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in this disease (Mayberg, 2003; Drevets et al., 2008). An imbalanced 
functional integration of these subsystems may lead to a heightened 
response to negative information in ventral regions (bottom–up) 
on the one hand and a failure to regulate this response through 
dorsal regions (top–down) on the other (Phillips et al., 2003). For 
example, engagement of lateral PFC regions has been linked to 
efficient top–down regulation of affective responses (Dolcos et al., 
2006; Pessoa, 2008), a mechanism that has been shown to fail in 
patients suffering depression (Johnstone et al., 2007).

Over the last decade, studying such functional interactions 
between brain regions or systems has become increasingly important 
for understanding the dynamic interactions between neural systems 
in both health and disease (Stephan et al., 2008). In depression, 
several studies have shown abnormal functional connectivity (FC) 
during both cognitive and emotional task paradigms (Urry et al., 
2006; Johnstone et al., 2007; Chen et al., 2008; Matthews et al., 2008), 

IntroductIon
Patients suffering from a major depressive episode typically 
show pervasive depressed mood or anhedonia, accompanied by 
several cognitive and physical symptoms (American Psychiatric 
Association, 1994). The apparent heterogeneity in depressive 
symptom domains (i.e., mood, cognition, motor, and vegetative) 
is unlikely to be explained by the (functional) breakdown of a sin-
gle brain area (Davidson et al., 2002). It has thus been proposed 
that depressive symptoms are associated with dysregulation of a 
brain network encompassing large parts of the prefrontal cortex 
(PFC), limbic areas, and subcortical structures (Mayberg, 1997, 
2003; Drevets et al., 2008).

Based on data from blood flow and glucose metabolism SPECT 
and PET studies, and more recently task-related functional MRI 
(fMRI) studies, current models for depression postulate that ventral 
and dorsal subsystems of this brain network are differentially affected 
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above, we expected that altered connectivity would be observed in 
those RSNs that include areas known to be associated with affective 
(including ventral prefrontal cortex and limbic areas) and more 
cognitive (including lateral prefrontal and parietal areas) process-
ing, as well as RSNs that show cortico–striatal connectivity.

MaterIals and Methods
PartIcIPants
Participants were selected from the MRI study of the large-scale 
longitudinal multi-center Netherlands Study on Depression and 
Anxiety (NESDA)1 (Penninx et al., 2008), which is designed to 
examine the long-term course and consequences of depression 
and anxiety disorders. Participants were recruited through general 
practitioners, primary care and specialized mental care institutions. 
For the current study, all participants were required to be fluent in 
Dutch and right-handed. Patients were included when they met the 
following criteria: (1) a recent diagnosis (i.e., within 6 months before 
inclusion) of MDD as indexed by the fourth edition of the diagnostic 
and statistical manual of mental disorders (DSM-IV) (American 
Psychiatric Association, 1994) based on the Composite Interview 
Diagnostic Instrument (CIDI; lifetime version 2.1), administered by 
a trained clinical interviewer, (2) no current comorbidity with other 
DSM-IV axis-1 disorders, and (3) no use of psychotropic medica-
tion. Exclusion criterion for controls was a history of any DSM-IV 
axis-1 disorder based on the CIDI. Axis-2 disorders were not assessed 
in this study. Exclusion criteria for all participants were: (1) daily 
use of medication or other substances known to affect the central 
nervous system; (2) the presence or history of major internal or 
neurological disorders; (3) history of dependency on or recent abuse 
of alcohol and/or drugs (i.e., in the past year) as diagnosed with the 
CIDI; (4) hypertension; (5) general MRI-contraindications. None of 
the included patients underwent treatment for depression.

For the present study, imaging data were available from 23 MDD 
patients who fulfilled the aforementioned criteria. Two patients were 
removed from the sample due to excessive head motion during 
scan acquisition (>3 mm in any of the acquired volumes). Two 
other patients were removed because no proper age-matched healthy 
control (HC) was available. For each of the remaining 19 MDD 
patients, we included in a pair-wise fashion an age- and sex-matched 
healthy control subject, although education was higher in controls 
(see Table 1). The mean Montgomery–Asberg depression rating 
scale (MADRS) (Montgomery and Asberg, 1979) symptom severity 
score for the MDD group was 14.21, SD 9.62, with five participants 
considered to be in remission (MADRS score <10) at the time of the 
imaging study. Written informed consent was obtained from all par-
ticipants and none received compensation except for reimbursement 
of travel expenses. The study was approved by the Central Ethics 
Committees of the three participating medical centers (i.e., Leiden 
University Medical Center [LUMC], Amsterdam Medical Center 
[AMC], and University Medical Center Groningen [UMCG]).

