin derivative was able to
disassemble a 50% of the Aβ fibrils, but only a 15% of the AChE–
Aβ fibrils after 5 h incubation, suggesting that the fibrils formed in
the presence of AChE have a more stable arrangement (Dinamarca
et al., 2008). Then, the effect of this compound in the AChE activ-
ity was evaluated. Toward this aim, aliquots were taken at different
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time points and the pellet (fibrils) was separated from the soluble
fraction by centrifugation. As expected, at initial time of incuba-
tion with IDN 5706, most of the enzyme activity is found in the
pellet fraction, but after 2 h of incubation of the AChE–Aβ aggre-
gates with IDN 5706, the enzyme decreases in the pellet fraction
and started to increase in the soluble fraction. After 4 h incubation
the enzyme is found in both pellet and soluble fraction in simi-
lar amount (Dinamarca et al., 2008). This data showed that IDN
5706 is able to disaggregate the AChE from the AChE–amyloid
complexes in vitro.

PRESENCE OF AChE IN AMYLOID PLAQUES OF A DOUBLE
APPswe + PS1 TRANSGENIC MICE
A decrease of AChE in the brain appears to be a consistent find-
ing in AD brain (DeKosky and Scheff, 1990). We observed similar
finding in APP–PS1 mice brains compared with wild-type mice.
Moreover, IDN 5706 treatment increases AChE activity in the
brains of APP–PS1 mice injected with 4 and 6 mg/kg (Figure 3A)
and also increases the BuChE activity of APP–PS1 brain in mice
injected with 6 mg/kg of IDN 5706 (Table 1). The specific neu-
roprotective effect of IDN 5706 might be related to the increases
in the AChE activity in total brain protein extracts, suggesting
a neuroprotective effect on cholinergic and cholinoceptive neu-
rons. Moreover, we observed AChE activity associated to amyloid
plaques (Figure 3B, left panel) visualized by the Karnovsky reac-
tion for AChE (Figure 3B, right panel) in APP–PS1 mice treated

FIGURE 3 | IDN 5706 increases AChE activity in whole brain extract of

APP–PS1 transgenic mice. Effects of IDN 5706 on AChE activity from
brains of transgenic mice injected i.p. with vehicle solution or 2, 4, and
6 mg/kg IDN 5706 three times a week per 10 weeks (A). AChE activity in
amyloid plaques from brain of APP–PS1 mice in the presence of iso-OMPA
(B). *p < 0.05; **p < 0.01.

Table 1 | IDN 506 increases BuChE activity in brains of double

transgenic APP–PS1 mice.

Treatment BuChE activity (U/mg protein)

WT 0.91 ± 0.02

Tg control 0.58 ± 0.04

Tg IDN 2 mg/kg 0.61 ± 0.04

Tg IDN 4 mg/kg 0.69 ± 0.05

Tg IDN 6 mg/kg 0.71 ± 0.03*

*p < 0.05. Statistical significance between APP–PS1 mice control and APP–PS1

mice treated with IDN 5706. Comparison of BuChE activity from brains of wild-

type mice, APP–PS1 mice treated with control vehicle solution and APP–PS1 mice

treated with 2, 4, and 6 mg/kg IDN 5706 three times a week per 10 weeks.

with iso-OMPA an inhibitor for BuChE activity. Such amyloid
plaques from mice brain are similar to those observed in patients
with AD (Tago et al., 1986; Geula et al., 1994).

EFFECT OF IDN 5706 ON AChE ACTIVITY ASSOCIATED TO AMYLOID
PLAQUES
Since AChE associated with amyloid and its activity correlates with
amyloid plaque toxicity (Alvarez et al., 1998; Reyes et al., 2004;
Dinamarca et al., 2010), we carried out an analysis of amyloid
plaques positive for AChE activity. Brains from control and treated
APP–PS1 animals were stained for AChE with the method of
Karnovsky (Tago et al., 1986) and amyloid plaques were revealed by
ThS staining. In APP–PS1 mice most of the amyloid plaques were
positive for AChE in cortex (Figure 4A), however, the percentage
of AChE-positive plaques in relation to the total amount of ThS
positive plaques in the cortex were decreased in IDN 5706 treated
mice (Figure 4B), suggesting that in addition to the decreased
number of amyloid plaques, there is a decrease in the association
of AChE with the amyloid plaques present in IDN 5706 treated
APP–PS1 mice.

We have also determined AChE activity in two types of amyloid
plaques, the diffuse (Type I) and compact (Type II) plaques present
in control transgenic mice (Figure 5A, left panels), as well as in
mice treated with IDN 5706. Under this condition AChE activity
was reduced (Figure 5A, right panels). Quantification of the num-
ber of different type of amyloid plaques positive for AChE with
the Karnovsky reaction revealed that treatment with IDN 5706
decreases the amount of AChE activity in type II plaques how-
ever, no effect was observed in type I plaques (Figure 5B). These
preliminary results suggest a rather specific effect of IDN 5706 on
the association of AChE with Aβ aggregates. Previous studies from
our laboratory indicate a key role for AChE in the neurotoxicity
of amyloid plaques (Alvarez et al., 1998; Chacon et al., 2003; Reyes
et al., 2004; Dinamarca et al., 2010). Taken together, our data indi-
cates that IDN 5706 might be considered as a possible therapeutic
agent for AD treatment.

CONCLUSION
As discussed, AChE is able to accelerate amyloid formation of
at least two different macromolecules: the Aβ peptide and the
PrP. In addition pro-aggregating effect of the enzyme depends
on the intrinsic amyloidogenic properties of the peptide used.
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FIGURE 4 | IDN 5706 decreases amyloid plaques positive for AChE

activity in APP–PS1 mice. (A) Cortical slices obtained from APP–PS1 mice
stained for ThS for amyloid plaques and AChE activity with the Karnovsky
method. (B) Quantification of the percentage of amyloid plaques with AChE
activity in the cortex of APP–PS1 brain of mice injected i.p. with vehicle
solution or 6 mg/kg IDN 5706 three times a week per 10 weeks. *p < 0.05.

In AD patients, AChE activity is altered in the brain and in the
blood, and co-localized with senile plaques. AChE associated to
amyloid plaques showed changes in biochemical and pharma-
cological properties, as well as an increase in the neurotoxicity
of the AChE–Aβ complexes. The AChE effect on amyloid aggre-
gation is sensitive to drugs that block the PAS of the enzyme,
suggesting that new and specific AChEIs might well provide an
attractive therapeutic possibility for AD treatment. IDN 5706, an
hyperforin derivative, prevents the development of the disease in
a transgenic mice model of AD (Inestrosa et al., 2011). Interest-
ingly, we have previously demonstrated that IDN 5706 releases
AChE from the Aβ aggregates and inhibit AChE–Aβ interactions
in vitro and in vivo. In summary, our findings indicate that IDN

FIGURE 5 | IDN 5706 reduces the amount of different types of amyloid

plaques containing AChE activity. (A) Detection of amyloid plaques (ThS)
positives for AChE activity in vehicle and IDN 5706 (6 mg/kg) treated
APP–PS1 mice brain. Plaques were morphologically classified as Type I
(diffuse plaques) and Type II (compact plaques). (B) Quantification of the
total number of the different types of plaques positive for AChE activity in
brain from APP–PS1 mice injected i.p. with vehicle solution or 2, 4, and
6 mg/kg IDN 5706 three times a week per 10 weeks. *p < 0.05; **p < 0.01.

5706 decreases AChE–Aβ interaction and this effect might be of
therapeutic interest for the treatment of AD.
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