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intrinsic resonance of the thalamus, should abolish the symptoms. 
It does not directly address the mechanism of frequency specificity 
of the stimulus. Furthermore, it has recently been shown that the 
effectiveness of DBS depends on the periodicity of the stimulation 
(Dorval et al., 2010); Poisson patterns of stimulation at the same 
mean frequency were much less effective. This suggests that the 
effectiveness of DBS may depend on some dynamic process unique 
to periodically driven systems.

Here we present an alternative hypothesis, that DBS does not 
entrain the neurons but instead disrupts population synchrony. 
Basal ganglia output neurons are autonomous oscillators that 
fire rhythmically when isolated from synaptic inputs (Atherton 
and Bevan, 2005; Kita et al., 2005). Periodically driven oscillators, 
including neurons, exhibit several different patterns of synchrony 
depending on stimulus intensity and frequency: phase-shifting, 
phase locking, and chaos (e.g., Glass and Mackey, 1988; Elbert et al., 
1994; Kaplan et al., 1996). During stimulus driven phase locking, 
the trajectories of cells that are out of phase with each other will 
converge, and synchrony of the network will increase. However, 
when the periodic stimulus evokes a chaotic response, nearby tra-
jectories diverge, and the oscillators are actively desynchronized.

Materials and Methods
ConstruCtion of deterMinistiC phase Maps
When a periodically firing neuron is perturbed by an injected 
(or synaptic) current, it may alter the neuron’s phase, making 
it fire earlier or later than it would have otherwise. The degree 
to which a stimulus may alter the timing of the next action 

introduCtion
The motor symptoms of Parkinson’s disease have long been attrib-
uted to increased firing rates of neurons in the globus pallidus, which 
then are thought to inhibit thalamic neurons relaying signals to the 
motor cortex (for reviews see Albin et al., 1989; Wichmann and 
DeLong, 1996). An alternative explanation is based on the obser-
vation that pallidal and subthalamic neurons in animal models of 
the disease exhibit low frequency rhythmic bursting not normally 
present (e.g., Bergman et al., 1994; Raz et al., 2000). Bursting occurs 
near the tremor frequency (7–10 Hz), and the normally uncorre-
lated firing across cells becomes synchronized at about twice that 
frequency (Nini et al., 1995). Local field potentials show a large 
increase in power in the beta band (the frequency of synchrony; 
Dostrovsky and Bergman, 2004; Gatev et al., 2006; Brown, 2007). 
If the change in firing pattern, and not rate, causes the symptoms 
of Parkinson’s disease, then the beneficial effects (e.g., Wichmann 
and DeLong, 2006) of deep brain stimulation (DBS) may act by 
disrupting the pathological pattern, either the low frequency burst-
ing, or the synchronous firing, or both (Rubin and Terman, 2004; 
Guo et al., 2008; Dorval et al., 2010; Schiff, 2010). A computational 
model has been proposed for the oscillations and the therapeutic 
mechanism of DBS (Rubin and Terman, 2004; Guo et al., 2008). It 
assumes that DBS entrains the globus pallidus cells, increasing syn-
chrony but abolishing beta oscillations. This is thought to regularize 
pallidothalamic inhibition and allow blocked signals to traverse the 
thalamus to the motor cortex. In this model, any stimulus that can 
entrain the globus pallidus at rates faster than the burst frequency, 
and thereby suppress the low frequency oscillations that engage the 
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potential depends upon the phase in the cell’s oscillation at 
which it is applied. By stimulating the neuron at different phases 
and measuring the resulting change in spike timing, a phase-
resetting curve (PRC) can be calculated (for review see Gutkin 
et al., 2005). For a neuron firing with period T

c
 and being stimu-

lated by a periodic stimulus with period T
s
 the relative timing 

between the stimulus and the neuron’s action potential ts
i + 1

, 
can be calculated from the timing of the previous stimulus ts

i
 

using a map. Notation used is indicated in Figure 1. The change 
in interspike interval (ISI) ∆t caused by the stimulus is deter-
mined by the cell’s PRC. By dividing the time of the stimulus 
relative to the previous action potential by the cell’s period we 
can determine its phase. The stimulus phase on the next cycle 
can be calculated as:
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in which the PRC is scaled by the size and sign of the stimulus, m
s
. 

For our purposes, all phases were defined relative to the cell’s period 
T

c
. By substituting φ

i
 = ts

i
/T

c
 the map of stimulus phase relative to 

action potential firing can be rewritten as:

φ φ ∗ φi i im
T
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s

c

PRC .

