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Glycogen synthase kinase 3 (GSK3) is an unusual serine/threonine kinase that controls
many neuronal functions, including neurite outgrowth, synapse formation, neurotrans-
mission, and neurogenesis. It mediates these functions by phosphorylating a wide range
of substrates involved in gene transcription, metabolism, apoptosis, cytoskeletal dynam-
ics, signal transduction, lipid membrane dynamics, and trafficking, amongst others. This
complicated list of diverse substrates generally follow a more simple pattern: substrates
negatively regulated by GSK3-mediated phosphorylation favor a proliferative/survival state,
while substrates positively regulated by GSK3 favor a more differentiated/functional state.
Accordingly, GSK3 activity is higher in differentiated cells than undifferentiated cells and
physiological (Wnt, growth factors) and pharmacological inhibitors of GSK3 promote the
proliferative capacity of embryonic stem cells. In the brain, the level of GSK3 activity influ-
ences neural progenitor cell proliferation/differentiation in neuroplasticity and repair, as well
as efficient neurotransmission in differentiated adult neurons. While defects in GSK3 activ-
ity are unlikely to be the primary cause of neurodegenerative diseases, therapeutic regula-
tion of its activity to promote a proliferative/survival versus differentiated/mature functional
environment in the brain could be a powerful strategy for treatment of neurodegenerative
and other mental disorders.
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GLYCOGEN SYNTHASE KINASE 3
Glycogen synthase kinase 3 (GSK3) is a Ser/Thr protein kinase that
is expressed in all mammalian tissues and subcellular organelles,
but particularly highly in the brain. There are two isoforms
encoded by separate genes (GSK3α and GSK3β), although their
functions are often indistinguishable. GSK3 is critical for normal
function of the central nervous system, where it regulates a variety
of neuronal functions, including neurotransmission, neurite out-
growth, growth-cone dynamics, cytoskeletal dynamics, synaptic
plasticity, endocytosis, apoptosis, and neurogenesis. Interestingly,
it is one of the most unusual kinases in the human genome
for three main reasons; (1) Most (if not all) substrates require
prior phosphorylation by another kinase before they can be effi-
ciently phosphorylated at Ser/Thr residues by GSK3. This process
is known as “priming” and occurs four or five residues C-terminal
to the GSK3 target site. (2) GSK3 is highly active in cells under basal
conditions. This is partly due to constitutive phosphorylation of
a conserved tyrosine residue on the activation loop of the kinase
domain (Tyr279 in GSK3α, Tyr216 in GSK3β) that is absolutely
required for kinase activity (Cole et al., 2004a). (3) Phosphoryla-
tion of GSK3 at an N-terminal serine residue inhibits its kinase
activity (Ser21 in GSK3α, Ser9 in GSK3β). This phosphoserine
acts as a pseudo-substrate and binds to the phosphate-binding
pocket on GSK3, preventing interaction with primed substrates
(Frame et al., 2001). Phosphorylation at this site is mediated

Abbreviations: AD, Alzheimer’s disease; ES, embryonic stem (cell); GSK3, glycogen
synthase kinase 3; NPC, neural progenitor cell.

by members of the AGC family of kinases (e.g., Akt) and com-
monly occurs downstream of insulin, growth factor, and PI3K
signaling. Activation of the canonical Wnt signaling pathway also
inhibits GSK3 activity, preventing phosphorylation of β-catenin,
although this is not mediated by N-terminal phosphorylation, but
by protein–protein interactions (Thomas et al., 1999; Ding et al.,
2000).