data acquIsItIon
Participants were scanned at one of the three participating cent-
ers within 8 weeks after completion of NESDA baseline interview 
(Penninx et al., 2008). RS-fMRI data were acquired at the end of 

which have already provided valuable insights on how dysfunctional 
interactions between brain regions may relate to abnormal behavio-
ral response patterns in depressed patients. However, it might also 
be beneficial to explore whether these connections are compromised 
in the absence of goal-directed (i.e., task-induced) behavior. For 
example, resting-state (RS; i.e., without external task demands) FC 
may be able to predict how the brain responds to an externally cued 
task (Mennes et al., 2010). Studies employing RS-FC have shown 
to be successful in mapping large-scale connectivity patterns in the 
brain (Biswal et al., 1995; Lowe et al., 1998; Fox and Raichle, 2007). 
In addition, these so-called resting-state networks (RSNs) are found 
consistently across participants and over time (Damoiseaux et al., 
2006; Shehzad et al., 2009) and show a remarkable overlap with 
patterns of task-induced activity (Smith et al., 2009).

RS-fMRI studies in major depression have recently reported on 
altered FC in several areas within the proposed network model of 
depression (Mayberg, 1997; Drevets et al., 2008). Decreased connec-
tivity of the dorsal anterior cingulate cortex (ACC) with the medial 
thalamus and left pallidostriatum was found in patients suffering 
from depression, and a trend for decreased connectivity between 
the ACC and the amygdala (Anand et al., 2005a,b). In another study, 
depressive patients were found to show increased connectivity of the 
subgenual ACC (cg25) and the thalamus within the default mode 
network (DMN) (Greicius et al., 2007), a canonical RSN (Raichle 
et al., 2001; Greicius et al., 2003). This finding was partially confirmed 
by a recent study showing unique cg25, but not thalamic, connectivity 
within the DMN in the depression group (Zhou et al., 2009). It must 
be noted, however, that for this effect only qualitative comparisons 
were carried out between the groups. Additionally, these researchers 
found increased intra-network connectivity in depression between 
regions of the DMN, and within the task positive network (TPN), 
which is associated with attention and working memory (Fox et al., 
2005), together with increased anticorrelations between regions of 
the two networks (Zhou et al., 2009). A last study did not show any 
FC differences between major depressive disorder (MDD) patients 
and controls using conventional statistics (Craddock et al., 2009). 
However, the authors were able to discriminate between patients 
and controls using support vector classification. In addition to the 
altered FC found in several task-related fMRI studies, these RS find-
ings further support the idea of dysfunctional interactions as a core 
feature of depressive symptomatology.

To date, RS-fMRI studies focusing on depression examined connec-
tivity in a limited number of predefined regions or networks of interest, 
thereby not fully exploring the data as acquired with RS-fMRI. That 
is, recent studies have identified several other networks of simultane-
ously oscillating brain regions (Beckmann et al., 2005; Damoiseaux 
et al., 2006), which may represent multiple functional domains. 
Furthermore, in some of the studies in MDD, comorbidity and use 
of medication could not be ruled out as potential confounders.

The aim of the present study was to investigate FC patterns 
using RS-fMRI in medication-free patients with MDD without 
comorbidity, and carefully matched healthy controls. Rather than 
focusing on predefined regions or networks of interest, we adopted 
an inclusive (exploratory) approach by investigating whole-brain 
RS-fMRI FC at the network level, ensuring the optimal use of the 
wealth of information present in the data. Based on the current 
neurobiological models for depression and the RS studies described 1www.nesda.nl
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and Smith, 2001; Jenkinson et al., 2002). Normalized 4D data sets 
were subsequently resampled to 4-mm isotropic voxels to reduce 
computational burden in the following analysis steps.