A similar approach is taken when we need to calculate the tim-
ing of action potentials relative to the stimulus, for example in 
calculating the peristimulus histogram.
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We used a PRC shape measured from a simplified conduct-
ance-based model of the basal ganglia output cells that we based 
on data from Atherton and Bevan (2005). It consisted of a low 
threshold persistent sodium current, a fast sodium action potential 
current, a high-threshold spike repolarization potassium current, 
a high-threshold calcium current, calcium pump, and a calcium-
dependent potassium current. The model is not an accurate rep-
resentation of all the firing patterns reported for the substantia 
nigra pars reticulata neuron, but did reproduce the basic pattern 
of spontaneous activity. Its PRC was similar to that reported for a 
more complex model of the cells of the external segment of globus 
pallidus (whose firing patterns are similar) by Schultheiss et al. 
(2010). The specific PRC used was:
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At high stimulus intensities, the PRC approaches a causal limit, 
corresponding to immediate firing in response to the stimulus. 
This limit, the resetting line, has a slope of −1. For large stimuli, 
the PRC is partly absorbed into the phase resetting line. This was 
incorporated into the definition of the PRC used here.

 The behavior of the neuron in response to periodic inputs can 
take on three different forms, entrainment, quasiperiodicity, or 
chaos. When entrained to the stimulus, cells receiving the stimulus 
will converge in phase. In quasiperiodicity, their patterns of activ-
ity are complex but two neurons starting at nearly the same phase 
will on average retain their phase difference. Chaotic activity is 
aperiodic and two neurons starting at nearly the same phase will 
rapidly diverge in the timing of their firing. To characterize the three 
patterns of response, we calculated the Lyapunov exponent of the 
response. This was done by calculating the phases repeatedly from 
an arbitrary starting point. After 500 initial iterations, the map was 
iterated an additional 10,000 times. At each of these, the slope of 
the map was calculated at the new phase point, and the log of the 
absolute value of the slope at visited phase points was averaged 
across the 10,000 cycles.

ConstruCtion of the stoChastiC phase Map
 The PRC represents an idealized version of the response of a repeti-
tively firing neuron to stimulation. The most significant simplifica-
tion is that it ignores the variability in the cell’s ISI. The neuron’s 
spike times can vary from interval to interval due to unaccounted-
for external inputs or intrinsic noise in the neuron’s membrane. 
Noise produces many small phase perturbations during each ISI. 
When a neuron receives multiple stimuli during a single ISI, the 
phase is shifted after each one, causing phase to become decoupled 
from time. This “latent phase” (Winfree, 2000) can only be realized 
when the neuron fires an action potential.

 The distribution of latent phases of stimulation caused by 
noise can be inferred from the distribution of ISIs observed in 
the absence of stimulation. The effect of this uncertainty in the 
latent phase of the stimulus on the PRC has been described by 

stimulus stimulus

tritsi

∆t

TC

TS

tsi+1

Figure 1 | Notation. Two trajectories of a spontaneously active neuron firing 
with period Tc are shown, one unperturbed (black) and one perturbed by the 
stimulus presented at period Ts. The phase-dependent change in the period 
caused by the stimulus is ∆t. Stimulation latencies relative to cell firing are 
indicated by ts, and response latencies relative to the stimulus are labeled tr.
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We modeled a population of uncoupled cells receiving com-
mon stochastic input η(t) from an external brain region. The other 
stochastic input, ζ(t), represents independent noise inputs to the 
cells, including intrinsic noise and unshared synaptic inputs from 
nearby cells or other brain areas. The shared input was adjusted to 
impose a substantial correlation but not perfect synchrony among 
the cells in the absence of DBS stimulation. This was done so that 
both synchronizing and desynchronizing effects of the DBS stimu-
lus could be readily observed. When a cell received a DBS input, we 
used the PRC to determine a cell’s phase shift to external inputs as:

φ φ ∗ φi i it m+ − −= − ( )( )( ) mod , ,s PRC 1

in which the phase immediately after the stimulus φ+
i t( ) is equal to 

the phase immediately before the stimulus φ−
i t( ) minus the cell’s 

response to the input, PRC(φ−
i ). Changes in the stimulus ampli-

tude were simulated by scaling the coefficient m
s
. The phase-update 

from periodic stimulation only occurred when time t equaled the 
stimulus time t

s
. We also kept track of the resetting of each cell’s 

oscillation to ensure that no cell’s phase was advanced to a point 
prior to the stimulus time – only an immediate spike is possible 
in that case.

MeasureMent of synChrony
 We simulated 100 uncoupled cells starting with randomly dis-
tributed initial phases normalized between 0 and 1. A periodic 
stimulus was delivered throughout the simulation, the frequency, 
and strength of which was varied to examine the effect on net-
work dynamics. The network had no spatial distribution, meaning 
that we stimulated all cells with equal amplitude. The frequency 
of stimulation ranged from 1 to 2 times the natural frequency of 
the cell. The relative strength of stimulation ranged from −1 to 1 
(negative strengths indicating inhibition), with a peak advance of 
30% of the phase at the largest stimulation strength. To determine 
population entrainment from the DBS, we calculated the entropy 
(as phase distribution) of the population as:

Entropy = − ( ) ( )( )
=

∑ p pj j
j

B

φ φln
1

in which p(φ
j
) is the probability of a cell being in bin j of B total 

bins. A high value of entropy indicates a population of cells that 
are evenly distributed in phase, or “splay phase,” while a low value 
of entropy indicates synchrony. The theoretical maximum entropy 
for 100 bins is approximately 4.6. We found that entropy more 
accurately represented the network’s synchrony than a Kuramoto 
order parameter (Kuramoto, 1984) because at certain stimulus 
frequencies the population was entrained into two clusters of 
neurons at exactly opposite phases. This configuration resulted in 
zero-synchrony measured using the Kuramoto order parameter 
yet a low value for entropy.