GSK3 AND ALZHEIMER’S DISEASE
Glycogen synthase kinase 3 is implicated in the development of
Alzheimer’s disease (AD), principally because it phosphorylates
Tau and increases its propensity to aggregate into neurofibrillary
tangles, which together with β-amyloid plaques are a characteristic
lesion of the disease. Transgenic mice displaying increased GSK3
activity develop hyperphosphorylated Tau and other neurological
defects (Lucas et al., 2001), while treatment of transgenic mice with
a GSK3 inhibitor (lithium) reduces the number of tangles in their
brains (Noble et al., 2005). A similar microtubule-binding protein
called CRMP2 is also hyperphosphorylated by GSK3 in the brains
of AD patients (Cole et al., 2007; Williamson et al., 2011). The amy-
loid precursor protein has been reported to be a GSK3 substrate
(Aplin et al., 1996), while Aβ peptide production is reported to be
regulated by GSK3 (Sun et al., 2002; Li et al., 2003; Phiel et al., 2003;
Ryder et al., 2003; Su et al., 2004; Sereno et al., 2009), although these
observations have been recently disputed (Jaworski et al., 2011).
Thus, GSK3 has been implicated in many pathologic processes
leading to AD. However, it is unlikely that defects in GSK3 per se
are a direct cause of AD, since no mutations, polymorphisms, or
dramatic biochemical changes have been consistently detected in
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AD patients, nor any other types of neurodegenerative, develop-
mental, or psychiatric disorders. Instead, a key function of GSK3 is
to act as an “environmental sensor,” by relaying signals from extra-
cellular stimuli (e.g., growth factors, insulin, Wnt) to signaling and
transcriptional machinery inside the cell to influence cell fate. This
implies that pharmacological manipulation of GSK3 in the brain
could be used to selectively promote survival, proliferation, dif-
ferentiation, neurogenesis, or neuroplasticity in diseased brains.
This type of therapy could be used to artificially create an envi-
ronment in the brain that delays/prevents disease development, or
promotes neurogenesis and neuroplasticity to compensate for spe-
cific insults. Indeed, encouraging data is now emerging showing
chronic lithium treatment improves cognitive function in human
patients and mouse models of neurodegeneration and ischemic
stroke (for a review, see Chiu and Chuang, 2010). Although GSK3
is not the only in vivo target of lithium (e.g., phosphoinositol
phosphatases), these effects are consistent with the known actions
of GSK3. It remains to be seen what benefits more selective and
potent GSK3 inhibitors might provide.

GSK3 SUBSTRATES
In order to fully understand the function of GSK3 in the brain,
it is essential to characterize its substrates, since this is the pri-
mary function of a kinase and it is the substrates that mediate
the functional effects directed by GSK3. Ultimately, all physio-
logical substrates of GSK3 should be cataloged and assigned to
particular functions regulated by GSK3 (e.g., neurogenesis, neu-
rite outgrowth, neurotransmission, cytoskeletal regulation). This
exercise would delineate the mechanisms by which GSK3 main-
tains healthy brain function. Importantly, it could identify new
therapeutic targets downstream of GSK3 that could be exploited
for the treatment of mental and neurodegenerative diseases. The-
oretically, these could be more specific with less side effects than
targeting GSK3, which is a pleiotropic kinase with many different
substrates involved in diverse cellular functions.

So far, over 70 substrates have been identified for GSK3,
although caution should be taken since many substrates have
been reported with various levels of confidence/evidence (for a
full review, see Sutherland, 2011). Reported substrates include
a number of cytoskeletal, signaling, and DNA-binding proteins.
Interestingly, a pattern emerges whereby many substrates that are
negatively regulated by GSK3 are involved in proliferation/survival
of cells, whereas substrates that are positively regulated by GSK3
are predominantly expressed and function in mature, differenti-
ated cells. Key substrates that contribute to cellular proliferation,
differentiation, and survival are listed in Tables 1 and 2 and
discussed below.

GSK3 AND PROLIFERATION
For some time, it has been known that pharmacological inhibition
of GSK3 activity maintains the proliferative state of embryonic
stem (ES) cells (Sato et al., 2004; Ying et al., 2008). The GSK3
substrates c-myc (Hall et al., 2009) and Klf5 (Jiang et al., 2008)
are among several transcription factors that have been used to
induce pluripotency (iPS system). GSK3 has also been implicated
as a key regulator of adult neurogenesis (generation and incor-
poration of new neurons into existing circuits of adult brains).

Genetic (Eom and Jope, 2009; Kim et al., 2009; Mao et al., 2009)
and pharmacological (Sato et al., 2004; Ying et al., 2008; Bone
et al., 2009) inhibition of GSK3 activity increases proliferation of
neural progenitor cells (NPC’s), but decreases differentiation and
incorporation of newborn neurons into the adult brain. Together,
these observations demonstrate that low levels of GSK3 activity
promote proliferation in ES cells and NPC’s. This correlates with
signaling pathways upstream of GSK3 that inhibit GSK3 activity
and promote proliferation (e.g., Wnt, growth factors).