extractIng restIng-state networks
Standard group independent component analysis (ICA) was car-
ried out using probabilistic ICA (PICA) (Beckmann and Smith, 
2004) as implemented in FSL’s Multivariate Exploratory Linear 
Decomposition into Independent Components (MELODIC) 
Version 3.09. Default group PICA processing steps were applied 
to the individual preprocessed and normalized data sets: mask-
ing out non-brain voxels, voxel-wise de-meaning of the data, and 
normalization of the voxel-wise variance based on all data sets. 
Subsequently, data sets from both MDD patients and HCs were 
concatenated in time to create a single 4D data set, which was then 
projected into a 20-dimensional subspace using principal com-
ponent analysis. Next, the data set was decomposed into 20 sets 
of independent vectors which describe signal variation across the 
temporal (time-courses) and spatial (maps) domain by optimizing 
for non-Gaussian spatial source distributions using the FastICA 
algorithm (Hyvarinen, 1999). At this model order selection, it 
has been shown that most of the frequently observed large-scale 
RSNs can be discerned in the data when using this method (Abou-
Elseoud et al., 2010). The resulting estimated component maps 
were divided by the standard deviation of the residual noise and 
thresholded at a posterior probability threshold of p > 0.5 (i.e., an 
equal loss is placed on false positives and false negatives) by fitting 
a Gaussian/Gamma mixture model to the histogram of intensity 
values (Beckmann and Smith, 2004).

statIstIcal analyses
Subject specific statistical maps were created to test for differences 
between the MDD and HC groups in the identified components. 
This was done adopting a dual regression procedure (as previ-
ously described in: Filippini et al., 2009). In short, multiple lin-
ear regression of the z-thresholded Group PICA maps against the 
preprocessed individual 4D resampled data sets yielded a subject 
specific time course for each component separately. Next, multi-
ple linear regression of these time courses was carried out against 
the pre-processed individual 4D data sets in the standard space 
resolution (i.e., 2 mm), thereby providing better spatial specifi-
city. This resulted in subject specific z-maps for each of the 20 
components.

Prior to statistical inference 13 out of the 20 components were 
identified as anatomically and functionally relevant RSNs upon vis-
ual inspection, the seven others reflecting distinct artifacts resulting 
from head motion, fluctuations in cerebrospinal fluid, and physi-
ological or scanner noise. Criteria for inclusion were: signal within 
the low frequency range of 0.1–0.01 Hz (Lowe et al., 1998; Cordes 
et al., 2001), connectivity patterns were mainly located in gray mat-
ter, and presence of coherent clusters of voxels (De Martino et al., 
2007). Inference was carried out only on the subject specific z-maps 
of the 13 relevant RSNs. Statistical difference was assessed non-par-
ametrically using FSL’s Randomize tool, Version 2.1, incorporating 
threshold-free cluster enhancement (TFCE) (Smith and Nichols, 
2009). Besides modeling regressors for each of the two groups, addi-
tional nuisance regressors describing scanner location and age were 

the fixed imaging protocol: after completion of three task-related 
functional MRI runs (to be reported elsewhere) and the acqui-
sition of an anatomical scan (scan sequence: Tower of London, 
word encoding, T

1
-weighted scan, word recognition, perception 

of facial expression). In the darkened MR room participants were 
instructed to lie still with their eyes closed and not to fall asleep. 
Compliance to these instructions was verified as part of the exit 
interview.

Imaging data were acquired on a Philips 3.0-T Achieva MRI 
scanner using a six- (Amsterdam) or eight-channel (Groningen 
and Leiden) SENSE head coil (Philips Medical Systems, Best, The 
Netherlands). RS-fMRI data were acquired using T

2
*-weighted 

 gradient-echo echo-planar imaging with the following scan param-
eters in Amsterdam and Leiden: 200 whole-brain volumes; repeti-
tion time (TR) = 2300 ms; echo time (TE) = 30 ms; flip angle = 80º; 
35 axial slices; no slice gap; FOV = 220 × 220 mm; in plane voxel 
resolution = 2.3 mm × 2.3 mm; slice thickness = 3 mm; same 
in Groningen, except: TE = 28 ms; 39 axial slices; in plane voxel 
resolution = 3.45 mm × 3.45 mm. For registration purposes and 
analysis of gray matter density, a high resolution T

1
-weighted image 

was acquired with the following scan parameters: repetition time 
(TR) = 9 ms; echo time (TE) = 3.5 ms; flip angle = 8º; 170 sagittal 
slices; no slice gap; FOV = 256 × 256 mm; in plane voxel resolu-
tion = 1 mm × 1 mm; slice thickness = 1 mm.