CoMpound synaptiC phase-resetting Curve for isolated 
stiMuli
When stimulating a neuron at high rates, multiple stimulus inputs 
may occur within one ISI. While it is straightforward to predict the 
phase advance cause by a single input, the response to the second 
input must be calculated recursively. The presentation of a stimulus 

Ermentrout et al. (2011), who also describe an approximation to 
the variance of the PRC as a function of mean latent phase of the 
stimulus. Using this approach, we represented each point in the 
PRC as a probability distribution of the phase change caused by an 
input. This probabilistic PRC was used to make a stochastic phase 
map that takes as input the probability distribution of neuron 
phases for the ith stimulus and calculates the distribution for the 
(i + 1)th iteration. The mean value at each phase corresponds to 
the deterministic phase map and the variance is altered according 
to the variance of the PRC at that mean phase. Phase (as a propor-
tion of the ISI) was divided into 200 increments, and the stochastic 
map was instantiated as a 200 × 200 stochastic matrix. Each row 
in the matrix was a normal distribution with a mean equal to the 
mean value of the PRC at that phase, and with variance calculated 
as in Ermentrout et al. (2011).

 The steady-state probability distribution of the stimulus 
phases of the neurons to periodic stimulation can be determined 
from the stochastic map matrix by taking the largest eigenvec-
tor, λ corresponding to the largest eigenvalue. The Lyapunov 
exponent is the log of the average slope of the map and can be 
calculated as:

LE PRCs= + ′[ ]∫ λ(φ) ∗ φ φlog ( ) ,1
0

1

m d

in which the slope of the PRC at each phase [PRC′(φ)] is weighted 
by the probability density of neurons at that phase in the steady 
state.

network siMulations
We simulated a network of neurons subjected to periodic stimula-
tion. Each neuron was modeled as a periodic oscillator whose phase 
was updated according to the input amplitude and the neuron’s 
PRC. Each cell received input from three sources: (1) an independ-
ent noise source, (2) a common noise source, and (3) DBS stimulus. 
The neurons in this simulation were uncoupled from each other. 
The phase of each cell i was calculated as follows:

d t

dt
t ti

i

φ ζ η( )
( ) ( )= + +Ω

ζ φi i i it A t( ) ( , )= ( )Var N 0 1 ∆

η( ) = φt B tiVar ( )( )N 0 1, ∆

Here, φ
i
 is the phase of cell i at time t, Ω is the natural period 

of the neuron (set to 1 for all cells in this simulation), ζ
i
(t) is the 

random (independent) stochastic input, and η(t) is the common 
stochastic input, which are dependent on the square root of the 
time step, ∆t. The coefficients A

i
 and B scale the noise inputs, which 

are multiplied by N(0, 1), a zero-mean random variable with SD 1. 
Var(φ

i
) is the variance of each stochastic input for unitary noise, 

calculated as the integral of the square of the PRCs up to the time 
of stimulus as:

Var( ) PRCφ
φ

φ

= ∫ 2

1

2

( )s ds
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are measured for the period T, during which the cell fires once. The 
post-stimulus histogram is effectively a firing latency histogram. 
Because neurons in the subthalamo-pallidal pathway do not burst 
in response to single stimuli (Kita et al., 2005), it is possible to 
estimate the post-stimulus histogram directly from the PRC.

We treated the entire stimulus sequence starting at time ts as a 
single impulse stimulus for calculation of the PRC

syn
. Because the 

stimulus is absent for times before ts, the distinction between phase 
and time need not be made for that period. This stimulus time meas-
ured from the most recent action potential ts and response latency 
tr would sum to the ISI T

c
 in the absence of an effective stimulus. 

Stimulation may change the response latency by an amount depend-
ent on the stimulus time as calculated by the PRC

syn
. We constructed 

the post-stimulus histogram by uniformly sampling stimulus phase 
φs, and plotting the probability of obtaining a value of φr.

CoMpound synaptiC phase-resetting Curve for periodiC 
stiMuli
During high frequency stimulation, the next stimulus may arrive 
before the effects of previous ones have completely dissipated. 
When the neuron’s response to a periodic stimulus has reached 
steady state, the influence of stimulus history is absorbed into a 
constant component. The steady-state stimulus current for an expo-
nentially decaying input as we have used for each of the monosyn-
aptic effects of subthalamic stimulation is given by:

m t t
t t

Fs

e

e
−[ ] =

−

− −( )

( )0 1

0

1
δ ∗

τ

τ

/

/ *
,

in which t
0
 is the time of the most recent stimulus, τ is the decay 

time constant of synaptic current, δ is the increment of the current 
on each stimulus, and F is stimulus frequency. Synaptic currents for 
both excitatory and inhibitory inputs (each with its own δ and τ) 
were calculated using this equation, and summed. The resulting 
periodic input waveform was used to calculate the compound syn-
aptic PRC. At steady state, there is a frequency-dependent constant 
current associated with each synaptic component, whose sum may 
create a constant offset in the compound PRC, equivalent to a 
change in the cell’s unperturbed firing rate.