Several transcription factors are directly phosphorylated by
GSK3 within an [ST]PPx[ST]P or [ST]PxL[ST]P motif. Following
priming by another kinase (often a Cdk or MAPK), phosphory-
lation by GSK3 creates a binding site for E3 ubiquitin ligases that
ubiquitinate the protein and target it for proteasome-mediated
degradation. Many of these transcription factors have short half-
lives, largely due to the actions of GSK3, which is highly active
under basal conditions in differentiated cells, including post-
mitotic neurons. However, GSK3 activity levels are comparatively
lower in ES cells and NPC’s, induced by persistent growth fac-
tor and Wnt signaling to maintain the proliferative capacity of
these cells (Cartwright et al., 2005). Here, phosphorylation and
ubiquitination of transcription factors by GSK3 is reduced, thus
stabilizing the proteins (prolonging their half-lives) and contribut-
ing to stem/precursor cell proliferation. Such GSK3 targets include
well-known proliferative factors, such as c-myc, c-jun, β-catenin,
cyclin E1, and Klf5 (Tables 1 and 2; Figure 1). Recent studies sug-
gest that attenuating GSK3-mediated degradation of β-catenin, a
key effector of the Wnt signaling pathway, is vital for maintaining
ES proliferation and pluripotency (Mao et al., 2009; Kelly et al.,
2011; Wray et al., 2011). Interestingly, a viral oncogenic form of
c-jun (v-jun) is mutated at the GSK3 target site (Ser239). This pre-
vents phosphorylation by GSK3 and subsequent ubiquitination,
thus stabilizing the protein and driving uncontrolled proliferation
in tumourigenesis (Wei et al., 2005). Similarly, the GSK3 phos-
phosite (Thr58) is mutated in the viral oncogenic form of c-myc
(v-myc; Pulverer et al., 1994). While it is established that low GSK3
activity levels are required for maintaining the proliferative capac-
ity of ES cells and NPC’s, there are many DNA-binding substrates
of GSK3 implicated in this process and their precise roles and
relative importance are only beginning to be clarified.

GSK3 AND DIFFERENTIATION
Not only does low GSK3 activity promote proliferation, it also
prevents differentiation. GSK3α/β double knockout ES cells are
severely compromised in their ability to differentiate, largely due
to hyperactivation of the Wnt signaling pathway (Doble et al.,
2007), while conditional deletion of both isoforms in NPC’s in
mice suppressed the generation of post-mitotic neurons (Kim
et al., 2009). Also, expression of mutant GSK3 and RNAi-mediated
knockdown impairs neuronal polarization in cultured primary
neurons (Jiang et al., 2005; Yoshimura et al., 2005; Kim et al., 2009).
GSK3 knockin mice expressing GSK3α/β (Ser21/9Ala) that are
insensitive to growth factor-induced inhibition exhibited reduced
neurogenesis and behavioral defects, despite normal NPC prolif-
eration (Eom and Jope, 2009; Ackermann et al., 2010), suggesting
defective differentiation/maturation of NPC’s. In contrast, mice
expressing mutant DISC1 (mutated in schizophrenia patients)
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Table 1 | Substrates involved in proliferation/survival that are negatively regulated by GSK3.

Substrate Function Effect of GSK3-mediated

phosphorylation

Reference

c-myc Transcription factor and oncogene – promotes

proliferation

Promotes degradation of the protein via

Fbw7-mediated ubiquitination and the

proteosome

Moberg et al. (2004), Wel-

cker et al. (2004),Yada et al.

(2004)

c-jun Transcription factor and oncogene – promotes

proliferation

Promotes degradation of the protein via

Fbw7-mediated ubiquitination and the

proteosome

Wei et al. (2005)

β-Catenin Transcription factor and oncogene – promotes

proliferation

Promotes degradation of the protein Ikeda et al. (1998)

HIF1α Transcription factor induced by hypoxia. Activates

transcription of genes promoting adaptation/survival

Promotes degradation of the protein Mottet et al. (2003)

HSF1 Transcription factor that promotes expression heat

shock factors to protect cells from environmental stress

Reduces DNA-binding and transcriptional

activity

Chu et al. (1998)

Klf5 Transcription factor that promotes cell proliferation Promotes degradation of the protein via

Fbw7-mediated ubiquitination and the

proteosome

Liu et al. (2010), Zhao et al.

(2010)

CyclinE1 Activating cofactor for Cdk2, promoting cell cycle

progression

Promotes degradation of the protein via

Fbw7-mediated ubiquitination and the

proteosome

Welcker et al. (2003)

Mef2D Transcription factor that promotes survival and

activity-dependent synapse formation

Inhibits its transcriptional activity, antagonizing

neuronal survival but antagonizing neuronal

differentiation.

Wang et al. (2009)

Gli3 (Ci155) Target of the hedgehog signaling pathway that is

important for patterning during development. Full-length

Gli3 (Ci155) is a transcriptional activator, while the

truncated form is a transcriptional repressor.