data PreProcessIng
The preprocessing of RS-fMRI images was carried out using FEAT 
(FMRI Expert Analysis Tool) Version 5.90, part of FSL (FMRIB’s 
Software Library2) (Smith et al., 2004). The following processing 
steps were applied: motion correction (Jenkinson et al., 2002), 
removal of non-brain tissue (Smith, 2002), spatial smoothing using 
a Gaussian kernel of 4-mm full width at half maximum, grand-mean 
intensity normalization of the entire 4D dataset by a single multi-
plicative factor, high-pass temporal filtering (Gaussian-weighted 
least-squares straight line fitting, with sigma = 50 s; 0.01 Hz cut-off) 
and registration to the high resolution T

1
 and MNI-152 standard 

space (T
1
 standard brain averaged over 152 subjects; Montreal 

Neurological Institute, Montreal, QC, Canada) images (Jenkinson 

Table 1 | Demographic and clinical characteristics for the study sample.

 Healthy controls Major depressive 

 (n = 19) disorder (n = 19)

Age 36.11 ± 10.56 36.21 ± 9.7 

 (21–53) years  (20–57) years

Gender 8 male/11 8 male/11 

 female female

Education * 14 ± 2.67 12.21 ± 2.35 

 (9–18) years (9–18) years

MADRS ** 0.63 ± 1.07 14.21 ± 9.62 

 (0–3) (0–33)

Note: MADRS, Montgomery–Asberg depression rating scale. Except for sex, 
all values are mean ± SD (range). *p < 0.05, **p < 0.001, using independent 
sample t-tests.

2www.fmrib.ox.ac.uk/fsl
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The presence of all 13 networks found with PICA was confirmed 
in both the HC and MDD group by testing the main effects of group 
on the subject specific z-maps of these networks (all p ≤ 0.05, TFCE 
and FWE-corrected). Between-group differences in the voxel-wise 
spatial distribution of the FC maps were subsequently revealed in 
three networks (local FDR-corrected at q ≤ 0.01) (see Figure 2 and 
Tables 2–4). Within these networks nearly all differences indicated 
decreased FC in the MDD group. The first network showed an 
assembly of functionally connected regions in the auditory cortex 
(Heschl’s gyrus) bilaterally, extending into the pre- and postcentral 
gyri, as well as more ventral areas known to be involved in affective 
processing, including the insula and temporal poles bilaterally, the 
medial PFC (BA 10) and bilateral amygdala. Whereas the amygdala 
and left insula showed connectivity with the rest of the network in 
HCs, these regions showed decreased FC in the depressed group. 
In addition, increased FC in the MDD group was found in the 
right inferior frontal gyrus (IFG) within this RSN (Figures 2A,B, 
RSN 12). The second network mainly showed FC within the lateral 
parietal cortex, temporal–occipital junction, and precentral gyrus, 
which are areas involved in attention and working memory. In 
addition, the frontal poles were found to be negatively associated 
with the time course of this network. Reduced FC of the left frontal 
pole was demonstrated in the MDD group (Figures 2A,B, RSN 11). 
The third network showed functionally integrated areas within 
the medial occipital cortex, mostly covering Brodmann area 19, 
involved in visual processing. Although both controls and depressed 
participants demonstrated this connectivity pattern, a consistent 
decrease in functional integration of the lingual gyrus was found 
bilaterally in the MDD group in this RSN (Figures 2A,B, RSN 3).

The wide range in MADRS scores in the patient group allowed 
us to examine the relation between current symptom severity and 
the strength of the functional connections with the areas showing 
abnormal connectivity in this study. Within the depression group, 
Pearson product–moment correlation coefficients were calculated 
between the MADRS scores and the individual z-scores obtained 
from the affected areas within the corresponding individual com-
ponent maps. However, no association was found between strength 
of the FC and symptom severity in any of the affected regions.

gray Matter results
No differences in mean gray matter were observed between con-
trols and depressed participants in either of the three RSNs as a 
whole, or in the areas showing between-group differences within 
these RSNs (all t

36
 < 1, all p > 0.3). In addition, adding GM density 

values as covariates in the statistical model did not change the 
functional connectivity results as described in the previous  section. 
This indicates that the altered FC within the three networks is 
unlikely to be related to macroscopic (i.e., MRI observable) gray 
matter abnormalities.