Because of its longer time constant, the constant component of 
the current at most stimulus intensities was dominated by inhi-
bition. This periodic form of the compound synaptic PRC was 
used to make a phase map. To make a stochastic map, the effect of 
background current noise must be incorporated. That noise acts 
through the cells intrinsic PRC, not the synaptic PRC.

For purposes of calculating the variance of the cyclic synaptic 
PRC, we assumed that the greatest phase shift produced by the 
stimulus occurred at the time of stimulus presentation. With this 
simplification, we calculate the variance of that curve in the same 
way as the discrete stimulation (Ermentrout et al., 2011). During 
the part of the ISI before the onset of the stimulus the latent phase is 
dispersed by the accumulation of phase shifts induced by a Gaussian 
noise current. The variance of the latent phase distribution at the 
moment just preceding the stimulus (t

s
) is given by

var [ ] ,t s ds
t

s PRC
s

−  = ∫η2 2

0

causes a change in the phase of the neuron that is not revealed until 
the neuron fires its next action potential. Therefore we refer to the 
phase of the neuron at the time of the second stimulus as the latent 
phase, as in the case of ongoing noise. Because a synaptic stimulus, 
unlike noise, cannot be assumed to average to zero, a statistical 
approach cannot be used. The cumulative phase advance must be 
calculated by determining the latent phase and stimulus amplitude 
at each time point, and summing the phase advances to all the 
stimuli. To implement this, we discretized time and decomposed 
the synaptic current into a series of discrete impulses occurring 
at each point in time. The latent phase assigned to each stimulus 
impulse was calculated from the phase of the previous stimulus 
and the change in latent phase it produced (Netoff et al., 2005). 
The resulting phase evolution was given as:

φ ∗ φ ∗ ∗ ∗ φi i i

t i

T
m t i+ = + [ ]1

∆ ∆
c

s PRC[ ] ,

in which φ
i
 is latent phase of the cell at the time of the ith stimulus, 

m
s
 is the stimulus magnitude and ∆t is the time increment. Thus 

the effect of a temporally extended synaptic current arising from 
any sequence of synaptic inputs could be approximated by setting 
m

s
 accordingly for each time point. At each time i∗∆t a new latent 

phase value was calculated, and this was repeated until the latent 
phase achieved a value of 1 (indicating that the cell fired). The 
resolution of the measurement of phase changes was set by ∆t, for 
which we used T

c
/5000. We calculated the compound (PRC

syn
) by 

applying a stimulus sequence m
s
[t] starting at various time delays 

after the onset of an action potential. This represents the experi-
ment in which a stimulus is presented very rarely, so that the effect 
of a prior stimulus is completely dissipated before the next stimu-
lus is presented. These are the conditions used for calculating the 
post-stimulus histogram. The response to a single input may not 
accurately reflect the neuron’s response to a periodic stimulus, for 
which the effects of stimuli from previous cycles may accumulate. 
Therefore, we calculate two synaptic PRCs, one for singular stimuli 
and one for stimuli presented periodically.

Modeling response of the synaptiC response to dBs
We modeled the direct subthalamo-pallidal pathway using an excit-
atory synaptic current with a latency of 1 ms, an instantaneous 
rise, and a decay time constant of 2.5 ms, which is typical of AMPA 
excitation. The direct inhibitory effect of antidromic activation of 
globus pallidus external (GPe) segmentaxons in the subthalamic 
nucleus was modeled as a smaller but longer-lasting hyperpolar-
izing current, with a latency of 1.5 ms, and a decay time constant of 
5 ms (based on the measurement by Sims et al., 2008). We selected 
−0.6 as the ratio of inhibition to excitation, as this produced a small 
net inhibitory effect at low frequencies and intensities, as described 
by Kita et al. (2005).