Promotes β-TrCP-mediated ubiquitination and

proteolytic processing

Jia et al. (2002), Price and

Kalderon (2002), Pan et al.

(2006), Tempe et al. (2006),

Wang and Li (2006)

Snail Transcription factor that regulates E-cadherin expression

during epithelial–mesenchymal transitions

(development)

Promotes β-TrCP-mediated ubiquitination and

degradation, also promotes translocation from

the nucleus to the cytoplasm

Zhou et al. (2004)

NDRG1 Regulated by the cell cycle and cell differentiation,

although cellular function is not yet clear

Unknown Murray et al. (2004)

BCL3 Transcription factor and oncoprotein that regulates

NFkB signaling

Promotes ubiquitin and proteasome-mediated

degradation

Viatour et al. (2004)

MCL1 Pro-survival member of the Bcl2 family of proteins

controlling apoptosis. Overexpressed in some cancer

types.

Promotes degradation of the protein via

Fbw7-mediated ubiquitination and the

proteosome

Maurer et al. (2006)

RBL2 Involved in heterochromatin formation and structure. A

key regulator of entry into the cell cycle

Not yet clear Litovchick et al. (2004)

Smad1 Transcription factor and key mediator of BMP signaling

in embryogenesis and tissue homeostasis

Promotes ubiquitination by Smurf1 and

proteasome-mediated degradation

Fuentealba et al. (2007),

Sapkota et al. (2007)

eIF-2B Activates initiation of protein translation from mRNA

transcripts

Phosphorylation inhibits eIF-2B activity, reducing

protein translation

Welsh and Proud (1993)

Myocardin Muscle-specific transcription factor and SRF-dependent

cofactor that promotes expression of

contraction-related genes

Inhibits its transcriptional activity and promotes

CHIP or UBR5-mediated ubiquitination and

degradation by the proteasome

Badorff et al. (2005), Xie

et al. (2009), Hu et al. (2010)

VDAC1 Voltage-dependent anion channel in the mitochondrial

outer membrane. Mediates cytochrome c release from

mitochondria during apoptosis

Reduces binding to hexokinase 1, which is

overexpressed in many transformed cells,

thereby reducing aerobic glycolysis and ATP

production in tumor cells

Pastorino et al. (2005)

IRS1 Adaptor protein that mediates signaling downstream of

insulin and growth factor receptors

Reduces tyrosine phosphorylation of IRS1,

attenuating insulin, and growth factor signaling

Eldar-Finkelman and Krebs

(1997), Liberman and Eldar-

Finkelman (2005)

(Continued)
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Table 1 | Continued

Substrate Function Effect of GSK3-mediated

phosphorylation

Reference

Bax Pro-apoptotic member of the Bcl2 family that

oligomerizes at the mitochondrial outer membrane,

forming a pore to release cytochrome c

Promotes translocation to the mitochondria to

induce apoptosis

Linseman et al. (2004)

Sufu

(exception to

the pattern)

Negative regulator of sonic hedgehog pathway, which

regulates animal development and cell fate

determination. In adults, it maintains the proliferative

state of stem cells

Stabilizes Sufu by preventing its degradation

and promotes localization in the primary cilium

Chen et al. (2011)

PTEN

(exception to

the pattern)

Lipid phosphatase and commonly mutated tumor

suppressor in human cancers

Phosphorylation stabilizes the protein by

reducing degradation

Al-Khouri et al. (2005), Mac-

cario et al. (2007)

Table 2 | Substrates predominantly expressed and functional in mature differentiated cells that are positively regulated by GSK3.

Substrate Function Effect of GSK3-mediated phosphorylation Reference

Polycystin-2

(PKD2)

Non-selective calcium permeable cation channel and

part of the TRP channel family, which are broad

cellular sensors for multiple stimuli

Promotes translocation to the cell membrane Streets et al. (2006)

CRMP2 Binds to tubulin heterodimers to promote

polymerization of microtubules. Also involved in

kinesin-mediated transport and receptor trafficking

Regulates neurite outgrowth and neuronal

polarity

Brown et al. (2004), Cole

et al. (2004b), Uchida et al.

(2005), Yoshimura et al.