dIscussIon
In the present study we set out to investigate differences in 
whole brain FC between medication-free MDD patients 
without comorbidity, and a group of age- and sex-matched 
healthy controls using RS-fMRI. It was expected that altered 
 connectivity would be observed in those RSNs which contain 
regions  previously described to show altered RS-FC in depres-

added to the model. Separate null distributions of t-values were 
derived for the contrasts reflecting the between and within group 
effects by performing 5000 random permutations and testing the 
difference between groups or against zero for each iteration (Nichols 
and Holmes, 2002). For each RSN, the resulting statistical maps were 
thresholded at p ≤ 0.05 (TFCE-corrected for  family-wise errors) for 
the group main effects. Between-group effects were thresholded con-
trolling the local false discovery rate (FDR) (Efron, 2004; Filippini 
et al., 2009) at q ≤ 0.01 and subsequently spatially masked with a 
binary representation of the conjunction of the group main effects 
images. Note that we applied a more stringent FDR threshold than 
the more generally accepted q ≤ 0.05, together with masking for the 
group main effects, to decrease susceptibility to type 1 errors when 
testing multiple RSNs.

gray Matter MorPhology
Major depressive disorder-related gray matter (GM) abnormalities 
have been found previously in several regions of the brain, although 
not always consistently (Sheline, 2003; Lorenzetti et al., 2009). To 
test whether altered FC in the present study might be explained by 
MRI-detectable loss of gray matter, a VBM style analysis was run 
on the acquired high resolution T

1
-weighted data sets (Ashburner 

and Friston, 2000; Good et al., 2001). Using FSL’s VBM toolbox, all 
structural images were first brain extracted, then tissue-type seg-
mented, normalized to MNI-152 standard space and non-linearly 
registered to each other (e.g., Douaud et al., 2007). Next, standard 
space binary masks were created from the voxels that covered each 
RSN (conjunction of the FWE-corrected HC > 0 and MDD > 0 
contrast maps) as well as from voxels showing differences between 
the two groups within the separate networks (local FDR controlled 
HC > MDD and MDD > HC contrast maps). The binary masks 
were then used to extract mean gray matter intensity scores within 
these masks for each of the participants. To rule out the influence 
of any subtle GM density variations, we included the GM values, 
from both the difference masks and the RSN as a whole, as regres-
sors in the statistical model (see, e.g., Damoiseaux et al., 2008). 
Additionally, between-group t-tests were carried out on the par-
ticipants’ mean intensity scores derived from each mask using SPSS 
Version 16.0 (SPSS Inc., Chicago, IL, USA) to test whether the two 
groups differed in GM density on average. Note that whole brain 
VBM results of a large sample (including MDD) from the NESDA 
study will be reported elsewhere.

results
restIng-state functIonal connectIvIty
Thirteen functionally relevant RSNs were found using the group 
PICA analysis (Figure 1). Most of these networks have been 
described in previous studies using similar methodology and were 
shown to be stable across participants and over time (Beckmann 
et al., 2005; Damoiseaux et al., 2006). The assemblies of brain areas 
shown in these networks covered the primary [1], lateral [2] and 
medial visual cortex [3], sensory-motor cortex [4], ventral stream 
[8] auditory cortex [12], the hippocampus–amygdala complex [9], 
precuneus [7] together with the DMN [13], a network associated 
with salience processing (Seeley et al., 2007) [10], and networks 
encompassing areas associated with higher order cognition such 
as attention [11] and working memory [5, 6].
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Figure 1 | group iCA functionally relevant resting-state networks. Depicted 
here are the 13 functionally relevant RSNs resulting from the group PICA step 
carried out on the concatenated data sets from both patients and controls. Most 
networks have previously been described (for example in: Beckmann et al., 2005; 

Damoiseaux et al., 2006) and show assemblies of regions associated with 
sensory processing, affective processing, and higher order cognitive processes. 
Images are z-statistics, ranging from 3 to 8, overlaid on the MNI-152 standard 
brain. The left hemisphere of the brain corresponds to the right side in this image.

sion (Anand et al., 2005a,b; Greicius et al., 2007; Zhou et al., 
2009), as well as in other regions known to be involved in affec-
tive pathology (Phillips et al., 2003; Urry et al., 2006; Johnstone 
et al., 2007; Chen et al., 2008; Matthews et al., 2008). In this 
study we mainly found evidence for MDD-related decreased FC 
within three RSNs. These alterations have not been associated 
with major depression before.