For a periodically firing neuron and a stimulus given at inter-
vals much longer than the cell period, the relationship between 
the PRC and the post-stimulus histogram has been described by 
Gutkin et al. (2005). Their analysis requires that the stimulus does 
not insert extra action potentials, meaning that any one trial in the 
post-stimulus histogram has no more than one action potential 
during one firing period after the stimulus. Thus the histograms 
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stimulus strength (over a range of small stimulus intensities), and 
is inverted when the current pulses are hyperpolarizing. The PRC 
can be readily converted to a phase map, as shown in Figures 2D,E 
(blue line). This gives the phase of the (i + 1)th stimulus relative to 
the preceding action potential, as a function of the phase of the ith 
stimulus. It is calculated by adding the PRC to the identity line (in 
red), and shifting it up or down respectively according to whether 
the cell is firing more rapidly or more slowly than the stimulus is 
presented. In Figure 2D, the stimulation rate is 20% higher than 
the cell’s natural firing rate, so the map is shifted down, resulting 
in two equilibria, which are the crossings with the identity line. 
The stability of equilibria can be determined by the slope of the 
map; equilibria at crossings with negative slopes are stable. Only 
one of the equilibria in Figure 2D is stable, as indicated by the 
black dot, and so regardless of the phase of the stimulus at the start 
of stimulation, the cell will speed up slightly and become phase 
locked to the stimulus at a phase corresponding to that equilibrium. 
Trajectories from all starting phases will converge to this phase and 
become phase locked to the stimulus. The negative value of the 
Lyapunov exponent is indicative of entrainment to the stimulus 
and synchrony among stimulated neurons. In the chaotic example 
in Figure 2E, the stimulation rate is faster and the amplitude is not 
changed. There are no equilibria because the PRC does not cross the 
line of identity, and trajectories are complicated and do not repeat. 
However, some regions on the phase map are never visited by the 
trajectories, and some are visited often. The Lyapunov exponent 
measured in this case is positive, indicating that the phase relation-
ship between two cells starting near each other in phase will diverge 
exponentially in time. This phase difference between the two neu-
rons over the stimulated cycles is shown in Figure 2F. The neurons 
start at almost the same phase (nearly zero phase difference) and 
within 10 cycles, the phase difference has grown exponentially to 
large value indicating the neurons are no longer synchronized. For 
very small amplitude stimulation and non-zero difference between 
the frequency of the cell and stimulus, there are also no equilibria 
on the map, but the effect of stimulation on phases of neurons is 
very small, and the Lyapunov exponent is nearly zero, indicating 
that the cells will maintain their phase relationships on average (not 
shown). The effect of stimulus intensity and frequency of current 
pulses on synchrony as measured by the Lyapunov exponent is 
shown in Figure 2G. For depolarizing (excitatory) stimuli, chaotic 
desynchronization occurs at intermediate stimulus intensities, large 
enough to produce effects on cell phase but too small to entrain 
cells completely, and at frequencies of stimulation greater than 
50% faster than the cells’ spontaneous firing rate. Hyperpolarizing 
(inhibitory) stimuli produce chaotic desynchronization of model 
neurons over a wider range of stimulus frequencies and intensities. 
In both cases, small changes in either frequency or intensity of the 
stimulation can cause a switch between synchronization (in blue) 
and desynchronization (in red).

 effeCts of Cellular variaBility
Some features of the effects of stimulation shown in Figure 2 are 
caused by the idealized nature of the cells’ oscillation in the stochas-
tic map. Globus pallidus neurons are not perfect oscillators; their 
period varies due to intrinsic noise and irregular synaptic inputs. 
We incorporated irregularity of the cell’s firing using a stochastic 

in which η is the SD of the current noise, and PRC is the cellular 
PRC. At the time of the stimulus, the variance is altered because 
trajectories at different latent phases at the moment of stimulation 
are shifted by different amounts. The variance immediately after 
the stimulus is:

var var ,t t ts s PRC ssyn
+ −  =   − ′ [ ]( )∗ 1

2

in which PRCsyn′  is the derivative of the cyclic synaptic PRC. During 
the remaining part of the ISI, additional phase dispersion is caused 
by background current noise. This component of the variance is 
decreased by phase advances, and increased by phase delays. The 
total variance for the PRC

syn
 is:

var[ ] [ ] [ ] [
[ ]

φ η ∗ φ η
φ

φ φ

= − ′( ) +∫ ∫
+

2 2

0

2 2 2
1

1PRC PRC PRCsyn

PRCxyn

s ds ss ds] .

The stochastic map was then calculated as described previously.

CalCulating the firing rate during stiMulation
During repetitive stimulation, stimuli shift the phase of cell firing 
in a phase-dependent manner and the effect of each stimulus on 
the rate of firing is determined by the phase at which the stimulus 
occurs relative to the previous action potential. The probability 
distribution of such phases is given by the stationary distribution 
of stimulus phases. The firing rate for each stimulation rate and 
intensity was calculated from the product of that distribution and 
the compound synaptic PRC, which was summed to calculate the 
average phase change expected from each stimulus. The reciprocal 
of that sum is the average fractional change in rate. Baseline firing 
rate was 60 Hz.