(2005)

MAP1B Cytoskeletal component of the developing nervous

system with important functions in migrating and

differentiating neurons

Unclear, but may destabilize microtubules,

making them more dynamic

Goold et al. (1999)

MAP2C Abundant cytoskeletal components predominantly

expressed in neurons

Promotes dissociation from the

cytoskeleton, destabilizing microtubules

Sanchez et al. (2000)

Tau Tubulin-binding protein that stabilizes microtubule

structures. Primary constituent of neurofibrillary

tangles generated in brains of Alzheimer’s Disease

and other dementia patients

Reduces binding to tubulin, destabilizing

microtubules, making them more dynamic.

Promotes aggregation of tau, forming

neurofibrillary tangles

Hanger et al. (1992)

β-Adducin Cytoskeletal-associated protein that links the actin

and spectrin networks

Promotes neurite outgrowth Farghaian et al. (2011)

Dynamin1 GTPase protein that regulates vesicular trafficking

processes. Contributes to efficient neurotransmitter

release at the pre-synapse

Promotes activity-dependent bulk

endocytosis at the pre-synapse, facilitating

efficient neurotransmission

Clayton et al. (2010)

CLASP2 Microtubule plus-end tracking protein that promotes

the stabilization of dynamic microtubules

Causes dissociation from the plus end of

microtubules and other MT-associated

proteins

Wittmann and Waterman-

Storer (2005), Watanabe

et al. (2009)

CaMKKβ Calcium/CaM dependent protein kinase that

regulates learning, memory, migration, neurite

outgrowth, and synaptogenesis

Stabilizes newly synthesized protein,

decreases calcium/CaM autonomous activity

Green et al. (2011)

Glycogen synthase

(exception to the

pattern)

Enzyme involved in converting glucose to glycogen

for storage

Reduces its enzymatic activity, thus reducing

glycogen synthesis and storage

Rylatt et al. (1980)

FAK (exception to

the pattern)

Plasma membrane protein and tyrosine kinase

involved in cell–cell adhesion

Reduces FAK kinase activity, reducing cell

migration

Bianchi et al. (2005)

pVHL (exception

to the pattern)

Tumor suppressor that binds and stabilizes

microtubules. Important in primary cilium.

Component of an E3 ubiquitin ligase complex.

Antagonizes cell cycle progression.

Phosphorylation negatively regulates stability

(but not binding) of microtubules

Hergovich et al. (2006)
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FIGURE 1 | Glycogen synthase kinase 3 as an enzymatic sensor for

determining cell fate in the brain. (A) Low levels of GSK3 activity in ES
cells/NPC’s are maintained by persistent growth factor/Wnt signaling to
promote proliferation. Some pro-proliferation transcription factors that are
direct targets of GSK3 are shown. (B) Low levels of GSK3 activity inhibit
apoptosis and promote survival when cells are exposed to toxic stimuli,
such as hypoxia and amyloid peptides. Some pro-survival substrates of
GSK3 are shown. (C) Relatively high levels of GSK3 activity help to promote
differentiation and efficient function of mature, post-mitotic neurons,
including several cytoskeleton-associated proteins that maintain neuronal
morphology and neurotransmission.

caused increased GSK3 activity, inhibition of the Wnt signaling
pathway, and decreased NPC proliferation (Mao et al., 2009).
This suggests that inhibition of GSK3 by the Wnt signaling path-
way promotes NPC proliferation, while inhibition of GSK3 by
growth factor signaling promotes differentiation of NPC’s into
post-mitotic neurons.

Candidate substrates for promoting differentiation include the
zinc-finger transcriptional regulator Gli3 (mammalian homolog
of Ci155 in the fly), an effector of the hedgehog pathway that is crit-
ical for efficient embryo patterning and neural tube formation. In
the absence of hedgehog, Gli3 is phosphorylated by GSK3 and CK1
(following priming by PKA), which targets it for ubiquitination
and proteolysis, generating a truncated repressor form lacking the
C-terminal activation domains (Jia et al., 2002; Price and Kalderon,
2002; Pan et al., 2006; Tempe et al., 2006; Wang and Li, 2006). But
in the presence of hedgehog, phosphorylation and processing of
Gli3 is inhibited, leading to transactivation by the full-length pro-
tein. It has recently been shown that the truncated repressor form
of Gli3 is important for differentiation of cortical neurons from
neural progenitors, while the full-length active form of Gli3 helps
to maintain progenitors in the cell cycle (Wang et al., 2011). This
correlates with GSK3 activity, with low GSK3 activity in undiffer-
entiated ES cells increasing the amount of active, full-length Gli3
for maintaining proliferation in ES cells, and high GSK3 activ-
ity promoting proteolysis of Gli3 and formation of the truncated
repressor form, facilitating differentiation into mature neurons.