First, altered FC was found in a network with regions known to 
be involved in emotional processing and affect regulation, such as 
the anterior insula, dorsal anterior cingulate cortex (dACC), ven-
tromedial prefrontal cortex (vmPFC), temporal poles and  amygdala 
(Pessoa, 2008). MDD patients showed strongly reduced connectivity 
with the amygdala within this RSN. Coupling between the vmPFC 
and amygdala has previously been found during downregulation of 
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Figure 2 | group main effects and between-group effects. Numbering 
corresponds to the networks depicted in Figure 1. (A) Depicted here are the 
group main and between-group effects for three RSNs. Group main effects 
are corrected for family-wise errors (p < 0.05) and between-group effects are 
corrected according to a local false discovery rate of 1%. RSN 12 shows an 
assembly of ventral affective regions, such as temporal poles, insula, medial 
prefrontal cortex, and amygdala, the latter two regions demonstrating 
decreased connectivity within the MDD group. RSN 11 shows brain regions 
linked to attention, of which the left frontal pole shows decreased 

connectivity in the MDD group. RSN 3 shows MDD-related decreased 
connectivity of the bilateral lingual gyrus with other medial visual areas. 
Images are z-statistics, ranging from 2 to 10, overlaid on the MNI-152 
standard brain. The left hemisphere of the brain corresponds to the right side 
in this image. HC, healthy controls; MDD, major depressive disorder. (B) 
Distribution of the mean individual z-scores within the bilateral amygdala (12), 
left frontal pole (11), and bilateral lingual gyrus (3). Depicted in red are the 
controls, in black the MDD group, both sorted from smallest to 
highest z-value.

negative affect in healthy controls (Urry et al., 2006), as was reflected 
by decreasing amygdala activation with increasing vmPFC activa-
tion. In a similar study in depression, MDD patients showed altered 
coupling between these regions, potentially reflecting impaired 
top–down control over amygdala responses and inability to down-
regulate negative affect (Johnstone et al., 2007). Involvement of 
the anterior insula along with dACC and somatosensory regions 
in this network may furthermore underscore its potential role 
in interoceptive awareness and emotional experience (Critchley 
et al., 2004). Besides regions showing decreased FC in this RSN, 
the depression group also demonstrated increased connectivity of 
the rIFG. This region has been implicated in coping with exertion 
of both cognitive (Aron et al., 2004) and emotional (Dolcos et al., 
2006) control. Recently, IFG function was found compromised in 
MDD when executive control had to be exerted in minimizing 
emotional distraction (Wang et al., 2008). Abnormal recruitment of 
the rIFG within the current RSN may indicate a higher propensity 
towards inhibition of emotional responses in depression, although 
the neurocircuitry to successfully do this is compromised. Taken 

together, the observed decoupling of the amygdala, decreased left 
insula connectivity and increased rIFG connectivity within this 
network may be related to the impaired regulation and integration 
of affective responses observed in MDD patients.

Second, we found reduced involvement of the left lateral frontal 
pole in a network often referred to as the TPN (Fox et al., 2005), 
its constituent regions commonly found activated during tasks 
that require cognitive effort or attention (Corbetta and Shulman, 
2002). The lateral frontal poles are thought to play a key role in 
executive function and stimulus oriented behavior (Burgess et al., 
2007a,b), which would complement the proposed function of this 
RSN. Reduced FC of the left lateral frontal pole, as was found in 
depression within this network, may thus reflect a suboptimally 
integrated attention system or reduced externally oriented atten-
tion in MDD. This abnormal connectivity pattern may relate to the 
cognitive deficiencies often observed in depressed patients (Rogers 
et al., 2004; Ebmeier et al., 2006), yet this relation should be assessed 
in task-related imaging studies designed to address this question 
more directly.
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Table 2 | rSN 12 characteristics and statistics.