results
The desynchronizing effect of high frequency stimulation on 
identical noise-free model neurons is shown in Figures 2A,B. 
Two conductance-based simple one-compartment model neurons 
that show spontaneous oscillations near the rate of globus pal-
lidus output neurons are shown in Figure 2A. They had identical 
periods, and so maintained their relative phase relationship at the 
start of the simulation. When they were both stimulated with the 
same periodic high frequency train of current pulses, they did not 
respond identically. Because the first stimulus fell at slightly dif-
ferent phases of their ongoing oscillation, each cell’s phase was 
changed in a slightly different way. These changes were, on average, 
amplified over subsequent cycles of stimulation. Both cells fired 
irregularly during the stimulation and their phase relationship 
varied erratically as shown in Figure 2B. Analysis of this effect is 
complicated by the multidimensional nature of the conductance 
model and the oscillatory mechanism. A simplified representation 
of this model neuron can be obtained by measuring its PRC, shown 
in Figure 2C. In this graph the change of the cell’s ISI in response 
to a single brief current injection is plotted as a function of the 
time of stimulation after the preceding action potential. Both the 
change in ISI and the time of the stimulus are normalized by the 
unperturbed ISI to be in units of phase. Advances in phase, mean-
ing decreases in ISI caused by the stimulus, are shown as positive. 
The response to a depolarizing pulse is shown. The PRC scales with 
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Figure 2 | Chaotic desynchronization in a model neuron. (A) Two uncoupled 
conductance-based simulated neurons before and during stimulation with high 
frequency current pulses. (B) The neurons’ phase relationship is disturbed during 
the stimulation. (C) The phase-resetting curve (PRC), a simplification of the 
neuron model consisting of a phase-dependent phase shift by a current pulse. 
(D) Iterative phase map. The phase of the stimulus for the next stimulation is 
calculated from its PRC and its phase on the previous cycle. (e) Phase map for 
chaotic desynchronization, leading to a non-repeating non-random sequence of 

phases. (F) Phase differences for two initially nearby trajectories in the chaotic 
map. (g) Map of stimulus strength and frequency dependence of firing patterns 
using the Lyapunov exponent. Negative Lyapunov exponents (white to blue) 
indicate phase convergence and synchrony. Positive Lyapunov exponents (red to 
orange) indicate chaotic phase divergence. Lyapunov exponents near zero, 
indicating neither active synchronization nor desynchronization, are shown black. 
Inhibitory current pulses also produce chaotic firing and divergence of 
trajectories, but over a different range of rates.
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between the pallidal segments (e.g., Kita, 1994; Kita et al., 2005). 
The most direct pathways recruited by subthalamic stimulation 
are shown in Figure 4A. Note that most of the same pathways are 
present and may be stimulated by electrodes in either the GPe or 
GPi. There are a variety of indirect pathways that may be recruited, 
and it is not certain which pathways are most essential for DBS 
(e.g., Gradinaru et al., 2009; Xu et al., 2011). The presence of both 
excitatory and inhibitory effects of STN stimulation are reflected 
in the post-stimulus changes in firing observed after single stimuli 
(Nambu et al., 2000; Kita et al., 2005) and during DBS (Hashimoto 
et al., 2003; Kita et al., 2005; McCairn and Turner, 2009). We con-
structed a compound synaptic current generated in the GPi neuron 
by the stimulus, composed of a subthalamo-pallidal EPSC with a 
latency of 1 ms and a pallido-pallidal IPSC evoked by the axon 
reflex antidromically activated from the subthalamic nucleus and 
inhibiting the GPi via the GPe–GPi collateral of the same axons. The 
inhibitory pathway had a latency of 1.5 ms. The EPSC component 
decayed exponentially with a time constant of 2.5 ms, and the IPSC 
component had a decay time constant of 5 ms (Sims et al., 2008). The 
IPSC had an amplitude 0.6 that of the EPSC. This ratio of inhibition 
to excitation was selected to produce a post-stimulus time histogram 
similar to that recorded by Kita et al. (2005). A typical post-stimulus 
time histogram for this stimulus is shown in Figure 4B.

We calculated the compound synaptic PRCs generated by this 
synaptic stimulus. Unlike the idealized PRCs in Figures 2 and 3, 
these included temporally extended responses to both excitatory and 
inhibitory components, and so both the shape and size of the PRC 
depended on stimulus strength. They also depended on the unper-
turbed firing rate of the cell, which was fixed at 60 Hz. Examples of 
the synaptic PRCs obtained at three different stimulus intensities are 
shown in Figure 4C. The curves are shifted in the downward (phase-
retarding) direction by the influence of the inhibitory component of 
the synaptic stimulus, especially at low stimulus intensities. Because 
of its longer duration, the inhibitory synaptic current accumulated 
over multiple stimulation presentations. The compound synaptic 
PRC is a periodic function (see Materials and Methods) for repeated 
stimulation, and includes the cumulative effect of the steady-state 
periodic train of synaptic stimuli.

We then constructed a family of stochastic phase maps for the 
compound synaptic PRCs, and used them to calculate Lyapunov 
exponents over a range of stimulation intensities and frequencies as 
shown in Figure 4D. As before, stimulation frequencies were varied 
starting from the baseline firing rate of the cell and extending to 
twice that rate (60–120 Hz). This revealed a frequency–sensitivity 
for stimulus-induced desynchronization similar to that of clinically 
effective DBS (Rizzone et al., 2001; Chen et al., 2008). A stochastic 
map was also constructed for the probability of neuronal firing 
at various times after a DBS stimulus. The stationary distribu-
tion obtained from the map is the steady-state post-stimulus firing 
probability, and so should predict the post-stimulus histogram that 
would be obtained during DBS. These were sensitive to changes in 
stimulus intensity and frequency. Three examples, corresponding 
to the same three synaptic PRCs shown in Figure 4C, but for a 
stimulation frequency of 114 Hz, are shown in Figure 4E.