Another zinc-finger transcriptional repressor called snail regu-
lates transition of epithelial cells into fibroblast-like mesenchymal

cells during development and tumor metastasis, essentially a
form of “de-differentiation.” Snail suppresses the expression
of E-cadherin, a cell–cell adhesion molecule that is critical
for maintaining epithelial cell identity. Relatively high activ-
ity of GSK3 in epithelial cells promotes phosphorylation and
ubiquitin/proteasome-mediated degradation of snail (Zhou et al.,
2004). However, in fibroblast/mesenchymal-like cells of human
breast tumors where GSK3 activity is lower, snail is stabilized
and suppresses E-cadherin expression (Zhou et al., 2004; Yook
et al., 2006). Pharmacological inhibition of GSK3 activity in
epithelial cells reduces E-cadherin expression and induces a
more-mesenchymal-like morphology via increased snail activity
(Bachelder et al., 2005). These observations demonstrate that Snail
is an example of a GSK3 substrate controlling cellular differen-
tiation. It does not appear to regulate neuronal differentiation
(Murray and Gridley,2006),although it has been shown to regulate
cell fate in glioblastoma cells (Han et al., 2011).

Myocardin is a transcription factor that is required for car-
diac and skeletal muscle cell differentiation during development.
Again, it is not expressed in neurons or glial cells, but interestingly,
it is upregulated in vascular smooth muscle cells in the brains
of AD patients, where it enhances accumulation of Aβ in blood
vessel walls (Bell et al., 2009). Myocardin is phosphorylated by
GSK3, targeting it for ubiquitin, and proteasome-mediated degra-
dation (Badorff et al., 2005; Xie et al., 2009; Hu et al., 2010),
however it is not yet clear if upregulation of myocardin levels is due
to reduced GSK3-mediated phosphorylation and degradation. In
summary, several substrates of GSK3 regulating cell differentiation
have been identified, although mostly in non-neural cell types and
neuron-specific differentiation factors await identification.

GSK3 AND SURVIVAL
Glycogen synthase kinase 3 promotes intrinsic apoptotic signal-
ing in neurons, and overexpression of GSK3 is sufficient to induce
apoptosis in cultured cells (Pap and Cooper, 1998; Bijur et al.,
2000) and in mouse brain (Lucas et al., 2001). Deletion of the
GSK3β isoform in mice causes severe liver degeneration dur-
ing mid-gestation due to excessive tumor necrosis factor-induced
apoptosis (Hoeflich et al., 2000). In contrast, numerous stud-
ies have demonstrated that genetic or pharmacologic inhibition
of GSK3 protects neurons from a wide range of environmental
stresses, including hypoxia and amyloid toxicity, which may be
relevant for treatment of stroke and AD patients, respectively (for
a review, see Mines et al., 2011).

Several GSK3 substrates have been implicated in regulation of
apoptosis. Bax is a pro-apoptotic member of the Bcl2 family that
oligomerizes at the mitochondrial outer membrane, forming a
pore to release cytochrome c, inducing cell death. Phosphorylation
of Bax at Ser163 by GSK3 promotes translocation to the mito-
chondria, whereas inhibition of phosphorylation using lithium
reduced Bax translocation and cytochrome c release, thus antago-
nizing apoptosis (Somervaille et al., 2001; Linseman et al., 2004).
VDAC1 is a voltage-dependent anion channel in the mitochondrial
outer membrane that also mediates cytochrome c release dur-
ing apoptosis and is a direct substrate of GSK3 (Pastorino et al.,
2005), although the effect of phosphorylation on cytochrome c
release from the mitochondria and apoptosis is not yet clear. In
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contrast, MCL1 is an anti-apoptotic, pro-survival member of the
Bcl2 family, and phosphorylation by GSK3 targets it for degra-
dation by the ubiquitin–proteasome-mediated pathway (Maurer
et al., 2006). Thus, low GSK3 activity would reduce phosphory-
lation and degradation of MCL1, favoring cell survival. Several
transcription factor substrates of GSK3 have also been implicated
in the balance between apoptosis and cell survival by regulating
transcription of pro-apoptotic or pro-survival genes, including
the pro-survival factors HIF1α, HSF1, Mef2D, and BCL3. GSK3
phosphorylation of each of these substrates targets them for
ubiquitin and proteasome-mediated degradation. In summary,
many apoptosis-related GSK3 substrates identified so far are pro-
survival, and when GSK3 activity is low (e.g., undifferentiated or
pharmacologically treated cells), reduced phosphorylation of sub-
strates protects them against ubiquitin and proteasome-mediated
degradation, promoting survival of the cell.