region Brodmann Center coordinates PFWe Plocal FDr Plocal FDr 

 area (MNi space; LPi)  q < 0.01 q < 0.01

  x y z HC MDD HC > MDD MDD > HC

PoSiTive

Left cerebellum  −16 −68 −22 0.002 <0.001 ns ns

Right cerebellum  18 −68 −22 <0.001 <0.001 ns ns

Left superior temporal gyrus 38 −44 0 −14 <0.001 <0.001 ns ns

 22,41,42 −46 −30 6 <0.001 <0.001 ns ns

Right superior temporal gyrus 38 56 −10 −8 <0.001 0.002 <0.001 ns

 22,41,42 58 −32 6 <0.001 <0.001 ns ns

Left amygdala  −24 −6 −14 0.007 ns <0.001 ns

Right amygdala  24 −4 −16 0.02 ns <0.001 ns

Left/right medial prefrontal cortex 10 0 48 −14 0.005 <0.001 ns ns

Left insula  −40 −6 −2 <0.001 <0.001 ns ns

  −36 4 −18 <0.001 ns <0.001 ns

Right insula  38 −6 6 <0.001 <0.001 ns ns

Right thalamus  12 −22 0 ns 0.008 ns ns

Left/right anterior cingulate gyrus 24 0 2 38 <0.001 <0.001 ns ns

Left pre- and postcentral gyrus 1,2,3,4 −44 −20 44 <0.001 <0.001 ns ns

Right pre- and postcentral gyrus 1,2,3,4 48 −16 44 <0.001 <0.001 ns ns

Left/right postcentral gyrus 5 0 −26 50 0.002 <0.001 ns ns

Right inferior frontal gyrus 45 56 24 16 ns <0.001 ns <0.001

NegATive

Left thalamus  −12 −6 12 ns 0.039 ns ns

Left middle frontal gyrus 46 −28 32 36 0.01 ns ns ns

Left precentral gyrus 6 −28 6 48 ns 0.026 ns ns

Note: Group main effects are FWE-corrected for multiple comparisons, between-group contrasts are corrected for multiple comparisons using a local false discovery 
rate (FDR) of 1%. HC, healthy controls; MDD, major depressive disorder; ns, not significant.

Finally, we demonstrated decreased FC of the bilateral lingual 
gyrus in MDD in a network including ventromedial occipitotempo-
ral areas. Although both groups showed strong connectivity with the 
bilateral lingual gyrus within this network, MDD patients revealed 
a consistent decrease in connectivity strength. Abnormalities in 
the visual stream are not commonly reported in MDD, and the 
interpretation of this effect in the depressed patients in the current 
study must therefore remain speculative.

In the present study we did not find abnormalities in regions 
 previously reported to show altered RS FC in MDD. For example, 
increased involvement of the subgenual ACC and thalamus in the 
DMN has been found in MDD (Greicius et al., 2007; Zhou et al., 
2009), but was not observed in the current study. Previous work fur-
thermore reported increased connectivity of multiple brain regions 
within the TPN (Zhou et al., 2009). In the present study, in contrast, 
we showed MDD-related reduced connectivity of the frontal poles, 
which is at variance with previously found increases in connectivity 
in this network. In addition, support for reduced coupling between 
the dorsal ACC and seeds from the  pallidostriatum and thalamus 
in MDD was not found, as has been described in previous studies 
(Anand et al., 2005a,b).

The discrepancy in results between these studies and ours could 
be ascribed to differences in patient samples and analysis methods. 
In contrast to other studies, we report on a sample of medication-

free MDD patients without comorbidity and with carefully age- and 
gender-matched controls. Secondly, for the current study we employed 
ICA analysis at the group level to obtain whole brain patterns of FC. 
It is conceivable that this method yields different results compared to 
approaches using correlations with, or between a priori defined regions 
of interest, or even when using ICA on individual data sets, although 
little is at present known about cross-validity between the methods.

A limitation of the present study was that our patient sample 
was mildly depressed on average. In addition, some patients already 
showed a clinically significant decrease in symptom severity because 
of the delay between the diagnostic assessment and the time of 
scanning. While this may have decreased the overall sensitivity 
of the study, the method applied was still successful in detecting 
brain functional correlates of depression, even in a mildly affected 
patient sample. Moreover, the effects found here were shown not 
to be associated with the current state of symptom severity, indi-
cating that the observed alterations in FC may not be specific to 
the active state of the disorder and may not cease to exist during 
the remitted state.