To examine the relationship between phase locking, chaos, 
and firing rate, we calculated the firing rate for the same series 
of intensities at 114 Hz. We did this by multiplying the  stationary 

phase map, as shown in Figure 3. The variance of the PRC can be 
approximated from an estimate of the average variability in the 
absence of stimuli, and from the shape of the PRC (Ermentrout 
et al., 2011). An example stochastic-PRC, showing the mean effect 
of a current pulse on firing phase and the variance of that effect, 
is shown in Figure 3A. The map constructed from the stochastic 
PRC calculates a probability distribution of stimulus phase on the 
(i + 1)th stimulus presentation given a probability distribution of 
phase of the ith stimulus. Examples of stochastic phase maps for 
stimulation at the same frequency as the neuron’s spontaneous 
rate, or at twice that frequency are shown in Figure 3B. The steady-
state probability distribution obtained after many iterations of the 
stochastic map can be used to calculate the Lyapunov exponent, 
and to determine whether the stimulus will actively synchronize 
the cells, desynchronize them, or have no effect on synchrony. The 
relationship between stimulus frequency, amplitude, and Lyapunov 
exponent for the stochastic model neuron is shown in Figure 3C. 
The result is similar to that obtained in the deterministic case, 
except that the fine fractal mosaic of synchronization and desyn-
chronization is smoothed by cellular irregularity. In the region that 
gives rise to chaotic desynchronization, the fine dependency on tiny 
changes in stimulus parameters is not seen. This occurs because 
irregularity in the firing pattern ensures that the trajectories visit 
regions of the map associated with expansion and folding of tra-
jectories required for chaotic desynchronization.

Simulations of a population of neurons synchronized by com-
mon noise input confirmed the results obtained using the Lyapunov 
exponents. We simulated a group of 100 neurons, each oscillating at 
the same unperturbed rate and having the same PRC, but receiving 
noisy current perturbations from two sources. One of the noise 
sources was common to all the cells, and so tended to synchronize 
them, whereas the other was independent for each neuron. In the 
absence of high frequency stimulation the cells stabilized with a 
moderate amount of synchrony, corresponding to an entropy meas-
ure of about 2.5. These models were stimulated with depolarizing 
or hyperpolarizing current pulses over the same range of stimulus 
intensities and frequencies used in Figure 3C. The steady-state 
effect of stimulation on synchrony was assessed using a measure 
of population entropy (see Materials and Methods). The results for 
depolarizing pulses are shown in Figure 3D. Stimulus frequencies 
and intensities that yielded positive Lyapunov exponents desyn-
chronized the neurons (increased entropy), whereas those yielding 
negative Lyapunov exponents caused synchronization. Examples of 
two stimulus parameter sets are shown in Figures 3E,F.

In this model network, it was also possible to measure the impor-
tance of periodicity for the desynchronizing effect of high frequency 
stimulation. We varied the periodicity of the high frequency stimu-
lation, making it increasingly less regular but maintaining its aver-
age frequency. As reported for the clinical effectiveness of DBS 
(Dorval et al., 2010), randomization of the high frequency current 
pulses caused a rapid decline in the desynchronization effect of the 
stimulus, as shown in Figure 3G.

synaptiC stiMulation
Subthalamic nucleus stimulation monosynaptically excites neurons 
in the internal segment of the globus pallidus (Kita and Kitai, 1991; 
Nakanishi et al., 1991) but it also recruits inhibitory connections 
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Figure 3 | Stochastic phase map. (A) The phase-resetting curve for a model 
neuron in globus pallidus with confidence intervals. (B) Stochastic maps for 
periodic stimulation at two frequencies, the cell’s natural frequency (f0) and 
twice that. The stochastic map gives the probability distribution of stimulus 
phases on the next interspike interval given a distribution for the previous 
interval. (C) Lyapunov exponents for the stochastic map. (D) Entropy of a 

simulated network of 100 stochastic neurons correlated by shared random 
synaptic input. Periodic high frequency stimulation synchronizes (lowers 
entropy) or disrupts synchrony (raises entropy) as predicted by the Lyapunov 
exponent. (e,F) Rastergrams and entropy of a simulated network over six cycles 
during stimulation as indicated in (D). (g) Randomizing stimulus interval 
(measured by coefficient of variation) decreases the entropy of the population.
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Figure 4 | Compund synaptic phase-resetting curve of globus pallidus 
neurons for subthalamic stimulation. (A) The connections between the 
subthalamic nucleus and globus pallidus neurons in the internal (GPi) and 
external (GPe) segments. Red indicates excitation; blue is inhibition 
(B) Post-stimulus histogram of single stimuli with latencies of 1 ms for 
excitation and 1.5 ms for inhibition, and excitatory and inhibitory current time 
constants of 2.5 and 6.0 ms respectively. (C) Compound synaptic phase-

resetting curves for three stimulus intensities. (D) Stimulus intensity and 
frequency map of Lyapunov exponenents for the stochastic compound 
subthalamo-pallidal phase map, based on a baseline firing rate of 60 spikes/s. 
(e) Stationary probability distributions of firing time relative to DBS 
stimulation at 114 Hz, for the same threestimulus intensities shown in (C). (F) 
Steady-state average firing rate during 114 Hz. DBS across the range of 
stimulus intensities.