GSK3 AND NEURONAL MORPHOLOGY
GSK3 is an important regulator of neuronal morphology and
synapse formation in mature, post-mitotic neurons. Pharmaco-
logic inhibition of GSK3 activity reduces the rate of axon elonga-
tion in hippocampal neurons, increases the size of growth cones
(Owen and Gordon-Weeks, 2003), and disturbs polarity, leading to
the formation of multiple axon-like processes (Gartner et al., 2006;
Garrido et al., 2007). Treatment of cerebellar granule cells with a
GSK3 inhibitor increased the number of synapses on mossy fibers
(Hall et al., 2000), whereas inactivation of the Drosophila homolog
of GSK3, shaggy, promoted synapse formation at neuromuscular
junctions by increasing the number of synaptic boutons (Franco
et al., 2004). Assuming these interventions were selective, then
taken together they demonstrate that GSK3 regulates synapse for-
mation. Accordingly, neurotrophin and growth factor stimuli (e.g.,
BDNF, NGF, IGF-1) that inhibit GSK3 activity, promote neurite
outgrowth, and synapse formation.

Several groups recently demonstrated that the actin-capping
protein β-adducin is critical for synapse stability and turnover,
underlying learning and memory in flies and mammals (Bednarek
and Caroni, 2011; Pielage et al., 2011; Ruediger et al., 2011).
Moreover, dynamic disassembly and reassembly of synapses by β-
adducin is regulated by phosphorylation at its C-terminal region
by PKC. This domain is also targeted by GSK3 following prim-
ing by Cdk5 and phosphorylation by these kinases is necessary
for β-adducin’s ability to promote neurite outgrowth in cul-
tured primary neurons (Farghaian et al., 2011). Therefore, it
will be interesting to see if GSK3-mediated phosphorylation of
β-adducin also regulates synapse formation and stability. Sev-
eral other cytoskeleton-associated proteins are phosphorylated by
GSK3 in mature, post-mitotic neurons, in particular the tubulin-
binding proteins Tau, MAP1B, MAP2, CRMP2, CLASP2, and
pVHL. Phosphorylation of these substrates causes their dissoci-
ation from tubulin, destabilizing the microtubule structure. In
post-mitotic neurons where GSK3 activity levels are relatively
high, this would reduce interactions between GSK3 substrates and
tubulin, resulting in destabilization of microtubules. Accordingly,
non-phospho-mutant forms of substrates (e.g., CRMP2, MAP1B)
increase the stability of microtubules, causing impaired neurite
outgrowth, and polarity in cultured primary neurons (Cole et al.,

2004b; Trivedi et al., 2005; Yoshimura et al., 2005). In theory, high
levels of phosphorylation of these substrates would promote their
dissociation from microtubules, favoring dynamic remodeling of
the cytoskeleton, and enhancing neuroplasticity, although this is
yet to be proven in vivo.

GSK3 AND NEUROTRANSMISSION
A systematic screen of Ser/Thr kinases using a panel of phar-
macological inhibitors revealed that GSK3 was the only kinase
among 58 Ser/Thr kinases that was required for induction of
NMDA-induced long-term depression (LTD) in hippocampal
CA1 pyramidal neurons (Peineau et al., 2009). LTD increases
GSK3 activity via decreased phosphorylation of Ser21/9 at its
N-terminus, while NMDA-induced long-term potentiation (LTP)
reduces GSK3 activity by increasing Ser21/9 phosphorylation
(Hooper et al., 2007; Peineau et al., 2007). Meanwhile, GSK3
inhibitors do not affect baseline synaptic transmission (Peineau
et al., 2007; Zhu et al., 2007; Li et al., 2009). GSK3 regulates trans-
mission at both the pre- and post-synapse. For example,high GSK3
activity reduces glutamate release from the pre-synapse, inhibiting
LTP (Hooper et al., 2007; Zhu et al., 2007, 2010), while retrieval of
synaptic vesicles at the pre-synapse by endocytosis requires GSK3
(Clayton et al., 2010). Dynamin 1 is a large GTPase that regulates
vesicle endocytosis at the pre-synapse. Phosphorylation by GSK3
at Ser774 is required for re-uptake of neurotransmitters during
times of elevated neuronal activity (Clayton et al., 2010). Thus,
relatively high GSK3 activity in differentiated neurons would be
expected to activate Dynamin 1 and facilitate efficient recycling
of neurotransmitters at the synapse. At the post-synapse, phar-
macological inhibition of GSK3 decreases surface expression of
NMDA and AMPA receptors (Chen et al., 2007; Wei et al., 2010).
CRMP2 is a GSK3 substrate that has been implicated in trafficking
of transmembrane proteins to the cell surface (Nishimura et al.,
2003; Brittain et al., 2011), although the effect that phosphoryla-
tion has on this process has not yet been determined. Together,
these observations demonstrate a clear requirement for GSK3 at
the synapse, although the synaptic substrates that mediate these
effects remain to be fully uncovered.