Another limitation of the current study was the possible influ-
ence of between-group differences in heart rate variability and 
breathing on the results. The sampling rate used in this study 
(2.2 seconds per volume) was too low to avoid aliasing of these 
physiological signals in the data acquired. Applying a high-pass 
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Table 3 | rSN 11 characteristics and statistics.

region Brodmann Center coordinates PFWe Plocal FDr Plocal FDr 

 area (MNi space; LPi)  q < 0.01 q < 0.01

  x y z HC MDD HC > MDD MDD > HC

PoSiTive

Left inferior temporal gyrus 37 −48 −62 −12 <0.001 <0.001 ns ns

Right inferior temporal gyrus 37 54 −60 −8 <0.001 <0.001 ns ns

Left lateral occipital cortex 19 −40 −80 18 <0.001 <0.001 ns ns

Right lateral occipital cortex 19 44 −72 14 <0.001 <0.001 ns ns

Left supramarginal gyrus 40 −56 −28 24 <0.001 <0.001 ns ns

 40 −46 −38 40 <0.001 <0.001 ns ns

Right supramarginal gyrus 40 58 −40 24 <0.001 <0.001 ns ns

 40 40 −38 40 <0.001 <0.001 ns ns

Left posterior cingulate cortex 31 −10 −38 40 <0.001 <0.001 ns ns

Right posterior cingulate cortex 31 12 −38 42 <0.001 <0.001 ns ns

Left middle frontal gyrus 46 −46 36 12 0.025 ns ns ns

Right middle frontal gyrus 46 50 40 8 0.028 ns ns ns

Right precentral gyrus 6 48 8 26 0.035 ns ns ns

Left/right anterior cingulate gyrus 24 2 2 32 0.037 ns ns ns
NegATive

Left hippocampus  −28 −24 −16 0.002 ns ns ns

Left middle temporal gyrus 21 −58 −30 −10 0.002 0.002 ns ns

Right middle temporal gyrus 21 58 −20 −10 0.003 ns ns ns

Left frontal pole 10 −24 56 −4 <0.001 ns ns <0.001

Right frontal pole 10 32 56 −2 <0.001 <0.001 ns ns

Left paracingulate gyrus 32 −8 32 36 0.003 ns ns ns

Right paracingulate gyrus 32 4 32 38 0.003 0.003 ns ns

Left middle frontal gyrus 8 −36 16 38 ns <0.001 ns ns

Left/right cuneus 19 2 −78 36 <0.001 <0.001 ns ns

Note: Group main effects are FWE-corrected for multiple comparisons, between-group contrasts are corrected for multiple comparisons using a local false discovery 
rate (FDR) of 1%. HC, healthy controls; MDD, major depressive disorder; ns, not significant.

Table 4 | rSN 3 characteristics and statistics.

region Brodmann Center coordinates PFWe Plocal FDr P local FDr 

 area (MNi space; LPi)  q < 0.01 q < 0.01

  x y z HC MDD HC > MDD MDD > HC

PoSiTive

Left lingual gyrus 19 −10 −68 −2 <0.001 <0.001 <0.001 ns

Right lingual gyrus 19 16 −68 −2 <0.001 <0.001 ns ns

  19 16 −50 −2 <0.001 <0.001 <0.001 ns

Left lateral occipital cortex 19 −38 −76 22 <0.001 <0.001 ns ns

Right lateral occipital cortex 19 50 −72 16 0.013 <0.001 ns ns

Left cuneus 19 −14 −76 22 <0.001 <0.001 ns ns

Right cuneus 19 18 −76 22 <0.001 <0.001 ns ns

Right precentral gyrus 6 40 8 28 ns 0.03 ns ns

Left caudate nucleus  −6 8 4 ns 0.011 ns ns

Right caudate nucleus  8 8 4 ns 0.016 ns ns

Note: Group main effects are FWE-corrected for multiple comparisons, between-group contrasts are corrected for multiple comparisons using a local false discovery 
rate (FDR) of 1%. HC, healthy controls; MDD, major depressive disorder; ns, not significant.

temporal filter will therefore not remove all variance caused by 
these signals. Since physiological activity was not monitored in 
the current study, it remains unclear if any difference between 

the two groups has influenced the results. However, it has been 
shown that ICA is capable of detecting signal sources associ-
ated with confounding physiological signals and that it can 
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study sample.
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