distribution of stimulus arrival times with the PRC, to get an aver-
age phase shift that could be converted to an average frequency 
change. The effect of stimulus intensity on firing rate during DBS is 
shown in Figure 4F. At low intensities, accumulation of the longer-
lasting inhibitory synaptic current dominated, and DBS produced a 
decrease in firing rate, similar to that reported by Kita et al. (2005). 
At higher intensities, increased entrainment of the cell by the stimu-
lus caused an increase in firing rate, as in Hashimoto et al. (2003). 

Our results indicate that maximal desynchronization should occur 
at lower intensities, even ones causing a slowing of firing rate, and 
not showing strong phase locking to the stimulus.

disCussion
Our model is very abstract, and does not address some of the practi-
cal aspects of DBS. For example, we do not address the shape or size 
of the electric field generated by the DBS stimulus, and the resulting 
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It is also possible that bursting could continue during DBS, but 
become desynchronized among neurons, as observed by McCairn 
and Turner (2009). Whether bursting is suppressed or only decor-
related by DBS, increased entropy across the GPi neuronal popula-
tion should distribute pallidothalamic inhibition in time. This more 
constant pallidothalamic synaptic barrage would be less likely to 
engage the low frequency resonance in thalamic neurons which in 
the Rubin and Terman model is considered to be responsible for 
the parkinsonian symptoms.

If the desynchronizing effects of DBS were critical to its effective-
ness, it would explain the periodicity requirement and frequency–
sensitivity of DBS. Our model further predicts that increasing 
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entrain the population and degrade effectiveness of DBS. It also 
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precisely entrained, but rather fire irregularly (CV ∼ 1) during DBS 
(Hahn et al., 2008), and that spike-wise correlations of activity in 
basal ganglia output neurons are suppressed rather than enhanced 
during DBS (Degos et al., 2005). Of course, if cells were entrained 
to the stimulus, their firing would be highly correlated. Our model 
also explains why randomization of the stimulus interval degrades 
clinical effectiveness (Dorval et al., 2010).

Our results suggest that inhibitory, as well as excitatory inputs, 
may contribute to DBS effectiveness. We suggest that effective-
ness in disrupting the correlations between nearby basal ganglia 
output neurons may determine the effectiveness of DBS stimula-
tion sites, intensities, and frequencies. A similar mechanism may 
underlie the beneficial effects of DBS on other neurological and 
psychiatric conditions.
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differences in stimulation that occur across the population of STN 
neurons (Miocinovic et al., 2009). We also consider only the effects 
of the stimulus on STN and GPe cells and their processes, and not 
the host of other cell types whose axons are in or near the region 
of the stimulus (Xu et al., 2011) and may contribute to the effect of 
the stimulus. We have also not included rate heterogeneity of GPi 
neurons. Neurons with different natural frequencies would have 
corresponding shifts in the frequency specificity of their response to 
periodic stimulation. In our simulations, we used shared input as a 
way of creating correlated activity in basal ganglia output neurons. 
The true cause of correlations between output neurons in parkin-
sonism is not known. If their correlations were caused by synaptic 
coupling rather than shared input, they might be less sensitive to 
the desynchronizing effect of periodic stimulation. This last sim-
plification is common to nearly all models of DBS.

The beneficial effects of DBS on the symptoms of Parkinson’s 
disease may not be attributable to its effects on firing rate, but 
rather to disruption of low frequency bursting, synchrony of fir-
ing, or both (Hashimoto et al., 2003; McCairn and Turner, 2009). 
Previous theoretical studies have assumed that DBS synchronizes 
firing in basal ganglia output neurons, emphasizing its effects on 
low frequency oscillations (Rubin and Terman, 2004; Guo et al., 
2008). Our results do not directly address the importance of the 
slow oscillatory bursting, but rather the correlations among neu-
rons. These two mechanisms of DBS are not mutually exclusive, and 
may be acting simultaneously. To the extent that entrained activity 
in the globus pallidus can prevent bursting in the thalamus, as in 
the Rubin and Terman (2004) model, it should still do so when 
the cells are not entrained, but activated asynchronously. Chaotic 
desynchronization might also act indirectly to disrupt bursting and 
other structured activity in pallidal neurons by decorrelating activ-
ity in their inputs. This mechanism may have even contributed but 
gone unrecognized in the simulations with the conductance-based 
neuron models by Rubin and Terman and others.
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