CONCLUSION
When analyzing the substrates of GSK3, a pattern emerges
whereby those that are negatively regulated by GSK3 are com-
monly involved in promoting proliferation and/or survival, while
substrates that are positively regulated by phosphorylation are pre-
dominantly expressed in differentiated post-mitotic neurons and
are required for efficient function of mature neurons. The for-
mer substrates include pro-proliferation transcription factors or
pro-survival proteins targeted for ubiquitin-mediated degrada-
tion by GSK3, while the latter are often cytoskeleton-associated
proteins. Thus, low GSK3 activity levels are conducive to prolifer-
ative ES cells and NPC’s, while higher GSK3 activity is required
for efficient function of differentiated neurons. This pattern
implies that pharmacologic manipulation of GSK3 activity can be
used to influence cell fate between proliferative/undifferentiated
and mature/differentiated states, as has already been successfully
demonstrated for ES cells. In the brain, inhibition of GSK3 would
promote proliferation of NPC’s, while high levels of GSK3 would
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promote neuronal differentiation and efficient function of post-
mitotic neurons. Also, it is possible that high GSK3 activity in
post-mitotic neurons could promote neuroplasticity, learning, and
memory via increased dynamics of the cytoskeleton. Manipu-
lation of GSK3 activity may be of great therapeutic benefit for
neurodegenerative and other mental disorders. In AD, the use of
pharmacologic inhibitors of GSK3 has been proposed to decrease
phosphorylation of Tau, reducing its aggregation and formation
of neurofibrillary tangles. This strategy has shown some success in
mouse models of AD (Perez et al., 2003; Nakashima et al., 2005;
Noble et al., 2005; Leroy et al., 2010). In elderly humans and AD
patients, chronic (but not acute) treatment with GSK3 inhibitors
reduced decline in cognitive and memory function (Nunes et al.,
2007; Chiu and Chuang, 2010; Kessing et al., 2010; Forlenza et al.,
2011). These studies have been performed using lithium, a rela-
tively weak and non-specific inhibitor of GSK3, so it is necessary
to advance these studies using more potent and specific inhibitors
of GSK3.

Another exciting potential therapeutic use of GSK3 inhibitors
in the clinic is to maintain neuron survival under stressful con-
ditions, including neurodegenerative diseases and acute injuries,
such as stroke. Since GSK3 inhibitors are such effective inhibitors
of neuronal apoptosis (at least in vitro), rapid administration of
these drugs could help to prevent neuronal loss during the imme-
diate period following injury. By keeping these neurons alive, one
might expect an improved prognosis for functional recovery. It
might also promote proliferation of NPC’s that could later be

induced to differentiate into functional post-mitotic neurons to
compensate for damages incurred at the site of injury. So far, sev-
eral groups have elegantly demonstrated that lithium treatment
effectively protects neurons and even promotes migration of stem
cells to affected regions (Chiu and Chuang, 2010; Tsai et al., 2011).

Of course, there is the danger that inhibition of GSK3 activity
could impede the basic function of post-mitotic neurons. How-
ever, it should be remembered that very few drugs inhibit kinases
100%, therefore any treatments are likely to reduce GSK3 activity,
not completely inhibit it. Also, GSK3 substrates that are relatively
resistant to phosphatases are beginning to be discovered [e.g., β-
adducin (Farghaian et al., 2011), CRMP2 (Cole et al., 2008)] and
moderate reduction of GSK3 activity is unlikely to affect the sto-
ichiometry of phosphorylation of these substrates. This provides
another good reason for identifying and characterizing each indi-
vidual substrate of GSK3 in the brain. Importantly, downstream
targets of GSK3 that are specifically involved in a particular neu-
ronal process (e.g., neurogenesis, neurotransmission) may prove
to be better therapeutic targets than GSK3, being more potent and
selective with fewer side effects. Therefore, the full catalog of GSK3
substrates and their physiological functions needs to be completed.
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